Publicação: A neural system to robust Nonlinear optimization subject to disjoint and constrained sets
Nenhuma Miniatura disponível
Data
2001-01-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Int Inst Informatics & Systemics
Tipo
Trabalho apresentado em evento
Direito de acesso
Acesso aberto

Resumo
The ability of neural networks to realize some complex nonlinear function makes them attractive for system identification. This paper describes a novel method using artificial neural networks to solve robust parameter estimation problems for nonlinear models with unknown-but-bounded errors and uncertainties. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
World Multiconference on Systemics, Cybernetics and Informatics, Vol 1, Proceedings. Orlando: Int Inst Informatics & Systemics, p. 7-12, 2001.