Publicação: Finite-well potential in the 3D nonlinear Schrodinger equation: application to Bose-Einstein condensation
Carregando...
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Springer
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
Using variational and numerical solutions we show that stationary negative-energy localized (normalizable) bound states can appear in the three-dimensional nonlinear Schrodinger equation with a finite square-well potential for a range of nonlinearity parameters. Below a critical attractive nonlinearity, the system becomes unstable and experiences collapse. Above a limiting repulsive nonlinearity, the system becomes highly repulsive and cannot be bound. The system also allows nonnormalizable states of infinite norm at positive energies in the continuum. The normalizable negative-energy bound states could be created in BECs and studied in the laboratory with present knowhow.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
European Physical Journal D. New York: Springer, v. 42, n. 2, p. 279-286, 2007.