Algebraic properties of Rogers-Szego functions: I. Applications in quantum optics
Carregando...
Arquivos
Fonte externa
Fonte externa
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Iop Publishing Ltd
Tipo
Artigo
Direito de acesso
Acesso restrito
Arquivos
Fonte externa
Fonte externa
Resumo
By means of a well-established algebraic framework, Rogers-Szego functions associated with a circular geometry in the complex plane are introduced in the context of q-special functions, and their properties are discussed in detail. The eigenfunctions related to the coherent and phase states emerge from this formalism as infinite expansions of Rogers-Szego functions, the coefficients being determined through proper eigenvalue equations in each situation. Furthermore, a complementary study on the Robertson-Schrodinger and symmetrical uncertainty relations for the cosine, sine and nondeformed number operators is also conducted, corroborating, in this way, certain features of q-deformed coherent states.
Descrição
Palavras-chave
Idioma
Inglês
Citação
Journal of Physics A-mathematical and Theoretical. Bristol: Iop Publishing Ltd, v. 42, n. 37, p. 24, 2009.


