Teorema de Riemann-Roch e aplicações
Carregando...
Arquivos
Data
Autores
Orientador
Salehyan, Parham 

Coorientador
Pós-graduação
Matemática - IBILCE
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Estadual Paulista (Unesp)
Tipo
Dissertação de mestrado
Direito de acesso
Acesso aberto

Resumo
Resumo (português)
O objetivo principal deste trabalho é estudar o Teorema de Riemann-Roch, um dos resultados fundamentais na teoria de curvas algébricas, e apresentar algumas de suas aplicações. Este teorema é uma importante ferramenta para a classificação das curvas algébricas, pois relaciona propriedades algébricas e topológicas. Daremos uma descrição das curvas algébricas de gênero g, 1≤ g ≤ 5, e faremos um breve estudo dos pontos de inflexão de um sistema linear sobre uma curva algébrica
Resumo (inglês)
The main purpose of this work is to discuss The Riemann-Roch Theorem, wich is one of the most important results of the theory algebraic curves, and to present some applications. This theorem is an important tool of the classification of algebraic curves, sinces relates algebraic and topological properties. We will describle the algebraic curves of genus g, 1≤ g ≤ 5, and also study inflection points of a linear system on an algebraic curve
Descrição
Palavras-chave
Geometria algebrica, Curvas algebricas, Riemann-Roch, Teoremas de, Riemann, Superficies de, Riemann surfaces, Algebraic curves, Divisors, Linear system, Riemann-Roch theorem, Classification of algebraic curves, Inflection points, Weierstrass points
Idioma
Português
Citação
ARRUDA, Rafael Lucas de. Teorema de Riemann-Roch e aplicações. 2011. 142 f. Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas, 2011.