THE CONSERVED CHARGES AND INTEGRABILITY OF THE CONFORMAL AFFINE TODA MODELS
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
World Scientific Publ Co Pte Ltd
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
We construct infinite sets of local conserved charges for the conformal affine Toda model. The technique involves the abelianization of the two-dimensional gauge potentials satisfying the zero-curvature form of the equations of motion. We find two infinite sets of chiral charges and apart from two lowest spin charges, all the remaining ones do not possess chiral densities. Charges of different chiralities Poisson commute among themselves. We discuss the algebraic properties of these charges and use the fundamental Poisson bracket relation to show that the charges conserved in time are in involution. Connections to other Toda models are established by taking particular limits.
Descrição
Palavras-chave
Idioma
Inglês
Citação
Modern Physics Letters A. Singapore: World Scientific Publ Co Pte Ltd, v. 9, n. 30, p. 2783-2801, 1994.