Differential effects of novel wasp toxin on rat hippocampal interneurons
Carregando...
Fonte externa
Fonte externa
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Elsevier B.V.
Tipo
Artigo
Direito de acesso
Acesso restrito
Fonte externa
Fonte externa
Resumo
We studied the effects of a wasp toxin beta-pompilidotoxin (beta-PMTX) on rat hippocampal CA1 interneurons by the current-clamp technique. The firing patterns of pyramidal neurons and pyramidale interneurons were not affected by beta-PMTX, but in oriens and radiatum interneurons, beta-PMTX converted the action potentials to prolonged depolarizing potentials by slowing the inactivation of Na+ channels. In lacunosum moleculare interneurons, beta-PMTX induced initial bursting spikes followed by block of succeeding spikes. Comparison of beta-PMTX with a sea anemone toxin, ATX 11, revealed that ATX 11 altered the firing properties of pyramidal neurons and pyramidale interneurons that were unchanged by beta-PMTX. Our results suggest that beta-PMTX modulates Na+ currents in CAl interneurons differently in various CAl neurons and the toxin is useful to classify Na+ channel subtypes. (C) 2002 Elsevier B.V. Ireland Ltd. All rights reserved.
Descrição
Palavras-chave
interneuron, sodium channel, inactivation, wasp toxin, pompilidotoxin, sea anemone toxin
Idioma
Inglês
Citação
Neuroscience Letters. Clare: Elsevier Sci Ireland Ltd, v. 328, n. 1, p. 25-28, 2002.