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Resumo

Na presenca de uma constante cosmolégica, interpretada como uma entidade pura-
mente geométrica, a auséncia de matéria é representada pelo espaco de de Sitter. Como
consequéncia, a relatividade especial de Poincaré nao é mais valida e deve ser substituida
por uma relatividade especial baseada no grupo de de Sitter, o que produz modificages
em todas as areas da Fisica. Nesta tese, vamos estudar os fundamentos da relatividade
especial de de Sitter, bem como algumas implica¢oes desta mudanca. Em particular,
estudaremos as implicagoes para o problema da energia escura, para a propagacao de
raios gama de altissimas energias e para o espalhamento Compton. Como um sub-
produto desses estudos, desenvolvemos um novo método de se obter equacées de campo
com invariancia conforme, o qual faz uso dos invariantes de Casimir do grupo de de
Sitter. Usando esse novo método, fazemos um estudo critico das equacoes que descrvem

um campo fundamental de spin-2.

Palavras Chaves: Constante cosmoldgica; Relatividade de de Sitter, Equacoes de

campo com invaridncia conforme

Areas do conhecimento: Gravitacdo e cosmologia; Teoria de campos e particulas

elementares.
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Abstract

In the presence of a cosmological constant, interpreted as a purely geometric entity,
absence of matter is represented by a de Sitter spacetime. As a consequence, ordinary
Poincaré special relativity is no longer valid and must be replaced by a special relativity
based on the de Sitter group, which produces concomitant changes in all areas of Physics.
In this thesis, we are going to explore the implications for the dark energy problem,
for the propagation of ultra high-energy gamma rays, and for the Compton scattering
formula. As a byproduct of these studies, we developed a new method for obtaining
conformal invariant field equations, which makes use of the Casimir operators of the de
Sitter group. Using this new method, we make a critical review of the field equations

describing a fundamental spin-2 field.
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Notation

The notation introduce here will be used along all the text, unless it is otherwise specified.
Capital latin indices A, B,C, M, N, O, ... run over five space-time coordinates (0, ..., 4).
Latin indices a, b, ¢, 1, J, k, ... run over three spatial coordinates (1,2, 3).

Greek indices a, 83,7, i, v, p, ... run over four space-time coordinates (0, ..., 3).
The metric signature in four dimension is (+1, -1, -1, —1).
Repeated indices are summed.

The speed of light is taken to be unity.



Chapter 1

Introduction

Our understanding of elementary particle physics is intimately related to both group
representations and special relativity. In fact, all particles of Nature can be classified
according to the irreducible representations of the Poincaré group P, the kinematic group
of special relativity. This property suggests that the symmetry of special relativity must
be considered as an exact symmetry of Nature, a fact corroborated by many experiments.
In principle, therefore, there is no reason to replace Poincaré as the kinematic group of
spacetime. However, there are theoretical and experimental evidences that, at ultra-high
energies, Poincaré relativity fails to be true.

The theoretical indications are related to the physics at the Planck scale, where a
fundamental length parameter (the Planck length [p) naturally shows up. This scale,
as is well known, shows up as the threshold of a new physics, represented by quantum
gravity. Now, whether gravity is classical or quantum cannot depend on the observer.
This means that the Planck length, or some fundamental scale related to it, must remain
invariant under the relevant kinematics ruling the high-energy physics near the Planck
scale.! Since in ordinary special relativity a length will contract under a Lorentz boost,
the invariance requirement of such length scale seems to indicate that either the Lorentz
symmetry must be broken down, or the action of the Lorentz group £, and in particular
the boosts, must somehow be modified [1, 2, 3, 4, 5].

The experimental evidences come basically from the propagation of very-high energy
photons, which seems to violate ordinary special relativity. More precisely, very-high
energy extragalactic gamma-ray flares seem to travel slower than lower energy ones [6].
If this comes to be confirmed, it will constitute a clear violation of special relativity.
The superluminal neutrinos found recently by the OPERA collaboration may becomes
another evidence of breakdown of special relativity |7]. The above indications suggest

that one should look for another special relativity, which would rule the kinematics at

Tt is important to observe that this argument is true independently of whether spacetime at the
Planck scale is curved or not. In fact, even if spacetime is curved, there is always a subjacent special
relativity that holds locally. If the ensuing local kinematics does not allow the existence of an invariant
length, it will necessarily conflict with the existence of the invariant Planck length.



ultra-high energies. That is to say, near the Planck scale, the Poincaré group must be
replaced by a more general group, which will preside over the high-energy kinematics.
In fact, several alterative special relativities have been proposed recently, as for example
those based on a k-deformed Poincaré group (see Ref. [8, 9] and references therein).

Then comes the point: the de Sitter group has Lorentz as subgroup and at the same
time it leaves invariant the length parameter related to the non-gravitational curvature
of the de Sitter spacetime. This means essentially that the de Sitter group preserves the
relation between inertial frames of ordinary special relativity, and is able to deal with the
existence of an invariant length-scale, provided this length-scale is assumed to define the
(non-gravitational) curvature of spacetime at the Planck scale.? When one does that, a
new special relativity emerges, which is called “de Sitter special relativity”. Its kinematic
group is the de Sitter group, and it takes place in de Sitter spacetime.

Like Minkowski, the de Sitter spacetime is a maximally symmetric homogeneous
space. Whereas Minkowski is defined as the quotient between Poincaré and the Lorentz
groups,

M="P/L,

the de Sitter spacetime is defined as the quotient space between the de Sitter and the
Lorentz groups, [10]:
dS(4,1) = SO(4,1)/L.

Differently from Minkowski, which is transitive under spacetime translations, de Sitter
is transitive under a combination of translations and proper conformal transformation.
Since the invariance under translations are related, through Noether’s theorem, to the
conservation of energy and momentum, the very notions of conserved energy and mo-
mentum will be changed. As ordinary spacetime translations are no longer a symmetry
of spacetime, the old notions of energy and momentum will not be conserved.

To get some insight on how a de Sitter special relativity might be thought of, let
us briefly recall the relationship between the de Sitter and the Galilei groups, which
comes from the Wigner Indnii processes of group contraction and expansion [11, 12].
Ordinary Poincaré special relativity can be viewed as describing the implications to
Galilei’s relativity of introducing a fundamental velocity-scale into the Galilei group.
Conversely, the latter can be obtained from the special-relativistic Poincaré group by
taking the formal limit of the velocity scale going to infinity (non-relativistic limit).
We can, in an analogous way, say that de Sitter relativity describes the implications to
Galilei’s relativity of introducing both a velocity and a length scales in the Galilei group.
In the formal limit of the length-scale going to infinity, the de Sitter groups contract

to the Poincaré group, in which only the velocity scale is present. It is interesting to

2Observe that, although the de Sitter spacetime is curved, its metric tensor does not depend on the
gravitational constant, which means that its curvature does not have a gravitational origin.



observe that the order of the group expansions (or contractions) is not important. If
we introduce in the Galilei group a fundamental length parameter, we end up with the
Newton-Hooke group [13, 14, 15|, which describes a (non-relativistic) relativity in the
presence of a cosmological constant [16]. Adding to this group a fundamental velocity
scale, we end up again with the de Sitter group, whose underlying relativity involves
both a velocity and a length scales. Conversely, the low-velocity limit of the de Sitter
group yields the Newton-Hooke group, which contracts to the Galilei group in the limit
of a vanishing cosmological constant.

Considering that the de Sitter group naturally incorporates an invariant length-pa-
rameter, in addition to the speed of light, de Sitter relativity can be interpreted as a new
example of the so called doubly special relativity [1, 2, 8,9, 17]. It is important to mention
that one drawback of the usual doubly special relativity models is that they are valid
only at the energy scales where ordinary special relativity is supposed to break down,
giving rise to a kind of patchwork relativity. This restriction is known as the “soccer-ball
problem” [18]. On the other hand, de Sitter relativity is invariant under a simultaneous
re-scaling of mass, energy and momentum [19], and is consequently valid at all energy
scales, from cosmology to quantum gravity. This is a very important property shared by
all fundamental theories.

As already mentioned, the de Sitter special relativity changes the notions of energy
and momentum [20]. As a consequence, all areas of physics will change accordingly. Of
course, these changes are significant only for very high energies. In this thesis, we are
going to explore the basic foundations of a special relativity based on the de Sitter group,
as well as to look for possible signs of violation of ordinary special relativity in order to
verify whether the de Sitter special relativity could provide a reasonable explanation for
these violations.

We are going to proceed according to the following scheme. In the second chapter,
we study the basic elements of the de Sitter space and group. In chapter 3, we introduce
the fundamentals of de Sitter special relativity, and discuss its main properties. In
chapter 4, by projecting Einstein equation along the Killing vectors of the de Sitter
spacetime, we are able to find a relation between the local value of the cosmological
term and the energy density of a given physical system. Chapter 5 is dedicated to some
applications of the de Sitter relativity. First, we consider a possible solution for the dark
energy problem; then we study possible implications for the propagation of high energy
gamma rays; and finally, we explore implications for the Compton effect. In chapter
6, review the properties of all spin-2 Lorentz representations, clearly distinguishing the
representations with helicity ¢ = 0, ¢ = +1 and ¢ = £2. In chapter 7, by using the
machinery developed in the study of the de Sitter special relativity, we introduce a new
method to obtain conformal invariant field equations. This new method is then used to

critically review the consistency problems of the field equations for a fundamental spin-2



field in the presence of gravitation. Finally, in chapter 8, we present the conclusions and

draw some perspectives for future developments.



Chapter 2

The de Sitter Spacetime and Group

In this chapter, we are going to study the basic properties of the geometry and algebra of
the de Sitter space and group. First we will introduce the most used coordinates systems
of de Sitter space and explain some of its characteristics. Then, we will explore the
algebraic properties of de Sitter space, first the contractions of its kinematical group,! and
second as a quotient space. This last section will be of great importance to make contact

with Lorentz and Galilei Groups. The basic references for this chapter are |21, 22, 23|.
2.1 Classical Geometry

The de Sitter space is a solution to the Einstein equations without any source and

with a cosmological term:?

G — Aguw =0, (2.1)
an important fact is that this solution can be interpreted as the hyperboloid
napxx” = -1, (2.2)
embedded in the ambient space E%! with line element
ds? = napdx”dx” = (dx°)* — (dx!)* — ... = (dx")’ (2.3)
where the de Sitter radius [ is related to the cosmological constant by

3
A= (2.4)

A graphical representation of this hyperboloid can be seen in figure 2.1.

Now, let us introduce some different parametrizations for the hyperboloid (2.2). In

'Usually called the de Sitter group.

*Note that de Sitter Space can be constructed using algebraic properties and without using any
reference to Einstein equations or gravitational systems, this means, that this space is more elemental
and it must be treated at the same level as Minkowski space.



x0

Figure 2.1: Graphical Representation of the Hyperboloid (2.2).

some of the coordinates systems that we are going to use, we will refer to the angular

coordinates w® of the four-dimensional sphere S%:

1

wr = cost

w? = sin6q cos by 95

w3 = sin6;sind 0 (2:5)
= 1 SIn v COs U3

w? = sin6;sinfysinbs

where the different angles 0, can take the following values: 0 < 0, < «w for kK = 1,2, and

0 < 03 < 27. This can be easily generalized to an arbitrary number of dimensions.

2.1.1 Global Coordinates (7,6;)

The first parametrization that we are going to define is
x° = Isinh(7/1) ; xP = wPlcosh(r/l) ; p=1,...,4, (2.6)

with —oo < 7 < oo. This parametrization completely covers the de Sitter Space (2.2).
For this reason the coordinates (7,0;) are called Global Coordinates. Replacing in (2.3),

the line element in this coordinates takes the form:
ds® = dr* — I? cosh?(7/1)dQ3, (2.7)

where
dQ% = dO? + sin® 61d03 + sin? 6 sin” H,dO3.

Note that in the last equation the sections 7 = constant are spheres, so we can guess
that the topology of the de Sitter space is the Cartesian product R x S2. We can
say that in 7 = —oo the spheres have an infinite radius, then, they contract until the
radius is [ at 7 = 0 and expand again to the infinity at 7 = oo. The asymptotic
regions ZF characterized by 7 = o0, are called of past null infinity and future null

infinity, respectively. To compute the Penrose diagram of de Sitter space, let us make



the transformation .
h(7/l) = ——. 2.8
COs (7—/ ) cos (T/l) ( )
This transformations projects the unbounded interval —co < 7 < oo into the bounded
interval —7/2 < T'/l < w/2, making possible to describe de Sitter space with coordinates

that have a finite domain. With this new coordinates the line element takes the form
d? = — 1 [dT? — 12d3) (2.9)

cos?(T/1) 31° '
The equation above is particularly useful if we are interested in the causal structure,
because the null geodesics  with respect to the interval (2.7) are also null geodesics with

respect to the interval
ds® = dT? — 12d03. (2.10)

This last equation describes equally as (2.7) the causal structure of the space. We
present the Penrose diagram in figure 2.2, the asymptotic regions Z* are represented
by T = £7/2.

T+
"
B .
. #
B .
. #
“ #
i .
. #
“ .
~ -
. %
North Pole W South Pale
FIRN
E .
r .
s kY
E .
s 5
s 5
’ \
s \
’ \
I

Figure 2.2: Penrose diagram for global coordinates. The vertical lines are 6; = const.
The north and south pole are represented by 6; = 7 and 6; = 0 respectively. The
horizontal lines are 7 = const. The diagonals are the null geodesics that connect the
regions ZT where 7 = oo, and Z~ where 7 = co. All null geodesics are parallel to this
diagonals.

At this point, we begin to see a fundamental difference between the de Sitter space
and the Minkowski space. The asymptotic structure of Minkowski space is such that an
inertial observer eventually would have causal access to the whole space, provided that
its world line reachs the future null infinity Z*. This possibility is excluded in de Sitter
space, since an inertial observer in Z* will always have inaccessible regions from its past

(look at fig. 2.2).

3These define the limits between the regions causally connected or, let us say, the light cone.



2.1.2 Planar Coordinates (t,z)

The planar coordinates are defined as

. t 1(xi)2 ot
0
— Jsinh- — =
X sinh 7 — 5~ el
X' = xie_%, i=1,..,3. (2.11)
t 12 .
4
_ he =
X [ cos 1T e 1

with —co < t < 00 , —00 < 2 < 0o. In this coordinates the line element takes the form
ds? = di* — 12216, da’ da? (2.12)

Note that in this coordinates, the sections t = const. are flat and have the contraction

factor exp (—2t/l). Making the transformation ¢ — —¢ the interval changes to
ds? = dt? — 12e%15;;da’ da (2.13)

which describes a space in expansion with exponential factor exp(2t/1), just as the in-
flationary period. Opposed to the global coordinates, the planar coordinates only cover
the low half of the diagonal x° = x* of the hyperboloid (2.2), this is due to the fact that

— X"+ x* =lexp(—t/l) < 0. (2.14)

To calculate the Penrose diagram, we first introduce the Kruskal-like coordinates*

r/l —exp (t/1) 2 5 o
U=-"t—"T00 0 v —— 2 (2 = gatad), 2.15
2 ’ exp (t/l) +r/l (r 57'7) ( )
their inverse relations are
r/l=1/V+U ; exp(t/l)=1/V —U. (2.16)

We can see that this coordinates describe the region V' > 0. The origin » = 0 correponds
to UV = —1, the past null infinity and the future null infinity ¢ — +o00, are V=0 and
UV = —1, respectively. The spatial infinity » — oo corresponds to UV = 1. The metric

in this coordinates is:

412

=gy |

dUdV — (1+UV)?d93] (2.17)

“The motivation for using here the Kruskal coordinates is similar to that in Schwarzchild solution,
where they permit to make an analytic continuation of the solution into the inner region of the event
horizon.



where

dQ3 = db? + sin® 6,d63.

Under the transformations U — —U e V — —V this metric remains invariant, what
allows us to make an analytic continuation to the region V' < 0. With this metric is
possible to describe the space dS4 completely.

The next step is to put this region into a bounded domain. We use the transforma-

U = tan <802_C> ; V. =tan <<'0+C> , (2.18)

tions:

2

which takes the de Sitter space into the compact domain | + ¢| < w. The conformal

diagram is presented in figure 2.3.
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Figure 2.3: The dashed lines are t = const. The asymptotic region Z~ corresponds to
t = —oo. The diagonal is t = co. The south pole is in 7 = 0 and the north pole in r = co.

2.1.3 Hyperbolic Coordinates (7,v,0,)

The hyperbolic coordinates are described by

Y = [sinh(7/l) cosh
¢ = lw'sinh (7/1)sinh ) (2.19)
4 = [cosh(7/l),

= ==

where —oo < 7 < oo and 0 < 9 < oco. This coordinates parametrize the region bounded
by the condition
cos By cosh(7/1) > 1. (2.20)

10



The line element takes the form
ds® = —d7? 4 sinh? (7/1)[dip? + sinh? dQ3_,]. (2.21)

The sections 7 = const. are open 3-dimensionals hyperboloids H3. The Penrose diagram

for this coordinates is shown in figure 2.4.

North Pole South Pole

x
_,XT‘“

Figure 2.4: The Hyperbolic coordinates only describe the part where 7 = const., these
are represented here by the lines with arrows.

2.1.4 Stereographic Coordinates (z*)

This set of coordinates are obtained by performing the stereographic projection of the

hyperboloid, represented by the equation (2.2), to the Minkowski space. This projections

is given by
2
=Qat o xt = -0 <1 + Zﬂ) (2.22)
where )
Q= m, 0'2 = ’I’IMV.T'LLLUV (223)

and z* takes values in the Minkowski space where the projection is made. In this coor-

dinates, the line element takes the conformal form:
ds® = O?n,,datdz” . (2.24)

These coordinates will be used along the following chapters. The importance of this
set is that the symmetry generators written in this coordinates are very similar to the
generators of the Poincaré group in Cartesian coordinates. For this reason, they are ideal

to make the contraction process that we are going to define in the following section.

11



2.2 Contractions of the de Sitter Group

The de Sitter space is similar to Minkowski space in the sense that they both are
homogeneous spaces and maximally symmetric. Now, we are going to explore this simi-
larity and show some of the consequences of the presence of the cosmological constant in
the symmetry group. First, we are going to review the process of Lie group contraction
[11, 12, 24], then we will apply it to the de Sitter group SO(4, 1) and obtain the possible
limits for the different parameters, this also include the non-relativistic limits [15, 25]

and the formal limit A — oo whose result is called The Second Poincaré Group [26].

2.2.1 Lie Group Contractions

One of the original motivations to study contractions was to see how the Galilei group
can be obtained as a non relativistic limit of Lorentz group. It is natural to think
that the Galilei group appears as the limit of infinite light speed, because the Galilei
transformations are obtained using this limit from Lorentz transformations. However,
the process of “taking the limit” on the Lorentz group must be developed in a more
precise way because the result can depend of the initial chosen representation. To get an
idea of how this can happen, let us take a matrix representation of the Poincaré Group

in two dimensions

coshA sinh A a,
A= sinh A cosh A a; ,
0 0 1
where®
1 v/c

sinh \ = —[1 By ; cosh A= —[1 Sy IVeR

v is the relative velocity between two reference frames, c is the speed of light and a,, a;

(2.25)

are the components of a vector representing the translations in spacetime. Taking the

non relativistic limit ¢ — 0o, the previous representation transforms to

Qy
A — 0 1 at ,
0 1

which is a representation of the translation group in two dimensions but it is not a

representation of the Galilei group. However, if applied a similarity transformation that

®Here we reintroduce the light speed ¢, which is one of the parameters that will allow us to make
different contractions in Poincaré and de Sitter groups.

12



depends on ¢

c
C=1]0
0

o = O
— o O

redefine the parameters to b, = ca,, and then take the limit ¢ — oo, the answer is

1 v b,
CAC ' =01 a |,
1

which is the appropriate representation of the Galilei group!. This is a good example
where if we don’t take the appropriate parametrization of the group G, we won’t obtain
a representation of the desire group G’ after the limit. For example, in the de Sitter
case, we have to make some manipulations in the parameters and generators to obtain

the desired answer. In the following we will see the precise definition of a contraction.

Definition

Let G be a Lie group with X; (i = 1,...,n) the generators and b’ the parameters of the

group. The generators satisfy the commutation relations:
[Xi, X;] = ki, X, (2.26)

with cfj the structure constants. Now, make a non singular linear transformation to the

generators using the matrix Uij , to obtain the new generators:
Y, =U/X;. (2.27)

In this process we have to redefine the parameters, the commutation relations and the
structure constants
a'=U ; [V,Y;|=CiYe 5 Cf=UUP G, (U

n-

(2.28)

If the matrix U is not singular the group structure remains unchanged, but if U is
singular the group structure will change and we will obtain a new group as result of the
transformation. Consider the matrix U depending linearly on one parameter ¢ > 0, in
the following way
J_ .3 J
U =uj + ew; , (2.29)

and suppose that the matrix U is not singular when € goes to infinity, but it is singular

when € is zero. Additionally, we are going to assume that the matrices u and w can be
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written as

Iy 0 rxr 0
u= x ;W= Urx , n=r+p (2.30)
0 Opxp 0 Ipxp

where v is some matrix. This is a necessary condition, because it is not always possible
to write the matrices v and w in the previous form. In order to see the difference between
the generators of the subgroup where the contractions are made, let us define additional
sub-indices for the generators X and Y. Then, applying the transformation (2.29) and

using the form above, we can split the generators as

”
Yo = Xa+e) vhXp, (2.31)
=1
VP = X, (2.32)
where the first half of the greek alphabet o, 3,... = 1,...,7 is used to count the elements

of the first block in (2.30) and, the second half y,v,... = r+1, ..., p is used for the second

block. The parameters of the group also change to

T

af = b 4ed bug, (2.33)
B=1

ah = ebt, (2.34)

note that if the limit ¢ — 0 is well defined, then the group G will contract to the subgroup
define by the generators X,. This is why it is called a contraction.

Now, we are going to study the conditions when this limit is well defined. As we
are interested in the limit ¢ — 0, we are going to keep the singular part in e. The

commutation relations can be separated as

Zc” Y1+— Z ch 5Y,7 +0(e), (2.35)

,LL =r+1

where O(e) represents the linear terms and the superior orders in €. In order to obtain a

finite limit in the commutation relation when € goes to zero, we must have that
c, 5 =0, (2.36)

which means that the generators X, form a subgroup in G. It can be verified that the

condition (2.36) is the only condition we need for the limit ¢ — 0 to exist. With this
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condition, the new structure constants in the limit take the values

Cgﬁ = czé,ﬁ, CZ,,B = C'ZWB =0, (2.37)
C&H = 0, Céil, = Cg,w (2.38)
oy, = Ch,=0 (2.39)

and also they satisfy the Jacobi identity
Ci;Cit + CiCi + GG = 0, (2.40)

which is the condition to be a Lie group. At the end of the process we have a new
group G’ which is not isomorph to the initial group G, but, with the same dimension.
The group G was contracted with respect to a subgroup S C G that is spanned by the
generators X,. The relations (2.37) show that it exists a new subgroup S’ C G’ that
is isomorph to S. The relations (2.38) and (2.39) also show that it exists a new group
A C G’ which is invariant and abelian.

Now, we will make a couple of examples with the objective of making clear the
definition of the contraction process. The two examples are: the contraction of the
rotation group to the translation group and the contraction of the Lorentz group to the
Galilei group.

Rotations

The generators of the rotations group in 3 dimension J; (i = 1,2, 3) satisfy the algebra
[Ji, 5] = €iji i (2.41)

To make everything more explicit, let us write the algebra in the form
[Ji, ol =J5 5 [Joy sl =1 5 [J3, 1] = Ja. (2.42)

We are going to contract the group with respect to the subgroup generated by Js. First,

redefine the other two generators as
Is=Js ; L=¢cJ1 ; Iy=¢ls. (2.43)
In the limit € — 0, the algebra (2.42) transform to
[[,)] =0 ; |[I,Is)=1 ; |[I3,11] = Is. (2.44)

This is the algebra of translation and rotations in the Euclidean plane. What happens

geometrically in this example can be understood in the following way: The generator for
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the rotations around the z axis is unchanged, but, the generators for the x and y axes
are restricted to act infinitesimally, so they look like translations in the plane x —y. The

parameter used in this contraction was the angle between the axes x and y.

Lorentz

The second example is the contraction of the Lorentz group with respect to the rotations.

This group is spanned by the generators Log (o, 8 =0, ..., 3) that satisfy the algebra

[(Lab, Ledl = OvelLad + 0adLve — OvaLiac — OacLia (2.45)
[La07 Lbc] = 5CLbLOC - 5acL0b (246)
[Laos Lto] = Lia, (2.47)
where (a,b,... = 1,2,3). Redefine the generators to
Lop =Ly ;5 To=¢Lao (248)

with e = 1/c. Now take the limit € — 0 to obtain the algebra
[Ta) Lbc] = 5ach - 5ach 5 [Tm Tb] =0 (249)

which is the algebra of the Galilei group containing the 3-dimensional rotations and the
transformations between reference frames in relative movement in three dimensions. In
this way, we see that taking the limit where the velocity of light goes to infinity the
symmetry group of special relativity contracts to the symmetry group of the Newtonian
mechanics. A similar contraction takes the Poincaré group to the non homogeneous

Galilei group that includes the translations in spacetime.
2.3 de Sitter Space and Group

In this section, we will focus in some of algebraic properties of the de Sitter space. The
stereographic coordinates, defined in a former section, are of particular interest. In this
coordinates is possible to highlight the structure similarities between the Poincaré and
the de Sitter groups, which we are going to study simultaneously. The preliminary works
on fundamental properties of de Sitter group, as also the representations and contraction
limit A — 0, can be found in [12].

2.3.1 de Sitter Space

Spaces with constant scalar curvature R are maximally symmetric, this means that they

can lodge the maximum possible number of Killing vectors (generators of the symmetry
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group). Given a signature for the metric, there is only one space for each value of R
[27]. Minkowski space M with zero scalar curvature, is the more simple example. Its
symmetry group is the Poincaré group P = L @ T, the semi-direct product between
the Lorentz group £ = SO(3,1) and the abelian group of translations 7. The latter
acts transitively in M and its group manifold can be identified with M. In fact, the

Minkowski space is an homogeneous space under P, actually is the quotient space
M="P/L.

Now, from all curved spaces, de Sitter and anti-de Sitter spaces are the only ones with
constant scalar curvature (positive and negative curvature®). As we have said before,
these spaces can be defined as hyper-surfaces in the pseudo-euclidean spaces E*! e E32,
4

Using coordinates (x4) = (X%, x', x2, x>, x*) they must satisfy

77ABXAXB = (X0)2 _ (X1)2 . (X2)2 . (X3)2 _ (X4)2 - _ 12

and
napxxE = 02 = ()2 = (32— ()2 + (M2 = 12,

Taking the Minkowski metric to be 7, = diag(+1, —1,—1,—1) and taking s = 74, we
can study both cases simultaneously. For s = —1 we have de Sitter space dS; whose
metric is induced from the pseudo-euclidean metric nap = diag (+1,—1,—-1,—1,—1).
It has for symmetry group the orthonormal group SO(4,1). The case s = +1 cor-
responds to anti-de Sitter space AdSy. Its metric is induced from the metric nap =
(+1,—-1,—1,—1,+1) and its symmetry group is SO(3,2). Both spaces are homogeneous
in the sense that [10]:

dS; = SO(4,1)/L e AdSy= SO(3,2)/L.

Besides, each group manifold is a principal bundle with the correspondent de Sitter or
anti-de Sitter space as base space, and the Lorentz group £ as the fibre. These spaces are
solutions to the Einstein equations without any source, provided that the cosmological

constant A and the de Sitter radius [ are related by
A=—=. (2.50)

In stereographic coordinates (2.22) with metric (2.24), the Christoffel connection takes

the form

P = 0207, + 8,07, = 0| 0 [n Q(a), (2.51)

5The sign of the curvature depends on conventions
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and the Riemann tensor is

A
RFype = — 3 [0 pgve — 6" 5 Gup| - (2.52)

Finally, the Ricci tensor and the scalar curvature are
R, =—-Ag, and R=—4A. (2.53)

The convention used here is, de Sitter (anti-de Sitter) space has negative (positive) scalar

curvature.

2.3.2 The Kinematical Groups

The isometry group of a spacetime will always have a subgroup that accounts for the
isotropy of the space and the equivalence between reference frames in relative movement.
Also, there is a part of the isometry group that is responsible for the homogeneity of the
spacetime. This part is usually called the translations and can be either commutative or
non commutative. This happens in Galilean relativity and any others relativities that we
can think of [13]. The more known case of relativistic kinematics is the Poincaré group
P. It is naturally associated with Minkowski space M, being its symmetry group. The
Poincaré group is constructed by the semi-direct product of Lorentz group £ = SO(3,1)
and the translations group 7. The last one acts transitively in M. In fact, Minkowski
space is an homogeneous space under P, actually it is the quotient M =T = P/L. The
invariance of M under P reflects the uniformity. The Lorentz subgroup gives locally the
notion of isotropy and the invariance under translations takes the isotropy to any other
point of the space. This is the usual notion of uniformity where T is responsible for the
equivalence between all points in the spacetime. Once established these notions, we are
going to study the symmetry group of de Sitter and anti-de Sitter spaces. In Cartesian

coordinates x4, the generators of infinitesimal transformations are

0 0
Jap = C_— _ ¢ _— 2.54
AB nac x 6XB nBCc X aXA ; ( )
these satisfy the commutation relations
[Jap, Jopl = npcJap +napJec — nepJac — nacJep. (2.55)

In terms of stereographic coordinates {z*}, they assume the form

Juw = Ly = nppa? P, — nypxf P, (2.56)
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and

s
Jy=—s (1P + - K,) | (2.57)
where 5 5
R and K, = (2n,2"2" — 0%5,”) s (2.58)

are respectively the generators of translations and proper conformal transformations.
For s = —1(+1), they give rise to the (anti-)de Sitter group SO(4,1)(S0(3,2)). The
generators J,,, refers to the Lorentz subgroup SO(3,1) and J,4 defines the transitivity
of the corresponding homogeneous spaces. In terms of the previous decomposition, we

can see explicitly the last properties in the commutation relations:

[Juvs Joo] = Mupdpo + Mpodvp — Mo dup — Nupdve (2.59)
[J4u; Jup] = nmlj4p - nupJZLV, (260)
[‘]41“ J4y] = —SJM,/. (2.61)

From equation (2.57), it is obvious that theses spaces are transitive under a mix of
translations and proper conformal transformation. The relative importance of these two
components is weighted by the value of the cosmological constant. Particularly, for a zero
cosmological constant, the two spaces (de Sitter and anti-de Sitter spaces) transform to

Minkowski space M with Poincaré P as symmetry group.
2.4 Contration Limits

In this section, we will present the different contraction limits of the two de Sitter
groups. To this end, it is necessary to make some adequate redefinitions of the parameters
and generators. In these redefinitions , we are going to take into account the two constants
c and [, and see their importance on the redefinitions and on the meaning of the limits
that we are going to take. For more details in the algebraic and geometrical aspects of

the contraction for the non relativistic limit see [15].

2.4.1 Zero Cosmological Constant
To study the limit (I — oo) is convenient to write the generators in the following way
Juw = Ly = nppa” P, —nypa’ P, (2.62)

and

Jua

1
=5 <PM +s 4l2Ku> : (2.63)
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The generators L, span the Lorentz group acting on Minkowski space and they satisfy

the commutation relation

[Lyws Lpo] = NvpLpo + MuoLvp — Mo Lyp = Nup Lo (2.64)

The other commutation relations, that describe the transitivity sector, are written as

[Hua Lup] = nuunp - nupnm (2'65)
S
[Huu Hu] _ﬁLuu- (266)

For [ — oo, the generators 1, reduce to the ordinary translations and the de Sitter group
contracts to Poincaré group P = L@ T. Together, with the modifications of the algebra

and group, the de Sitter space transforms to Minkowski space
M="P/L,
which is transitive under ordinary translations.

2.4.2 Non Relativistic Limit: Newton—Hooke Space

The Newton-Hooke space can be considered as the non relativistic limit of de Sitter
space. The principal characteristic of this space is that the curvature is non zero because
it is inherited from de Sitter space. The effect of the curvature appears explicitly in the

translations generators. The adequate redefinition of the generators in this case is:
Lap = Jab » Lao = Jao/c, Ta = sdaa/ct, To = sdoa/T, (2.67)

where a,b,... = 1,2, 3 are indices in the algebra and 7 = [/c is keep constant during the
process. These redefinitions in the generators corresponds to modify the parameters w®?,
so that, w™® — w%®; WO — W W' — ecTw?, e W? — erw?. The factors are absorbed

into the redefined group parameters, and these get a dimensionality. The algebra in
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terms of these redefined generators is

[Labs Lae] = Obalae + daelod — dbelad — Jadlbe, (2.68)
[Labs Laol = dbalao — dadLso, (2.69)
[Lob, Loe] = C%Lbe, (2.70)
[Lab, Ta] = GbaTa — dadTo, (2.71)
[Lao, To] = %25(11)"'0, (2.72)
[Lao, To] = —Ta, (2.73)
[Lap, To] = 0, (2.74)
[Ta, o] = _#Laba (2.75)
[Ta, To] = _%Lam (2.76)
[To, To] = 0. (2.77)

This is the adequate parametrization to obtain the algebra of the Newton-Hooke group.

Taking the limit ¢ — oo, we get

[Lab, Lae] = Ovalae + daelva — dbelad — Gadle (2.78)
[Labs Laol = dbalao — daalso ; (2.79)
[Lob, Loe] = 0, (2.80)
Lo, Ta] = 0paTa —0adTh; (2.81)
[Lao, Te] = 0, (2.82)
Lo, To] = —Ta, (2.83)
Lap, To] = 0, (2.84)
[Ta, Ts] = 0, (2.85)
TasTo] = ——lao, (2.86)
[To, To] = 0, (2.87)

which span the algebra of the Galilei group, with an important difference in equation
(2.86), where can be seen the non commutativity in the translations of spacetime. This
effect is originated in the non zero scalar curvature of de Sitter space [15]. It is important

to note that 7 must be keep constant during the contraction process, so, the result is

well defined.

2.4.3 Infinite Cosmological Constant

It is important to emphasize that the limit A — oo must be understood as purely

classic, because taking this limit means that the values of the de Sitter radius [ are
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arbitrarily small, and at this length scale or equivalently this energy scale, we expect
important effects of quantum nature that forbids [ to take these small values. The
fundamental interest of this limit resides in that it gives a consistent algebraic structure
of the symmetry group when a small length scale is introduced, for example the Plank
scale, and eventually it can have relevance in the study of physics at that scale.

For this case, let us write the generators in the form
L;w = nupxppu —nypxpP“ (2.88)

and
I, = 4l L,a = s(41°P, + sK,,). (2.89)

With these new definitions the algebra can be written as

[Lyws Los] = nupLype + MuoLvp — Mo Lyp — MppLve (2.90)
[ﬁua 1:[1/] = _SZQLp,l/ (291)
[ﬁw Evp] = N, — nupﬁw (2.92)

In the limit [ — oo, the generators ﬁu convert to the proper conformal transformations

K, and the commutation relations take the form

[ﬁ/u ﬁzx] =0 ; [ﬁua Eup} = 77,Lpr - nupHua (2-93)

maintaining the part that correspondent to the Lorentz group equal. The group contracts
to the second Poincaré group P [26]. Consequently , with the group contraction, the de
Sitter space transforms to

N ="P/L.

This new space is also maximally symmetric [26] and it is called the Cone space.
2.5 de Sitter as a Quotient Space

As we have said before, the de Sitter space is more fundamental than a simple solution
of Finstein equations, and can be constructed from an algebraic point of view. Right

now we will see how this can be done. In the previous section we write that
dS, =S0(4,1)/L. (2.94)

To prove the last equation, take a representation of SO(4,1), this representations acts

naturally on a 5-dimensional Minkowski space. We can find the matrix elements of the
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generators using that

(2.95)

(Lag)p =¥

Lap 2% =

§z¢

where

(2.96)

nacX 0 — npcX0c.

Lag =

With the two equation above, we find:

The 5-dimensional boosts

-1 0 0
0
0
0
0

0
0
0
0
0

-1 0 0 0
0
0
0
0

],

0 0001
0000O0
000 O0O
0 00 0O
100 00

|

Loy =

0 00 -1 0
0 0 0
0 0 O
0 O

00 0 O

0

0
-1 0 0
0

Loz =

the 3-dimensional rotations

0
0
1
-1 0 0
0

00

0 0

Loz3=1 0 0
00

0

0
0
0
0

0
0
-1 0 0 0
0
0

o o o
o o o o
©c o o o o
(\

I

[a\]

—

~

0
0
0
0
0

-1

0
0 00
0
1
0
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and the rotation along the 4 dimension

Ly = Loy =

o O O o O

S O o O
S O O o o
o O O O O
o O O = O
S O O o o
o O O o O

o O O O
S O O o o
S O = O O

L3y =

o O O o O
o O O o O
o O O o O

o O o O
o = O O O

-1

We can see that the generators L;; and Lg; are the generators of the Lorentz group. The

remaining generators we will call them the “de Sitter translations” and they are
Laa i (Los, Lia).

Now, an element P in the quotient space SO(4,1)/SO(3,1) has the form

0 0 0 0 a a
0O 0 0 0 b b
P=expp=exp| 0 0 0 0 ¢ |, p=FELy, E*=]| ¢ | (297
0 0 0 0 d d
a —b —c —d 0 e
We need to compute the exponential of this matrix. By definition, we have that
o0 pn
P =exp p:ZE’ (2.98)
n=0
define
a
b v
BV = By=nul =(a b —c —d) (2.99)
c
d
then write the matrix p as
0 FE*
p= . (2.100)
E, 0
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The powers of the matrix p have the following properties

2n (EMEV)n 0 2n+1
= "t = (EPE,)" p. 2.101
p ( 0 (B°E,)" p (EPE,)" p (2.101)

We can separate the sum (2.98) in two terms

(o) o0
(EPE,) a®
P= 2.102
Z“ (2n +1 2;0(271)!’ (2.102)

which in the limit is equal to

cosh(E“EV)I/2 Aa75”1}1(@%’3)1/2

P= (E7Eo)'/2 (2.103)
inh(E°E,)/? : :
Ey% cosh(EPE,)'/?
Define
o Sinh(EPE,)Y/?
" S T (2.104)
x* = cosh(EPE,)Y2 (2.105)

It can be easily show that these coordinates satisfy the following identity

N XX" — (X4)2 =1 (2.106)

which is the equation of a 4-dimensional de Sitter space embedded in a 5-dimensional
Minkowski space. This shows that the quotient space SO(4,1)/S0(3,1) is in fact the
de Sitter space dS4. It is possible to construct the geodesics and the metric using the
same algebraic approach. The straight lines that go through the origin of the algebra are

mapped to geodesics in the quotient space, these geodesics have the form

0 E~ cosht(ErE,)Y/? A“%
P=exp|t £ 0 = §p s (EVE,)? (B 12 (2.107)
v VW COS ( p)
or in 5-dimensional coordinates
sinht(ErPE,)Y/?
TR 7 p 2.108
x* = cosht(EPE,)Y2 (2.109)

Note that all the information about the geodesic is in x*, this means that y* is irrevelant
because of the equation (2.106). Now, with the notion of geodesics is possible to define

the distance between two points in the quotient space. First, let us define the distance
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between a point ¢ in the quotient space and the identity. To do this, define the curve

g(t) that connects c to the origin (the identity)

g(t) = exp[tp], (2.110)
g(0) = Id, (2.111)
g(1) = ¢ (2.112)

then, we identify the distance between these two points using the norm of the matrix p
D(c,Id) = ||p||- (2.113)

To find the norm of this matrix, we need to calculate the Cartan-Killing metric for
S0O(4,1), which is done more easily using the adjoint representation. First, remember
that

" (2.114)

(M, M) = {ad(M)}s My~ where  {ad(M,)}} = Cf
k=1

therefore, if we know the structure constants we can obtain the metric. The commutation
relations for SO(4,1) are

[Lag,Lep] = mapLec —nBcLap +nmacLlep —nepLac (2.115)

then
CN oy = 1apSH oY —npcsi ol SN —nppoilel.  (2.116
(AB)(cD) — T"ADOBOCc —T7BCOA D tMACOB Op — NBDOA OC - (2.116)

The base for elements of the algebra in the quotient space is L4, this implies that the

Cartan-Killing metric is

MN C
h = tr(ad(Lay)ad(Lay) = Clyipy Clohiny = M (2.117)

With this result, we can write the distance between the point ¢ and the origin

D(c,1d) = ||p|| = (E" Ly, E¥ Lyy) = ny E* EY (2.118)

Let us compute the metric tensor g, (c) at the point ¢ in the quotient space using the
Cartan-Killing metric. For this, observe that the metric at the origin of SO(4,1)/S0(3,1)
can be identified with the Cartan-Killing metric

G (Id) = 1. (2.119)
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The distance ds between the identity and an element dP that is infinitesinally close is

given by
ds*(0) = |D(dP,Id)? (2.120)
9w (0)dx"dx” = nudE"dEY, (2.121)
where
dP = exp (dE" Lyy,), (2.122)
but
ok — dEusinh(dEpdEp)l/z _ e
= (dE°dE)2 0

therefore, the metric at the origin is

G (0) = Mpw- (2.123)
Observe that the infinitesimal distance is invariant under translations

ds*(0) = ds*(c) (2.124)
g (0)dX"(0)dx"(0) = g (c)dx"(c)dx"(c) (2.125)

then, the metric in a point ¢ must be

G (€) = G0 (0) gx” (0) 9x°(0)

(2.126)

We need to find the infinitesimals in the point ¢, so, we use the following property
gec = Cck. (2.127)

The above equations mean that if we act with an element g € SO(4,1) on a point
c € 50(4,1)/50(3,1), the result is a new point ¢ € SO(4,1)/50(3,1) times an element
k € SO(3,1) of the isotropy group. To find the infinitesimals at the point ¢, we use
this last property, but taking the same point ¢ as an element of the group acting on the

infinitesimals, in this way

'uz/ " 1 dx? /;11/ d pu
who x X))\ _ [ Wh X K’ 0 (2.125)
v X! dx,(0) 1 x, x* 0 1
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where

WH = cosh(EPE,)Y? (2.129)

v

k', e SO(3,1) (2.130)

if we define dx*(c) = x"" — x*, we can write

dx*(c) = WH dx"(0) (2.131)
or L o)
Y= 3 (0) (2.132)

To put the matrix W in more friendly way, we will use the following series representation

9 0 92n—1 )
sinh® x = —x", (2.133)
; (2n)!
then
2 172\ /2 =, 92—l 12
W = (5“V+smh (ErE,)Y ) = (o +Y o ()"
n=1
00 1/2 . 1/2
22n—1 sinh? (EPE,)'/?
wh = |, + E'E ——(EPE,)" = (& L
v ( y+ Ijng1 (277,)' ( P) ) ( l/+ (EUEO_)I/z
W= (0%, 4 xM )
Finally, the metric in a point ¢ in the quotient space is
Gur(€) = Mpe(WH)A, (W17, (2.134)

Remember that the coordinates xy are the 5-dimensional coordinates with the constraint

(2.2), this means they are restricted to the de Sitter hyper-surface.
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Chapter 3

de Sitter Special Relativity

3.1 Kinematics in de Sitter Spacetime

In this section, we are going to study the kinematics of de Sitter space |28, 29|. First,
we will explore the kinematics of Minkowski space and write some familiar concepts that
can be easily generalized to de Sitter space and group. Then, we will study the equations
of motion of a particle in de Sitter space.

3.1.1 Minkowski Spacetime Revisited

The action functional describing a free particle of mass m moving in a Minkowski space-
time is

b
S = —m/ ds, (3.1)

where
ds = (1 dztda?)Y/? (3.2)

is the Lorentz invariant interval. Now, the kinematic group of Minkowski is the Poincaré
group P = L @ T, the semi-direct product of the Lorentz £ and the translation group

T. The first Casimir invariant of the Poincaré group, on the other hand, is
Cp=nu p'p’ =m® (3.3)

where p* = mut is the particle four-momentum, with u* = dz#/ds the four—velocity.

Considering that the action S and the Lagrangian L are related by

1 /b
S:/ L ds, (3.4)

C

the corresponding Lagrangian can then be written in the form

L=-— (nuu pupy)l/Q = —+/Cp. (3.5)
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The identity 7., p*p” = m* is a weak constraint in the sense that it can be used only

after the variational calculus is performed. The resulting equation of motion is

dpt _

—=0. (3.6)

The equation of motion, therefore, coincides with the conservation of the particle four-
momentum, which follows from the invariance of the system under spacetime translation.
Its solution determines the geodesics of the Minkowski spacetime. The invariance of the
system under Lorentz transformations yields the conservation of the particle angular

momentum [*¥ = xFp” — x¥pH, that is,

di*v
ds

= 0. (3.7)

3.1.2 Casimir Invariant

For a spinless particle of mass p, the first Casimir invariant of the de Sitter group is given

by [12]

1
Cis = —5;2 ACIBD LABLCD, (3.8)
where 5 )
d d
IAB _ " XA X _XB X (3.9)
dr dr

is the conserved five-dimensional angular momentum. In terms of the stereographic

coordinates {z#}, the Casimir invariant (3.8) assumes the form

1
Cas =" mpm, — T " 0" L Ly, (3.10)
where!
_ L ky
Tw=" TPu g (3.11)

represents the de Sitter momentum, with

dz¥ — dz®
P =pu I and K =0 p7 = (20,0 2P 27 — 0% 6% 5) — (3.12)
respectively, the linear and the conformal momentum,? and
L = Nup 2° py — Mup P pu (3.13)

! Analogously to the generators, we use a parameterization appropriate for a small cosmological con-
stant.

2Similarly to the identification p* = T"°, with T"" the energy-momentum tensor, the conformal
momentum k° is defined by k% = K, with K the conformal current [30].
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represents the orbital angular momentum. In the above expression,
oH, = 20, 2P ¥ — a2 6", (3.14)

is a kind of conformal Kroenecker delta. Since A% is conserved, we have also

dmv dm#
e — . . 1
I 0 and I 0 (3.15)

We remark that [#¥ is the Noether conserved momentum related to the invariance of the
system under the transformations generated by i}uy, whereas 7# is the Noether conserved
momentum related to the invariance of the system under the transformations generated
by f[u.g

3.1.3 Equations of Motion

Relying on the Minkowski case, the Lagrangian of a spinless particle of mass m in de Sitter
spacetime can be assumed to be given by —cy/Cgqg. In the five dimensional spacetime,
however, it is necessary to add a constraint restricting the movement to the de Sitter

hyperboloid. In this case, therefore, the Lagrangian turns out to be

L=—c [(Cd5)1/2 + (77AB YA B + l2)] , (3.16)

where (3 is a Lagrange multiplier. Using Eq. (3.8), the corresponding action is written as

b 1 1/2
5==—:/ [(—-mznAanDAABACD> -+B(UABXAXB-%F)]d& (3.17)

with ds the de Sitter invariant interval (2.3). Performing a functional variation, and
neglecting the surface term coming from an integration by parts, the invariance of the

action yields the equation of motion

d2XA 1 A

Using the constraints

dx? dx?
A. B 2
=1 d —————=1 3.19
naB X"X an nap =~ =1 (3.19)
the value of the Lagrange multiplier is found to be
1
=% (3.20)

