Logo do repositório
 

Bacterial cellulose membrane as flexible substrate for organic light emitting devices

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Elsevier B.V. Sa

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

Bacterial cellulose (BC) membranes produced by gram-negative, acetic acid bacteria (Gluconacetobacter xylinus), were used as flexible substrates for the fabrication of Organic Light Emitting Diodes (OLED). In order to achieve the necessary conductive properties indium tin oxide (ITO) thin films were deposited onto the membrane at room temperature using radio frequency (r.f) magnetron sputtering with an r.f. power of 30 W, at pressure of 8 mPa in Ar atmosphere without any subsequent thermal treatment. Visible light transmittance of about 40% was observed. Resistivity, mobility and carrier concentration of deposited ITO films were 4.90 x 10(-4) Ohm cm, 8.08 cm(2)/V-s and -1.5 x 10(21) cm(-3), respectively, comparable with commercial ITO substrates. In order to demonstrate the feasibility of devices based on BC membranes three OLEDs with different substrates were produced: a reference one with commercial ITO on glass, a second one with a SiO(2) thin film interlayer between the BC membrane and the ITO layer and a third one just with ITO deposited directly on the BC membrane. The observed OLED luminance ratio was: 1; 0.5; 0.25 respectively, with 2400 cd/m(2) as the value for the reference OLED. These preliminary results show clearly that the functionalized biopolymer, biodegradable, biocompatible bacterial cellulose membranes can be successfully used as substrate in flexible organic optoelectronic devices. (C) 2008 Elsevier B.V. All rights reserved.

Descrição

Palavras-chave

OLED, Transparent conducting oxides, Solid state lightning, Flexible organic electronics ''> onducting oxides, Solid state lightning, Flexible organic electronics

Idioma

Inglês

Citação

Thin Solid Films. Lausanne: Elsevier B.V. Sa, v. 517, n. 3, p. 1016-1020, 2008.

Itens relacionados

Financiadores

Unidades

Unidade
Instituto de Química
IQAR
Campus: Araraquara


Departamentos

Cursos de graduação

Programas de pós-graduação