Localization of a Bose-Einstein condensate in a bichromatic optical lattice
Carregando...
Fonte externa
Fonte externa
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto

Fonte externa
Fonte externa
Resumo
By direct numerical simulation of the time-dependent Gross-Pitaevskii equation, we study different aspects of the localization of a noninteracting ideal Bose-Einstein condensate (BEC) in a one-dimensional bichromatic quasiperiodic optical-lattice potential. Such a quasiperiodic potential, used in a recent experiment on the localization of a BEC, can be formed by the superposition of two standing-wave polarized laser beams with different wavelengths. We investigate the effect of the variation of optical amplitudes and wavelengths on the localization of a noninteracting BEC. We also simulate the nonlinear dynamics when a harmonically trapped BEC is suddenly released into a quasiperiodic potential, as done experimentally in a laser speckle potential. We finally study the destruction of the localization in an interacting BEC due to the repulsion generated by a positive scattering length between the bosonic atoms. © 2009 The American Physical Society.
Descrição
Palavras-chave
Bose-Einstein condensates, Bosonic atoms, Laser speckle, Non-linear dynamics, One-dimensional, Optical amplitudes, Optical lattices, Optical-lattice potential, Polarized laser beams, Quasi-periodic, Quasiperiodic potential, Scattering length, Time-dependent Gross-Pitaevskii equation, Bose-Einstein condensation, Computer simulation languages, Laser beams, Speckle, Steam condensers, Light transmission
Idioma
Inglês
Citação
Physical Review A - Atomic, Molecular, and Optical Physics, v. 80, n. 2, 2009.