Publicação: Implementation of two-stage Hopfield model and its application in nonlinear systems
Nenhuma Miniatura disponível
Data
2004-01-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Springer
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
This paper presents an efficient neural network for solving constrained nonlinear optimization problems. More specifically, a two-stage neural network architecture is developed and its internal parameters are computed using the valid-subspace technique. The main advantage of the developed network is that it treats optimization and constraint terms in different stages with no interference with each other. Moreover, the proposed approach does not require specification of penalty or weighting parameters for its initialization.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Artificial Intelligence and Soft Computing - Icaisc 2004. Berlin: Springer-verlag Berlin, v. 3070, p. 954-959, 2004.