Publicação: Perturbations on the antidiagonals of Hankel matrices
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
Given a strongly regular Hankel matrix, and its associated sequence of moments which defines a quasi-definite moment linear functional, we study the perturbation of a fixed moment, i.e., a perturbation of one antidiagonal of the Hankel matrix. We define a linear functional whose action results in such a perturbation and establish necessary and sufficient conditions in order to preserve the quasi-definite character. A relation between the corresponding sequences of orthogonal polynomials is obtained, as well as the asymptotic behavior of their zeros. We also study the invariance of the Laguerre-Hahn class of linear functionals under such perturbation, and determine its relation with the so-called canonical linear spectral transformations. © 2013 Elsevier Ltd. All rights reserved.
Descrição
Palavras-chave
Hankel matrix, Laguerre-Hahn class, Linear moment functional, Orthogonal polynomials, Zeros, Linear moments, Orthogonal polynomial, Linear transformations, Matrix algebra, Orthogonal functions, Mathematical transformations
Idioma
Inglês
Como citar
Applied Mathematics and Computation, v. 221, p. 444-452.