Publicação: The energy landscape for solvent dynamics in electron transfer reactions: A minimalist model
Carregando...
Data
2002-08-01
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
American Institute of Physics (AIP)
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
Energy fluctuations of a solute molecule embedded in a polar solvent are investigated to depict the energy landscape for solvation dynamics. The system is modeled by a charged molecule surrounded by two layers of solvent dipolar molecules with simple rotational dynamics. Individual solvent molecules are treated as simple dipoles that can point toward or away from the central charge (Ising spins). Single-spin-flip Monte Carlo kinetics simulations are carried out in a two-dimensional lattice for different central charges, radii of outer shell, and temperatures. By analyzing the density of states as a function of energy and temperatures, we have determined the existence of multiple freezing transitions. Each of them can be associated with the freezing of a different layer of the solvent. (C) 2002 American Institute of Physics.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Journal of Chemical Physics. Melville: Amer Inst Physics, v. 117, n. 5, p. 2172-2179, 2002.