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Localization of a spin-orbit-coupled Bose-Einstein condensate in a bichromatic optical lattice
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We study the localization of a noninteracting and weakly interacting Bose-Einstein condensate (BEC) with
spin-orbit coupling loaded in a quasiperiodic bichromatic optical lattice potential using the numerical solution
and variational approximation of a binary mean-field Gross-Pitaevskii equation with two pseudospin components.
We confirm the existence of the stationary localized states in the presence of the spin-orbit and Rabi couplings for
an equal distribution of atoms in the two components. We find that the interaction between the spin-orbit and Rabi
couplings favors the localization or delocalization of the BEC depending on the phase difference between the
components. We also studied the oscillation dynamics of the localized states for an initial population imbalance

between the two components.
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I. INTRODUCTION

The first experimental observation of spin-orbit (SO)
coupling in Bose-Einstein condensates (BECs) [1] has stim-
ulated widespread experimental and theoretical discussions
in different fields. Spin-orbit-coupled cold atoms represent
a fascinating and fast developing area of research and lead
to rich physical effects [2]. In ultracold atomic systems, a
variety of synthetic SO coupling can be engineered by two
counterpropagating Raman lasers that couple two hyperfine
ground states, and most experimental parameters can be
controlled at will by optical or magnetic means [3]. Using
this technique, the SO coupling has been created in the
atomic Fermi [4] and Bose gases [1,5]. Motivated by these
experimental breakthroughs, a great number of theoretical
activities have been devoted to the SO-coupled BEC, including
superfluidity [6], vortex structure [7], and the soliton [8] of a
SO-coupled BEC. There have also been extensive theoretical
efforts toward understanding the physics of the SO-coupled
Fermi gases [9]. A generic binary mean-field Gross-Pitaevskii
(GP) equation is derived in Ref. [10] which provide the starting
point for the theoretical study of many-body dynamics in
SO-coupled BECs. Similar models have also been derived in
other studies [11] and have been employed in investigating
the localized modes [12] and other topics of SO-coupled
BECs [13,14].

Another topic of current interest is the localization of a
BEC in a disorder potential. Since Anderson predicted the
localization of a noninteracting electron wave in solids with
a disorder potential about 50 years ago [15], localization
phenomena have been studied in different types of waves,
including atomic matter waves. Two experimental groups
reported the localization of a noninteracting BEC in two
different kinds of one-dimensional (1D) disordered potentials.
Billy et al. [16] observed the exponential tail of the spatial
density distribution of a 8’Rb BEC after releasing it into a
1D waveguide with a controlled disorder potential created by
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a laser speckle. Roati et al. [17] observed the localization of
a noninteracting *K BEC in a 1D quasiperiodic bichromatic
optical lattice (OL) potential. A bichromatic OL is realized
by a primary lattice perturbed by a weak secondary lattice
with incommensurate wavelength [18]. The experimental
realizations of three-dimensional (3D) localization of a spin-
polarized Fermi gas of “°K [19] atoms and a BEC of 3"Rb [20]
atoms in a 3D speckle potential were also reported. Much
theoretical work has been done on Anderson localization of a
BEC [21]. Recently, some theoretical investigations have been
reported for the localization of a SO-coupled particle moving
in a 1D quasiperiodic potential [22] and random potential [23].

In this paper, we investigate the statics and dynamics of
localization of a noninteracting and weakly interacting BEC
with Rabi and SO couplings, trapped in a 1D quasiperiodic
bichromatic OL potential, similar to the one used in the
experiment of Roati et al. [17], using a mean-field GP equation
with two pseudospin components. The localized states are
stationary for an equal occupation in the pseudospin states. But
when there is a population imbalance, spontaneous oscillation
between the two pseudospin components of the localized
state takes place. We restrict ourselves to a study of the
effect of the phase difference between the components and
of the SO and Rabi couplings on the statics and dynamics
of localization. Within a range of parameters, most of the
atoms can be localized in a single OL site, the density profiles
of the localized BEC are quite similar to a Gaussian shape,
and the variational approximation can be used for some
analytical understanding of the localized states [24]. In view
of the SO coupling, the initial ansatz of the wave function
we choose in our analysis has a somewhat more complicated
form in order to get an understanding of the characteristics
of the localized BECs. The stability criterion of the stationary
localized states is discussed by performing a standard linear
stability analysis. We also study the tails of the localized states,
where we focus on the spatially extended nature of wave
functions with exponential decay corresponding to a weak
Anderson localization [15,25]. We also study the dynamics of
atom transfer between the two localized components with a
population imbalance.

In Sec. II we present a brief account of the coupled
mean-field model and the bichromatic OL potential used in
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the study. The analytical expressions for the atom transfer ratio
and phase difference between the two localized states and the
width of the two localized states are obtained by variational
analysis of the mean-field model. Various aspects of stationary
localization are studied by variational approximation and
numerical solution of the mean-field equation. In particular,
the effects of the phase difference between components and of
the SO and Rabi couplings on the localization of the BEC are
investigated in Sec. III. Some dynamics of the nonstationary
localized states are presented in Sec. IV. A brief summary and
future perspective are given in Sec. V.

II. ANALYTICAL CONSIDERATION

In the electronic states of an atom the SO coupling naturally
appears due to the magnetic energy associated with this
coupling because of the electronic charge. In the case of neutral
atoms engineering with electromagnetic fields is required for
the SO coupling to contribute to the BEC. To create a simple
SO coupling in the laboratory, Lin ef al. [1] consider two
internal spin states of 8’Rb hyperfine state 55 2: | 1) = |F =
Il,mp=0)and | |) =|F = 1,mp = —1), where F and mp
are the total angular momentum of the hyperfine state and its z
projection. These states are called pseudo-spin-up and pseudo-
spin-down states in analogy with the two spin components of
a spin-1/2 particle. The SO coupling between these states is
then realized with strength €2 using two counterpropagating
Raman lasers, and this SO coupling is equivalent to that of an
electronic system with equal contributions from Rashba [26]
and Dresselhaus [27] couplings and with an external uniform
magnetic field. We consider a BEC with internal up and down
pseudospin states |1) and || ) confined in a spin-independent
quasi-1D potential V(x) oriented in the longitudinal (x)
direction. A strong harmonic potential of angular frequency w |
is applied in the transverse y,z directions, and the transverse
dynamics of the condensate is assumed to be frozen to the
respective ground states of the harmonic traps. Then, the
single-particle quasi-1D Hamiltonian of the system under
the action of a strong transverse trap of angular frequency
) in the y-z plane can be written as [1,12,13]

Hy=—+ —Px0; + —0x + V()C), (1)
2m m 2
where p, = —ihd, is the momentum operator along the x

direction, m is the mass of an atom, o, , are the usual 2 x 2
Pauli matrices, k; is the wave number of the Raman lasers
that couple the two atomic hyperfine states, and the coupling
strength €2 is the Rabi frequency acting as a Zeeman field. If
the interactions among the atoms in the BEC are taken into
account, in the Hartree approximation, the dynamics of the
BEC of N atoms can be described by the 2 x 2 nonlinear 1D
GP equation [8,10,11]:

iﬁ% = Hoy + GV, 2
where ¥ = (Y1,¥»)7 is the two-component mean-field wave
function with normalization fdx(|1/f1|2 + |¥|*) = N. The
two time-dependent spinor wave functions v;(j = 1,2) de-
scribe the two pesudospin components (|1) and ||)) of the
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BEC. The nonlinear term has the 2 x 2 matrix form [10,28]

2R2a|y [>+2R%an |y 0
2
_ ma?
G= 0 2R2alyn P +2R%an vl |’ )
"1ai

where, to make the parameters of the model tractable, we
take the two intraspecies scattering lengths a; to be equal,
a; = a, = a, and where aj, is the interspecies scattering
length and a; = +/h/(mw_ ) is the harmonic oscillator length
of the transverse trap. In actual experiments it is possible to
control these scattering lengths independently by optical [29]
and magnetic [30] Feshbach resonance techniques. In dimen-
sionless units the coupled GP equations for the wave function
uj=uj(x,t) =vy;(x,t)/ar (j =1,2) can be written as [12]
ou 10%u; . 0U;j
la_tJ = —EBTZJ + i(—l)‘])/a—xj + Fu(3,j)
+(gluj P + galua—pPu; + Vu; (@)

where the spatial variable x, time f, density |u j|2, and
energy are expressed in normalized units a, wl', al',
and hw , respectively. The interaction nonlinearities are [28]
g =2a/a}, g2 = 2ap,/a?, the SO-coupling strength is y =
kpa,, and the Rabi-coupling strength is I' = Q/(2w, ). The
normalization f_oooo lu j|2dx = N;, where N; is the number
of atoms in component j. As in the experiment of Roati
et al. [17], the bichromatic OL potential V(x) is taken as
the linear combination of two polarized standing-wave OL
potentials of incommensurate wavelengths:

2
V(x) =) Assin’(kx), (5)

=1

with A; = 272, /Alz (I = 1,2), where A; are the wavelengths
of the OL potentials, s; are their intensities, and k; = 2w/}
are the corresponding wave numbers. In this investigation,
the irrational ratio between the two OLs is set to be [21]
k»/ki = (v/5 — 1)/2, the inverse of the golden ratio. In the
actual experiment of Roati ef al. [17], the parameter was set
as ky/ k1 = 1.1972. Without losing generality, we further take
A1 = 10 and 57 = 10, s, = 0.3s;, which are roughly the same
parameters as in the experiment of Roati et al. [17].

The dynamics of the BEC can be investigated by the
Gaussian variational approach [24]. This approach is justified
for small contact repulsion and for small SO coupling when
the localized state has a spatial extension over a single OL site.
In such a situation, the central density of the localized state has
an approximately Gaussian shape. However, at large distances
the localized state has a long exponential tail. The Gaussian
variational approach can describe the Anderson localization
experiment of Ref. [17] in the noninteracting regime. In this
approach, the Lagrangian density for Eq. (4) is

2 . .

l . x 1 . vy

L= Z{E(ujuj _Mjuj)_(—l)fzy[ujuj —uju)]
j=1

1, 1
—;wﬁ—imwﬁ—vummﬂ—ngﬂmF

—Tuius + uyu3), (6)
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where the asterisk denotes the complex conjugate, the prime
denotes d/dx, and the overdot denotes d/dt. The Gaus-
sian ansatz with the time-dependent variational parameters
Nj,w;,B;, and ¢; is used to study the dynamics:

1 Nj X2 js ,
”j(X,l)=W w—jﬁXp —Z—u)?+(—1)'lﬁjx+l¢j » (D

where N; and w; represent the number of atoms and width
of the BEC and §; and ¢; are chirp and phase. The time
dependence of these variables is not explicitly shown in the
following. The effective Lagrangian of the system (4) is found
by substituting Eq. (7) into Eq. (6) and integrating over space
variables [24]:

2 1{ 1 gN;
L=§ N1 — 6. S J
=1 ]{ ¢]+Vﬁ_; 2(2 2+'3 \/Ellﬁ)
2
4y Y Ao (-0 - 1] - E2DE
205 7 (w? + w3)

—2I' cos(¢p — ¢1)y NiN> Ly, ®)

I 2w1w2
= |——— €X

We further define the atom transfer ratio between the two
localized states, R = (N, — N;)/N, and the phase difference,

where

B+ B wi wz} ©

2(w + wz)

¢ = ¢ — ¢1. Using the Euler-Lagrange equation
oL d oL
—_ "=, (10)
da  dt da

where o denotes the variational parameters ¢;, N;,w;, and 8;,
we obtain the following equations:

. 1/1 1
¢=V(52—,31)—2<—2——2)

wy; W
N 1+R 1—R 1
g < >—§(,3§—/312)

2«/27r wi
1
—i—EZAl[exp(—k,zw%)—exp( kiwi)]
=1
RN 2RT cos
g12 + ¢n—cm¢)au
Jrwiud) VI
o ;+g_fvf_ij,kzexp(_kzwz>
2w? 2\/2nw ! ! t
N Ny oL
BRI ol cos¢ [ 2= Ja a2
m W
R = —2T'singy/1 — R’L = F(R,$), (13)

0=y —p;+2lcosd Ni_j (B2 + Br)w? szF‘ (14)
’ Nj w1+w2
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Equation (13) shows that the transfer ratio R is explicitly
dependent on I, which implies that the Rabi coupling leads to
atom transfer between the two localized states.

III. STATIONARY LOCALIZED STATE

The stationary states are obtained by setting the time
derivative in Egs. (11) and (13) to zero. If R = 0,i.e., N = N,
we obtain 8; = B, = B from Eq. (14), w; = w, = w from
Eq. (12), and ¢ = 0 from Eq. (11). Consequently, the two
localized states given by Eq. (7) are identical. Hence, the
simple stationary solutions, in this case, are

R =0, ¢ =0 (inphase), (15)
R =0, ¢ =m (outof phase). (16)
Hence, Egs. (12) and (14) can be rewritten as

2
1 g+ 381 2 2.2
O0=—4+N———w Ak exp (—krw
2t N s 2 e ()
+2IMwp? exp(—B2w?), (17)
0=y — B £ 2w’ Bexp(—fw?), (18)

where a plus corresponds to ¢ = 0 and a minus corresponds
to ¢ = . We find that the stationary states are related to the
external trapping potential, nonlinearity, phase difference, and
SO and Rabi couplings. In order to focus our attention on the
effects of the phase difference and SO and Rabi couplings on
the localization of the BEC, here, we will restrict ourselves
first to the noninteracting regime. The weakly interacting
regime, and even the noninteracting one, could be achieved by
reducing the s-wave scattering length by means of Feshbach
resonances [30]. We take g = g1, = 0 with potential (5) in the
following investigations.

We solve Eq. (4) by the real- or imaginary-time split-step
Fourier spectral method with a space step of 0.04 and a
time step of 0.001. In real-time propagation, to obtain the
stationary localized states, we take the stationary solution
of Eq. (4) for g=g,=T=0 and V(x) =x?/2, eg.,
uj(x) =n Y4exp[—x?/2 + (—1)/iyx +i¢jol, as the initial
input. Successively, the parabolic trap is slowly turned off,
the bichromatic OL is slowly turned on, and the parameter
I" is added gradually in steps of 0.000001 from zero to the
final value. To investigate the effects of the phase difference,
we take ¢19 = @9 = 0 for the in-phase case and ¢9 = 0 and
¢o = 7 for the out-of-phase configuration in the initial input
pulses.

In this section for the calculation of stationary states we take
throughout Ny = N, = 1. Let us first investigate the effects of
the coefficient y and I' on the noninteracting localized states
when y x ' =0 and g = g;» = 0. If y =0, a solution of
Eq. (18) is B = 0. Then, the last term on the right-hand side of
Eq. (17) is zero, so that the widths are not related to the phase
difference and Rabi coupling I". Also, if I' = 0, Eq. (17) shows
that the widths are independent of the phase difference ¢ and
SO coupling y. In both cases the widths are determined by
only the external trapping potential and nonlinearity. In these
cases, the variational width is 0.9688, and the numerical width
(w? = foozo x%|u|*dx) is 0.9945. The numerical simulation

of Eq. (4) shows that u; and u, are similar: |u, 12 = |uy)?, but
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FIG. 1. (Color online) Real (Re) and imaginary (Im) parts of the
numerical (Num) and variational (Var) wave function u,(x) of Eq. (4)
with the bichromatic OL potential (5) and the corresponding density
luy(x)|>vsxforg =g, =0and(@)T =1,y =0,N;, = N, = l and
(b) ' = 0,y = 1. The corresponding numerical densities |u(x)|? in
log scale are shown in (c) and (d). Because of the similarity between
u; and u,, only the wave function u; is plotted. All quantities are
dimensionless. (The same applies to the following figures.)

Im(u;) = —Im(uy) and Re(u;) = Re(uy) for ¢1o = ¢20 =0,
and Im(u;) = Im(u;) and Re(u;) = —Re(u») for ¢;o = 0 and
¢20 = 7. Because of the similarity between u; and u,, we plot
only u; hereafter, as in Figs. 1(a) and 1(b), which illustrate the
variational and numerical results for the localized states. The
variational wave function is obtained by solving Eqs. (17) and
substituting w and B into Eq. (7). We find that the variational
results are in good agreement with the numerical results.

Anderson localization in a weakly disordered potential
is characterized by a long exponential tail of the localized
state [15,25]. To observe the effects of the SO and Rabi
couplings on the tail region, we plot in Figs. 1(c) and 1(d) the
density distribution |u;|? of the stationary BEC in log scale.
The parameters y and I have no effect on the exponential tail
when y x I' = 0, as confirmed by the numerical simulation of
Eq. (4) with different y and I'.

Next, we consider y x I' £ 0. Because of the interaction
between y and I', now the width of the stationary state should
depend on the phase difference and SO and Rabi couplings.
However, Eqgs. (17) and (18) show that the width of the
localized state is determined by the difference (y — ).

In the case of ¢ = 0 (in phase), the last term in Eq. (17)
is positive for positive Rabi coupling I and contributes to
a delocalization of the BEC as the positive kinetic-energy
term (the first term on the right-hand side) and the positive
repulsive-interaction term (the second term on the right-hand
side). The only term contributing to localization is the negative
bichromatic OL term (the third term on the right-hand side) in
Eq. (17). Hence a large positive I" should lead to a partially
delocalized state occupying a large spatial region extending
over several OL sites. Such a localized state over multiple OL
sites has a multihump structure. To acquire a single-hump
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FIG. 2. (Color online) Numerical and variational results for ¢ =
0 (in phase), g = g1 = 0,N; = N, = 1 (a) for density |u1]? vs x for
y =TI = 0.3 and (b) for width vs y for I' = 0.1. To compare, the OL
potential 0.1V (x) is also plotted in (a).

localized state, Rabi coupling I' must be small. Then, it
follows from Eq. (18) that if y is large enough, 8 ~ y, and
the width is independent of B,y, and I'. For example, we
obtain § = 3.5, w = 0.9688 by numerically solving Egs. (17)
and (18) with y = 3.5, ' = 0.1. The numerical integration
of Egs. (4) and (5) shows that a single-humped localized
state splits into a multihumped state occupying more than one
OL site with the increase of I', as illustrated in Fig. 2(a) for
y =TI =0.3.If ' = 0.1 is small, the density profile occupies
only one OL site within a wide range of parameter y. In
Fig. 2(b) we compare the numerical and variational widths of
the localized state for I' = 0.1 and different y and find that
the width is the smallest for y = 0, implying that a positive y
contributes to a slight delocalization for small y. For larger y
(>3), the width is practically independent of y. These findings
are consistent with variational Eqgs. (17) and (18). In Fig. 2(b)
the numerical width is slightly larger than the variational width,
consistent with a long exponential tail of the former. We also
studied the tails of the density profiles in logarithmic scale and
found that the effect of y on the tails is small.

