Logotipo do repositório
 

Publicação:
Bayesian outlier analysis in binary regression

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Routledge Journals, Taylor & Francis Ltd

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

We propose alternative approaches to analyze residuals in binary regression models based on random effect components. Our preferred model does not depend upon any tuning parameter, being completely automatic. Although the focus is mainly on accommodation of outliers, the proposed methodology is also able to detect them. Our approach consists of evaluating the posterior distribution of random effects included in the linear predictor. The evaluation of the posterior distributions of interest involves cumbersome integration, which is easily dealt with through stochastic simulation methods. We also discuss different specifications of prior distributions for the random effects. The potential of these strategies is compared in a real data set. The main finding is that the inclusion of extra variability accommodates the outliers, improving the adjustment of the model substantially, besides correctly indicating the possible outliers.

Descrição

Palavras-chave

binary regression models, Bayesian residual, random effect, mixture of normals, Markov chain Monte Carlo

Idioma

Inglês

Como citar

Journal of Applied Statistics. Abingdon: Routledge Journals, Taylor & Francis Ltd, v. 37, n. 8, p. 1355-1368, 2010.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação