Logotipo do repositório
 

Publicação:
NOISE and ULTRAVIOLET DIVERGENCES IN SIMULATIONS of GINZBURG-LANDAU-LANGEVIN TYPE of EQUATIONS

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

World Scientific Publ Co Pte Ltd

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

The time evolution of an order parameter towards equilibrium can be described by nonlinear Ginzburg-Landau (GL) type of equations, also known as time-dependent nonlinear Schrodinger equations. Environmental effects of random nature are usually taken into account by noise sources, turning the GL equations into stochastic equations. Noise sources give rise to lattice-spacing dependence of the solutions of the stochastic equations. We present a systematic method to renormalize the equations on a spatial lattice to obtain lattice-spacing independent solutions. We illustrate the method in approximation schemes designed to treat nonlinear and nonlocal GL equations that appear in real time thermal field theory and stochastic quantization.

Descrição

Palavras-chave

Dynamical phase transitions, stochastic quantization

Idioma

Inglês

Como citar

International Journal of Modern Physics C. Singapore: World Scientific Publ Co Pte Ltd, v. 23, n. 8, p. 9, 2012.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação