Logotipo do repositório
 

Publicação:
O número de Lefschetz e teoremas do tipo Borsuk-Ulam

Carregando...
Imagem de Miniatura

Orientador

Andrade, Maria Gorete Carreira

Coorientador

Pós-graduação

Matemática - IBILCE

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Estadual Paulista (Unesp)

Tipo

Dissertação de mestrado

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Resumo (português)

Neste trabalho, estudamos o Teorema clássico de Borsuk - Ulam e também outros Teoremas do tipo Borsuk - Ulam. Para isto, consideramos aplicacões contínuas f : (Cn+1 L f0g) ! Cn. Uma raíz primitiva k - ésima da unidade » nos fornece uma Zk-acão livre sobre Cn. Um teorema nos diz que a equação kL1X i=0 »if(»ix) = 0 sempre tem uma solução x 2 (Cn+1 L f0g). Este resultado produz várias aplicações. Por exemplo, se p é um número primo, f : Sn ! Rr uma aplicacão contínua, com n > r(p L 1), então alguma órbita da Zp-ação deve ser aplicada em um ponto.

Resumo (inglês)

In this work, we study the Classical Borsuk-Ulam Theorem and also other Borsuk- Ulam Theorems. For that, we consider continuous maps f : (Cn+1 L f0g) ! Cn. A primitive k-root of unity » gives rise to a free Zk-action on Cn. A result states that the equation kL i=0 »if(»ix) = 0 always has a solution x 2 (Cn+1 L f0g). This result provides several aplications. For example, if p is a prime number, f : Sn ! Rr a continuous map and n > r(p L 1), then some orbit of the Zp-action must be mapped into a point.

Descrição

Palavras-chave

Topologia algebrica, Borsuk-Ulam, Teorema de, Lefschetz, Número de, Lefschetz number, Borsuk-Ulam's theorem

Idioma

Português

Como citar

TRINCA, Cibele Cristina. O número de Lefschetz e teoremas do tipo Borsuk-Ulam. 2007. 57 f. Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas, 2007.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação