Publication:
Design and analysis of an efficient neural network model for solving nonlinear optimization problems

No Thumbnail Available

Date

2005-10-20

Advisor

Coadvisor

Graduate program

Undergraduate course

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis Ltd

Type

Article

Access right

Acesso restrito

Abstract

This paper presents an efficient approach based on a recurrent neural network for solving constrained nonlinear optimization. More specifically, a modified Hopfield network is developed, and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points that represent an optimal feasible solution. The main advantage of the developed network is that it handles optimization and constraint terms in different stages with no interference from each other. Moreover, the proposed approach does not require specification for penalty and weighting parameters for its initialization. A study of the modified Hopfield model is also developed to analyse its stability and convergence. Simulation results are provided to demonstrate the performance of the proposed neural network.

Description

Language

English

Citation

International Journal of Systems Science. Abingdon: Taylor & Francis Ltd, v. 36, n. 13, p. 833-843, 2005.

Related itens

Sponsors

Units

Departments

Undergraduate courses

Graduate programs