Publication:
Interaction between wave and coastal structure: Validation of two lagrangian numerical models with experimental results marine 2011

Loading...
Thumbnail Image

Date

2011-12-01

Advisor

Coadvisor

Graduate program

Undergraduate course

Journal Title

Journal ISSN

Volume Title

Publisher

Type

Work presented at event

Access right

Acesso abertoAcesso Aberto

Abstract

Numerical modeling of the interaction among waves and coastal structures is a challenge due to the many nonlinear phenomena involved, such as, wave propagation, wave transformation with water depth, interaction among incident and reflected waves, run-up / run-down and wave overtopping. Numerical models based on Lagrangian formulation, like SPH (Smoothed Particle Hydrodynamics), allow simulating complex free surface flows. The validation of these numerical models is essential, but comparing numerical results with experimental data is not an easy task. In the present paper, two SPH numerical models, SPHysics LNEC and SPH UNESP, are validated comparing the numerical results of waves interacting with a vertical breakwater, with data obtained in physical model tests made in one of the LNEC's flume. To achieve this validation, the experimental set-up is determined to be compatible with the Characteristics of the numerical models. Therefore, the flume dimensions are exactly the same for numerical and physical model and incident wave characteristics are identical, which allows determining the accuracy of the numerical models, particularly regarding two complex phenomena: wave-breaking and impact loads on the breakwater. It is shown that partial renormalization, i.e. renormalization applied only for particles near the structure, seems to be a promising compromise and an original method that allows simultaneously propagating waves, without diffusion, and modeling accurately the pressure field near the structure.

Description

Language

English

Citation

MARINE 2011 - Computational Methods in Marine Engineering IV, p. 134-145.

Related itens

Sponsors

Collections

Units

Departments

Undergraduate courses

Graduate programs