Publicação: Electrical consumers data clustering through optimum-path forest
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Acesso aberto

Resumo
Non-technical losses identification has been paramount in the last decade. Since we have datasets with hundreds of legal and illegal profiles, one may have a method to group data into subprofiles in order to minimize the search for consumers that cause great frauds. In this context, a electric power company may be interested in to go deeper a specific profile of illegal consumer. In this paper, we introduce the Optimum-Path Forest (OPF) clustering technique to this task, and we evaluate the behavior of a dataset provided by a brazilian electric power company with different values of an OPF parameter. © 2011 IEEE.
Descrição
Palavras-chave
Clustering, Non-technical Losses, Optimum-Path Forest, Pattern Recognition, Clustering techniques, Data clustering, Data sets, Electric power company, Non-technical loss, Specific profile, Clustering algorithms, Crime, Data processing, Electric utilities, Industry, Intelligent systems, Pattern recognition, Power transmission, Forestry, Algorithms, Artificial Intelligence, Data Processing, Electric Power Transmission, Electricity, Losses
Idioma
Inglês
Como citar
2011 16th International Conference on Intelligent System Applications to Power Systems, ISAP 2011.