Frequency upconversion in rare-earth doped fluoroindate glasses
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
We present recent results on frequency upconversion (UPC) obtained in fluoroindate glasses (FIG) doped with Ho3+, Tm3+ and Nd3+ ions and codoped with Pr3+/Nd3+ and Yb3+/Tb3+ ions. The results for the Ho3+-doped samples show strong evidence of energy transfer (ET) between Ho3+ ions resonantly excited at 640 nm. The origin of the blue-green upconverted fluorescence observed was identified and the dynamics of the signals revealed the pathways involved in the UPC process. In the case of Tm3+-doped FIG, the samples were resonantly excited at 650 nm and the main mechanism that contributes for the red-to-blue upconversion is excited-state absorption (ESA). The FIG samples codoped with Pr3+/Nd3+ were excited at 588 nm in resonance with transitions starting from the ground state of the Nd 3+ and the Pr3+ ions. It was observed that the presence of Nd3+ ions enhanced the Pr3+ emission at 480 nm by two orders of magnitude. Multiphonon (MP)-assisted upconversion is also discussed for Nd3+-doped FIG pumped at 866 nm. Emission at 750 nm with a peculiar linear dependence with the laser intensity was observed and explained. A rate-equation model that includes MP absorption via thermally coupled electronic excited states of Nd3+ was developed and describes well the experimental results. The role played by effective phonon modes is clearly demonstrated. MP-assisted UPC process was also studied in Yb3+/ Tb3+-codoped FIG samples excited at 1064 nm, which is off-resonance with electronic transitions starting from the ground state. It was determined that the mechanism leading to Tb3+ emission in the blue is due to ET from a pair of excited Yb3+ ions followed by ESA in the Tb 3+ ions. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS.
Descrição
Palavras-chave
Fluoroindate glass, Frequency upconversion, Rare-earth ions
Idioma
Inglês
Citação
Comptes Rendus Chimie, v. 5, n. 12, p. 885-898, 2002.