Publicação: Non-periodic bifurcations of one-dimensional maps
Carregando...
Arquivos
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Cambridge University Press
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
We prove that a 'positive probability' subset of the boundary of '{uniformly expanding circle transformations}' consists of Kupka-Smale maps. More precisely, we construct an open class of two-parameter families of circle maps (f(alpha,theta))(alpha,theta) such that, for a positive Lebesgue measure subset of values of alpha, the family (f(alpha,theta))(theta) crosses the boundary of the uniformly expanding domain at a map for which all periodic points are hyperbolic (expanding) and no critical point is pre-periodic. Furthermore, these maps admit an absolutely continuous invariant measure. We also provide information about the geometry of the boundary of the set of hyperbolic maps.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Ergodic Theory and Dynamical Systems. New York: Cambridge Univ Press, v. 27, p. 459-492, 2007.