Publicação: Free actions of abelian p-groups on the n-torus
Carregando...
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Univ Houston
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
In this work we make some contributions to the theory of actions of abelian p-groups on the n-Torus T-n. Set congruent to Z(pk1)(h1) x Z(pk2)(h2) x...x Z(pkr)(hr), r >= 1, k(1) >= k(2) >=...>= k(r) >= 1, p prime. Suppose that the group H acts freely on T-n and the induced representation on pi(1)(T-n) congruent to Z(n) is faithful and has first Betti number b. We show that the numbers n, p, b, k(i) and h(i) (i = 1,..,r) satisfy some relation. In particular, when H congruent to Z(p)(h), the minimum value of n is phi(p) + b when b >= 1. Also when H congruent to Z(pk1) x Z(p) the minimum value of n is phi(p(k1)) + p - 1 + b for b >= 1. Here phi denotes the Euler function.
Descrição
Palavras-chave
free actions, integral representation, Bieberbach groups, p-groups
Idioma
Inglês
Como citar
Houston Journal of Mathematics. Houston: Univ Houston, v. 31, n. 1, p. 87-101, 2005.