Logotipo do repositório
 

Publicação:
Perturbations on the antidiagonals of Hankel matrices

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

Given a strongly regular Hankel matrix, and its associated sequence of moments which defines a quasi-definite moment linear functional, we study the perturbation of a fixed moment, i.e., a perturbation of one antidiagonal of the Hankel matrix. We define a linear functional whose action results in such a perturbation and establish necessary and sufficient conditions in order to preserve the quasi-definite character. A relation between the corresponding sequences of orthogonal polynomials is obtained, as well as the asymptotic behavior of their zeros. We also study the invariance of the Laguerre-Hahn class of linear functionals under such perturbation, and determine its relation with the so-called canonical linear spectral transformations. © 2013 Elsevier Ltd. All rights reserved.

Descrição

Palavras-chave

Hankel matrix, Laguerre-Hahn class, Linear moment functional, Orthogonal polynomials, Zeros, Linear moments, Orthogonal polynomial, Linear transformations, Matrix algebra, Orthogonal functions, Mathematical transformations

Idioma

Inglês

Como citar

Applied Mathematics and Computation, v. 221, p. 444-452.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação