Logotipo do repositório
 

Publicação:
Optimizing optimum-path forest classification for huge datasets

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Traditional pattern recognition techniques can not handle the classification of large datasets with both efficiency and effectiveness. In this context, the Optimum-Path Forest (OPF) classifier was recently introduced, trying to achieve high recognition rates and low computational cost. Although OPF was much faster than Support Vector Machines for training, it was slightly slower for classification. In this paper, we present the Efficient OPF (EOPF), which is an enhanced and faster version of the traditional OPF, and validate it for the automatic recognition of white matter and gray matter in magnetic resonance images of the human brain. © 2010 IEEE.

Descrição

Palavras-chave

Brain image classification, Optimum-Path forest, Supervised classification, Support Vector machines, Automatic recognition, Brain images, Computational costs, Data sets, Forest classification, Gray matter, Human brain, Large datasets, Magnetic resonance images, Pattern recognition techniques, Recognition rates, Support vector, White matter, Image analysis, Image classification, Magnetic resonance, Magnetic resonance imaging, Support vector machines, Classification (of information)

Idioma

Inglês

Como citar

Proceedings - International Conference on Pattern Recognition, p. 4162-4165.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação