Publicação: Bayesian approximations in randomized response model
Nenhuma Miniatura disponível
Data
1997-06-05
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Elsevier B.V.
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
Practical Bayesian inference depends upon detailed examination of posterior distribution. When the prior and likelihood are conjugate, this is easily carried out; however, in general, one must resort to numerical approximation. In this paper, our aim is to solve, using MAPLE, the Bayesian paradigm, for a very special data collecting procedure, known as the randomized-response technique. This allows researchers to obtain sensitive information while guaranteeing privacy to respondents. This approach intends to reduce false responses on sensitive questions. Exact methods and approximations will be compared from the accuracy point of view as well as for the computational effort.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Computational Statistics & Data Analysis. Amsterdam: Elsevier B.V., v. 24, n. 4, p. 401-409, 1997.