Logotipo do repositório
 

Publicação:
Electrical consumers data clustering through optimum-path forest

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Non-technical losses identification has been paramount in the last decade. Since we have datasets with hundreds of legal and illegal profiles, one may have a method to group data into subprofiles in order to minimize the search for consumers that cause great frauds. In this context, a electric power company may be interested in to go deeper a specific profile of illegal consumer. In this paper, we introduce the Optimum-Path Forest (OPF) clustering technique to this task, and we evaluate the behavior of a dataset provided by a brazilian electric power company with different values of an OPF parameter. © 2011 IEEE.

Descrição

Palavras-chave

Clustering, Non-technical Losses, Optimum-Path Forest, Pattern Recognition, Clustering techniques, Data clustering, Data sets, Electric power company, Non-technical loss, Specific profile, Clustering algorithms, Crime, Data processing, Electric utilities, Industry, Intelligent systems, Pattern recognition, Power transmission, Forestry, Algorithms, Artificial Intelligence, Data Processing, Electric Power Transmission, Electricity, Losses

Idioma

Inglês

Como citar

2011 16th International Conference on Intelligent System Applications to Power Systems, ISAP 2011.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação