Publicação: Feedforward neural networks based on PPS-wavelet activation functions
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
I E E E, Computer Soc Press
Tipo
Trabalho apresentado em evento
Direito de acesso
Acesso aberto

Resumo
Function approximation is a very important task in environments where computation has to be based on extracting information from data samples in real world processes. Neural networks and wavenets have been recently seen as attractive tools for developing efficient solutions for many real world problems in function approximation. In this paper, it is shown how feedforward neural networks can be built using a different type of activation function referred to as the PPS-wavelet. An algorithm is presented to generate a family of PPS-wavelets that can be used to efficiently construct feedforward networks for function approximation.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Ii Workshop on Cybernetic Vision, Proceedings. Los Alamitos: I E E E, Computer Soc Press, p. 240-245, 1997.