In the case of ¢ = m (out of phase), from Eq. (17) we find
that a positive I favors localization and the set of Eqgs. (17)
and (18) has a real solution for width w with arbitrary positive
I" and y. In this case the density profile of the stable localized
state could be modulated with a non-Gaussian shape even
within the single OL site, as illustrated in Fig. 3(a). From a
numerical solution of Eq. (4), we obtain the phase diagram of
Fig. 3(b) of y and I', showing the regions where the density
profile is Gaussian and non-Gaussian. To confirm this, a plot of
the numerical and variational widths versus I' is presented in
Fig. 3(c) for y = 1, which shows that a positive I contributes a
localization of the BEC because the widthfor I' > Oisless than
that for I' = 0. So far we considered the central density of the
localized states. A careful examination of the densities of the
localized states reveals that at large distances from the central
region the localized states always have a long exponential tail
within both Gaussian and non-Gaussian regimes. In fact this
is the most important earmark of Anderson localization. A
measure of this tail can be given by a localization length Lo
obtained by fitting the density tail to the exponential function
~exp(—|x|/Lisc) [25,31]. The localization effect of a positive
", however, will have a major influence on the exponential tail.
For y = 1, the effect of I" on the localization length L;,. is
presented in Fig. 3(c). As expected, the localization effect of a
nonzero I makes the localization length always be smaller than
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FIG. 3. (Color online) Numerical results for ¢ = (out of
phase), ¢ = g1o = 0,N; = N, = 1 (a) for the wave function u; and
density for y = I =4, (b) foraI" — y phase plot showing Gaussian
and non-Gaussian localization regions, (c) for width and localization
length for y = 1 and different I', and (d) for density at large times ¢
for y = T" = 1. In (c) the variational results of widths are also shown.

that for I' = 0. Furthermore, at large time scales, Fig. 3(d) il-
lustrates that a subdiffusion occurs below a certain critical I" x
y, as analyzed numerically in Ref. [32], where a subdiffusion
appears above a certain strength of nonlinearity. Nevertheless,
spreading induced by the subdiffusion is rather slow [32]. So
the localization lengths shown in Fig. 3(c) are meaningful.
Third, we consider the stability of the solutions (15)
and (16) by performing a standard linear stability analysis.
Introducing small fluctuations around the stationary solution
(Ro,90), R'(t) = R(t) — Ry,¢'(t) = ¢(t) — ¢, and lineariz-
ing Eqs. (11) and (13), a set of two linear equations is obtained:

dR’

dt(t ) _ Fr(Ro,90)R'(1) + Fy(Ro,90)9'(t),  (19)
d /

‘Z t(” — Gr(Ro.0)R'(1) + Gy(Ro.$0)d (), (20)

where the subscripts R and ¢ denote a derivative with respect
to the respective variable. Assuming the solution of R’(¢) and
@’'(t) in exponential form, ~ exp(¢?), the eigenvalue ¢ is given
by

2¢ = Fr(Ro,¢0) + G¢(Ro,¢0) £ {[Fr(Ro,%0)
— Gy(Ro,00)1* + 4F4(Ro,$0)G r(Ro,¢0)}" /2. (21)

FromEqs. (11)and (13), we find Fr(Ro,¢0) = 0,G4(Ro,¢0) =
0, and

Fy(Ro.¢0) = F2T exp (—p*w?), (22)
_ 812 — 8 2_F 2.2
Gr(Ro.¢0) = N [ o + 7 exp(—pw )} . (23)
which leads to the eigenvalues
¢ = £[Fy(Ro,$0)Gr(Ro,¢0)1"/%. (24)
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If the eigenvalue ¢ is purely imaginary, the stationary solutions
denoted by Eqgs. (15) and (16) are stable with respect to small
perturbations. The constraints for stability are

— 2
g—% Ty R0 =0, (29
812 — & 2r 2.2
Jimw N SR <0 @=m. @0

A straightforward conclusion from Egs. (25) and (26) is
that any stationary state is stable for g = g1». In addition,
the conditions for stability are different for the in-phase and
out-of-phase localized states when g # g».

