Speedup and scalability analysis of Master-Slave applications on large heterogeneous clusters
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Elsevier B.V.
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
Although cluster environments have an enormous potential processing power, real applications that take advantage of this power remain an elusive goal. This is due, in part, to the lack of understanding about the characteristics of the applications best suited for these environments. This paper focuses on Master/Slave applications for large heterogeneous clusters. It defines application, cluster and execution models to derive an analytic expression for the execution time. It defines speedup and derives speedup bounds based on the inherent parallelism of the application and the aggregated computing power of the cluster. The paper derives an analytical expression for efficiency and uses it to define scalability of the algorithm-cluster combination based on the isoefficiency metric. Furthermore, the paper establishes necessary and sufficient conditions for an algorithm-cluster combination to be scalable which are easy to verify and use in practice. Finally, it covers the impact of network contention as the number of processors grow. (C) 2007 Elsevier B.V. All rights reserved.
Descrição
Palavras-chave
parallel systems, distributed systems, modeling and prediction
Idioma
Inglês
Citação
Journal of Parallel and Distributed Computing. San Diego: Academic Press Inc. Elsevier B.V., v. 67, n. 11, p. 1155-1167, 2007.