Publicação: Szego{double acute} and para-orthogonal polynomials on the real line: Zeros and canonical spectral transformations
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
We study polynomials which satisfy the same recurrence relation as the Szego{double acute} polynomials, however, with the restriction that the (reflection) coefficients in the recurrence are larger than one in modulus. Para-orthogonal polynomials that follow from these Szego{double acute} polynomials are also considered. With positive values for the reflection coefficients, zeros of the Szego{double acute} polynomials, para-orthogonal polynomials and associated quadrature rules are also studied. Finally, again with positive values for the reflection coefficients, interlacing properties of the Szego{double acute} polynomials and polynomials arising from canonical spectral transformations are obtained. © 2012 American Mathematical Society.
Descrição
Palavras-chave
Canonical spectral transformations, Para-orthogonal polynomials, Reflection coefficients, Szeg{double acute} polynomials
Idioma
Inglês
Como citar
Mathematics of Computation, v. 81, n. 280, p. 2229-2249, 2012.