Logotipo do repositório
 

Publicação:
Kernel polynomials from L-orthogonal polynomials

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

A positive measure ψ defined on [a,b] such that its moments μn=∫a btndψ(t) exist for n=0,±1,±2,⋯, is called a strong positive measure on [a,b]. If 0≤a<b≤∞ then the sequence of (monic) polynomials {Qn}, defined by ∫a bt-n+sQn(t)dψ(t)=0, s=0,1,⋯,n-1, is known to exist. We refer to these polynomials as the L-orthogonal polynomials with respect to the strong positive measure ψ. The purpose of this manuscript is to consider some properties of the kernel polynomials associated with these L-orthogonal polynomials. As applications, we consider the quadrature rules associated with these kernel polynomials. Associated eigenvalue problems and numerical evaluation of the nodes and weights of such quadrature rules are also considered. © 2010 IMACS. Published by Elsevier B.V. All rights reserved.

Descrição

Palavras-chave

Eigenvalue problems, Kernel polynomials, Orthogonal Laurent polynomials, Quadrature rules, Eigenvalue problem, L-orthogonal polynomials, Numerical evaluations, Orthogonal Laurent polynomial, Eigenvalues and eigenfunctions, Orthogonal functions, Polynomials

Idioma

Inglês

Como citar

Applied Numerical Mathematics, v. 61, n. 5, p. 651-665, 2011.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação