Publicação: On the number of critical periods for planar polynomial systems
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Pergamon-Elsevier B.V. Ltd
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
In this paper we get some lower bounds for the number of critical periods of families of centers which are perturbations of the linear one. We give a method which lets us prove that there are planar polynomial centers of degree l with at least 2[(l - 2)/2] critical periods as well as study concrete families of potential, reversible and Lienard centers. This last case is studied in more detail and we prove that the number of critical periods obtained with our approach does not. increases with the order of the perturbation. (C) 2007 Elsevier Ltd. All rights reserved.
Descrição
Palavras-chave
period function, critical periods, perturbations, potential systems, reversible centers, Hamiltonian centers, Lienard centers
Idioma
Inglês
Como citar
Nonlinear Analysis-theory Methods & Applications. Oxford: Pergamon-Elsevier B.V. Ltd, v. 69, n. 7, p. 1889-1903, 2008.