Now, let us investigate the effect of the positive nonlinearity
on the localized states in the presence of the SO and Rabi
couplings. As shown by Eq. (17), the stable localized states
can exist within a range of parameter g, gj», I', and y, and
this has also been confirmed by the numerical integration of
Eq. (4). The numerical and variational widths versus g (= gi12)
are plotted in Fig. 4(a) for¢ = 0,y = I" = 0.1 and in Fig. 4(b)
for ¢ = m,y =T = 1. With these parameters, the localized
states are confined in a single OL site. Figures 4(a) and 4(b)
indicate that the numerical and variational widths increase
monotonically as the nonlinearity (increase of repulsion)
increases. The numerical results are slightly larger than the
variational results because of the exponential tail of the
localized state. If the nonlinearity is large enough, however,
the localized states develop undulating tails occupying more
than one OL site and cannot be described well by the Gaussian
ansatz (7). For g # gi», the typical numerical and variational
densities |u;|?> versus x are illustrated in Fig. 4(c) for ¢ =0
and in Fig. 4(d) for ¢ = m. The parameters are chosen to
meet the stability criteria (25) and (26). The stabilities for
those localized states are tested by suddenly changing the
OL’s intensity s; from 10 to 9.5 and continually running the
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FIG. 4. (Color online) Numerical (Num) and variational (Var)
widthsvs g (= gjp)for(a)' =y =0.1and¢p = 0and(b)' =y =1
and ¢ = 7. Numerical and variational wave functions |u|> vs x for
g#gpandfor(c) ' =y =0.1,¢p=0and () T =y =1,¢ =m7.
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real-time program. The localized states are again found to be
stable against the small perturbation.

IV. DYNAMICS OF THE LOCALIZED STATE

For the stationary states studied so far one must have Ny =
N,. A little imbalance between N; and N, leads to periodic
atom transfer between two components. The localized states
may exist in that case, although the wave functions change
with time with periodic atom transfer between components.

In order to get further insight into the effects of the
coefficient y and I' on the localized states, we now study some
dynamics of the noninteracting and weakly interacting BECs.
As shown by Eq. (13), Rabi-coupling strength I' plays an
important role for the atom transfer between components. We
investigate the effects of SO coupling y and Rabi coupling I"
on the atom transfer ratio R(¢). If y = Oand g = g1», Egs. (11)
and (13) become

R(t) = —2T sinp(1)y/1 — R2(1), Q7

2T R(t) cos (1)

h(t) = 28
O T (28)
with the solutions
R(t) = Acos(2T't + B), 29)
/T _ A2
|cos ¢(2)| = LA (R < 1), (30)

V1= R%(1)

where A and B are integration constants, which are determined
by the initial values R(0) and ¢(0). Equation (29) shows that
the period of atom transfer is determined solely by I'. From
Egs. (29) and (30), we can deduce that the integration constants
A and B change periodically with ¢(0). The minimum of A
is A = R(0), corresponding to ¢(0) = 0, and the maximum
is A = 1, corresponding to ¢(0) = 7 /2. Notice that, theoreti-
cally, Egs. (28) and (30) have the singular points R(t) = %1,
which should be encountered if ¢(0) = 7 /2. However, the
numerical integration of Eq. (4) reveals that R(t) = %1 can be
achieved when ¢(0) = 7/2, and the atom transfer can go on
in this case with R(¢) oscillating periodically between +1.
Contour plots of numerical density profiles versus time ¢ are
displayed in Fig. 5(a) for |u;|?> and Fig. 5(b) for |us|* for g =
g12 = 0. The periodic atom transfer between the components is
clear in these plots. A quantitative measure of this oscillation is
given by the plot of numerical and variational estimates of atom
transfer ratio R(t) versus ¢ in Fig. 5(c). The variational R(t)
is obtained by a numerical integration of Eqs. (27) and (28)
with the fourth-order Runge-Kutta method. To obtain the
numerical R(t), we first obtain the stationary states employing
the imaginary-time method solving Eqs. (4) and (5) with y =
I' = 0 and N;(0) such that R(0) = [N2(0) — N(0)]/[N2(0) +
N1(0)] and ¢(0) = ¢20(0) — ¢10(0) = 0. Successively, at r =
0, we employ the real-time propagation of Eq. (4) with the
same parameters and just change I' from O to 1. The atom
transfer between components starts with a nonzero I', and
a numerical R(¢) is obtained by calculating R(¢) = [N,(t) —
NiO1/IN2(1) + Ni(@0)] with Nj(1) = [~ uj(x,0)Pdx.
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FIG. 5. (Color online) Numerical density profile vs time ¢ (a) for
lu1)? and (b) for |u,|*. (c) Numerical (Num) and variational (Var)
atom transfer ratio R(¢) vs time ¢. The parameters are I' = 1, ¢(0) =
0, g =g =y =0, and N»(0) = 0.5,N:(0) = I,R(0) = [N2(0) —
N1(0)]/[N2(0) + N1(0)] = —0.3333.

Next, we study the atom transfer between components for
g = g2 # 0. In Fig. 6(a) we plot numerical and variational
results for the atom transfer ratio R(¢) in several cases for y =
0. The numerical results are in good agreement with variational
equations (27) and (28), which shows that the period of R(z)
is related to only I', and the effect of ¢(0) on A and B is
larger than the effect of R(0). Further investigations show that,
if y # 0, the density profiles may be non-Gaussian, and the
variational equations (13)—(14) are no longer valid, although
the atom transfer between two components can take place as
demonstrated by lines R1 and R2 in Fig. 6(b). The plots in
Fig. 6(b) indicate that the amplitude of R changes periodically.

FIG. 6. (Color online) (a) Numerical (N) and variational (V)
atom transfer ratio R(r) vs time ¢ for y =0 in different cases:
Rlisfor g =g1,=0,¢0)=m/4, T =0.5; R2 is for g = g =
—1,¢(0)=n/4, " =1; and R3 is for g = g, = —0.5, ¢(0) =
0, I' = 0.5. (b) Numerical atom transfer ratio R(¢) vs time ¢ with
¢(0) = Oindifferent cases: Rlisforg =g, =0, =y =1; R2is
forg =0, gp=—1,T =y = 1. Inall cases N,(0) = 0.5,N;(0) =
1,R(0) = [N2(0) — N1(0)]/[N2(0) + N,1(0)] = —0.3333.
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V. SUMMARY

Using the numerical solution and variational approximation
of the time-dependent coupled mean-field GP equations with
two pseudospin components, we studied the localization
of the noninteracting and weakly interacting Bose-Einstein
condensates with SO and Rabi couplings loaded in the
quasiperiodic bichromatic OL potential (5). We use the set of
binary GP equations (4) that accurately predicts the evolution
of the atom transfer ratio R(¢), phase difference ¢ (), and width
w. The variational results leading to many physical insights are
compared with the numerical results of the mean-field model.
Stationary localized states of the model correspond to having
the same number of atoms (N; = N;) in two components.
Nonstationary localized states with periodic atom transfer
between components can be achieved for different numbers
of atoms (N; # N;). In the case of ¥y x I' = 0, the density
profiles of the two stationary localized states are symmetrical
and are not related to the phase difference ¢, SO coupling y,
and Rabi coupling I'. Inthe case of y x I' # 0, the width of the
stationary state should depend on the phase difference and the
SO and Rabi couplings because of the interaction between y
and I'. It is found that the interaction between the SO coupling

PHYSICAL REVIEW A 89, 063602 (2014)

and Rabi coupling may favor a localization or delocalization
depending on the phase difference between the two localized
states. If g = g1», a linear stability analysis shows that any
stationary state is stable. We find that the BEC localized states
always have a long exponential tail. In the case of ¢ = 7,
the localization effect of a positive I' has a major influence
on the localization length. We also studied some dynamics
of the localized states with an atomic population imbalance
and find I" and the initial phase difference play an important
role in the atom transfer. Either in view of understanding
the dynamic evolution or in view of the practical application,
these properties are important. We hope that the present work
will motivate new studies, especially experimental ones on the
localization of BEC with the SO coupling.
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