Publicação:
Implementation of two-stage Hopfield model and its application in nonlinear systems

Nenhuma Miniatura disponível

Data

2004-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Springer

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

This paper presents an efficient neural network for solving constrained nonlinear optimization problems. More specifically, a two-stage neural network architecture is developed and its internal parameters are computed using the valid-subspace technique. The main advantage of the developed network is that it treats optimization and constraint terms in different stages with no interference with each other. Moreover, the proposed approach does not require specification of penalty or weighting parameters for its initialization.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Artificial Intelligence and Soft Computing - Icaisc 2004. Berlin: Springer-verlag Berlin, v. 3070, p. 954-959, 2004.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação