Logotipo do repositório
 

Publicação:
Radial basis function networks with quantized parameters

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

A RBFN implemented with quantized parameters is proposed and the relative or limited approximation property is presented. Simulation results for sinusoidal function approximation with various quantization levels are shown. The results indicate that the network presents good approximation capability even with severe quantization. The parameter quantization decreases the memory size and circuit complexity required to store the network parameters leading to compact mixed-signal circuits proper for low-power applications. ©2008 IEEE.

Descrição

Palavras-chave

Function approximation, Quantized parameters, Radial basis function network, Artificial intelligence, Chlorine compounds, Feedforward neural networks, Intelligent control, Networks (circuits), Polynomial approximation, Approximation properties, Circuit complexity, Computational intelligence, International conferences, Low-power applications, Measurement systems, Memory size, Mixed-signal circuits, Network parameters, Quantization levels, Simulation results, Sinusoidal functions, Radial basis function networks

Idioma

Inglês

Como citar

CIMSA 2008 - IEEE Conference on Computational Intelligence for Measurement Systems and Applications Proceedings, p. 23-27.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação