Publicação: Radial basis function networks with quantized parameters
Nenhuma Miniatura disponível
Data
2008-09-30
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Acesso aberto

Resumo
A RBFN implemented with quantized parameters is proposed and the relative or limited approximation property is presented. Simulation results for sinusoidal function approximation with various quantization levels are shown. The results indicate that the network presents good approximation capability even with severe quantization. The parameter quantization decreases the memory size and circuit complexity required to store the network parameters leading to compact mixed-signal circuits proper for low-power applications. ©2008 IEEE.
Descrição
Palavras-chave
Function approximation, Quantized parameters, Radial basis function network, Artificial intelligence, Chlorine compounds, Feedforward neural networks, Intelligent control, Networks (circuits), Polynomial approximation, Approximation properties, Circuit complexity, Computational intelligence, International conferences, Low-power applications, Measurement systems, Memory size, Mixed-signal circuits, Network parameters, Quantization levels, Simulation results, Sinusoidal functions, Radial basis function networks
Idioma
Inglês
Como citar
CIMSA 2008 - IEEE Conference on Computational Intelligence for Measurement Systems and Applications Proceedings, p. 23-27.