3The same conservation laws, but in different coordinates, were studied in ref. [31].
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and the equation of motion reduces to to

d2XA XA
5~ =0. (3.21)

In terms of the stereographic coordinates, it becomes

d 1 , 1
<p”+k”>+x e (p”+k:”> HE v =0, (3.22)

dr 20 w" )T rea”

The corresponding equation for the covariant components of the momentum is

d 1 uefd
% (pl/ + E ky) — ZT 771/p Z’p =0. (323)

Of course, due to the universality of gravitation, this equation is independent of the mass

when written in terms of the four velocity. In fact, it is the same as

d 1 - Q
. (uu + 12 (e up> ~ 72 Mer xf =0, (3.24)

with &,” given by Eq. (3.14). This is the equation of motion of a spinless particle of mass

1 in a de Sitter spacetime. Its solutions determine the geodesics of this spacetime.
Using the second of the conservation laws (3.15), it is possible to obtain separate

evolution equations for p* and k*. For example, the equation of motion for the linear

momentum p* is found to be

dp, pcfl

& o et

=0, (3.25)

or equivalently,
v

dp Pu, we
o T ra? Tapal

This equation is nothing but the geodesic equation

v =0, (3.26)

dph
;% +IH,,p"u’ =0, (3.27)

with I'*,, the Levi-Civita connection of the de Sitter metric (2.24). On the other hand,

the equation of motion for the conformal momentum k* assumes the form

dk¥  xfu,

B 2uc

—* 70 q @ =0 (3.28)

Differently from the ordinary momentum p”, which is conserved with a covariant deriva-

tive, the conformal momentum k" is not covariantly conserved. In fact, it is found to
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satisfy

dk” 2uc 1 2 9
—_— FV o Py’ = — 1—7 o i V. 2
+IY o K u Q { 4l2<92upux:v aﬂx (3.29)

Put together, however, these two momenta yield the truly conserved total momentum

V.

3.2 Dispersion Relation

In this last section, we are going to obtain the dispersion relation of de Sitter special
relativity. To this end, we will use again the notion of Casimir invariant of the de
kinematics groups, Minkowski and de Sitter groups, respectively.

The first Casimir operator of the de Sitter group is [12]

~ 1 N R
Cus = —op A nBP Lap Lep, (3.30)

In terms of the generators [A/W and ﬂu: it assumes the form

R . 1 ..
Cas = 0P 11, 5 — o7 1% ) Low Lgs. (3.31)

In the contraction limit [ — oo, the de Sitter generators reduce to the Poincaré generators,
and the de Sitter Casimir reduces to the corresponding Poincaré Casimir.
The kinematic group of ordinary special relativity is the Poincaré group. The first

Casimir operator of the Poincaré group is
Cp =" P, P, (3.32)

where P, are the translation generators. For a particle of mass m belonging to an
irreducible representation of the Poicaré group, its eigenvalue is Cp = m?. From the

identity Cp = Cp, the dispersion relation of ordinary special relativity is found to be

Nap P’ = m?, (3.33)

where p® is the conserved charge related to the translation symmetry generated by P,
In the same token, for particles belonging to representations of the principal series,

the eigenvalue C4g of the first Casimir operator of the de Sitter group is [32]
o 1 — 2
Cis = m”~ — 2] [s(s+1) —2] = u?, (3.34)

with m the mass and s the spin of the field under consideration. From the identity

33



(fdg = Cyg, the dispersion relation of the de Sitter relativity is consequently

1
Nap morf — ﬁ URTRIST) 197170 = ,LLQ, (3'35)

where 7, and [, are, respectively, the de Sitter momentum and the angular momentum

of the particle. In stereographic coordinates {x®}, 7, issues the form

1
*=p* - —k° 3.36
Tt =pt = okt (3.36)
where p® is the ordinary momentum, and
k= (205 27z — 025(‘;3‘) P’ (3.37)

is the proper conformal momentum. The angular momentum, on the other hand, has
the usual form
%7 = %7 — 27p°. (3.38)

Now, due to the fact that de Sitter spacetime is isotropic and homogeneous, it has
no preferred origin, and the angular momentum [*? vanishes for free particles, that is,
for particles moving along a geodesic of the de Sitter spacetime. This is similar to what
happens in Minkowski spacetime, which is also isotropic and homogeneous. The de Sitter

dispersion relation, therefore, is actually given by
Nap o’ = 1, (3.39)

In addition to the change in the definition of momentum, the mass in de Sitter special
relativity turns out to be replaced by the eigenvalue p, which depends on the spin of the

particle. This is related to the fact that the de Sitter group is essentially a “rotation”
group.
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Chapter 4

de Sitter General Relativity

One of the principal ideas of this work is that the de Sitter group generalizes the Poincaré
group for high—energy kinematics, just in the same way that the Poincaré group gener-
alizes the Galilei group for high—velocity kinematics. In other words, ordinary special
relativity is here replaced by de Sitter relativity.

Now, we make a step ahead and stop thinking that the cosmological constant A is a
free parameter, instead, it can be determined in terms of other physical quantities that
describes the system. When we apply this idea in some particular examples, we obtain
very interest result. It can, for this reason, be considered a new paradigm to approach
the quantum gravity problem.

The first questions that appears is: given a physical system, how to obtain the asso-
ciated cosmological term? As a motivation, we can make an approach on how we can do
this, then, in the following sections we will develop a mechanism to find the Cosmological
constant of a system.

Fist remember that according to quantum mechanics, there is a lower limit for all
of the physical quantities of a system, also, the uncertainty principle doesn’t allows
to take arbitrary values in this quantities. For example, the smallest amount of an
electromagnetic field, a photon, is determined by the Planck constant as a quantum of
the field. In a similar fashion, the smallest possible length for the de Sitter radius [ is the
Planck length Ip = \/Gh/c3.! Let us then consider a de Sitter spacetime with [ = Ip,

for which the corresponding cosmological term is
Ap = . (4.1)

Considering that a cosmological term represents ultimately an energy density, we define

the Planck energy density

mpc2
Ep = (

47 /3)5, (42)

'From here on, we will use ¢ # 1 for the speed of light.
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with mp = \/ch/G the Planck mass. In terms of ep, Eq. (4.1) assumes the form

ArG
APZZTa?p. (43)

Now, the very definition of Ap is very particular and is for the extremal case of systems
with such a high energy density. However, we can try to generalize this result to physical
systems with energy density €. Accordingly, the associated “cosmological” term is

4G
A:CTE

(4.4)
It is important to reinforce that the € appearing in this equation is not the dark energy
density and it has nothig to with it, it is simply the matter energy density of the system
itself. For small values of &, the local cosmological term A will be small, spacetime
will approach Minkowski, and de Sitter special relativity will approach ordinary special
relativity, whose kinematics is governed by the Poincaré group.?

In the following, we will develop a mechanism to find the cosmological constant for

some systems (gravitational systems).
4.1 Conserved Source Currents

In order to comply with de Sitter relativity, any physical system must engender
on spacetime a local cosmological term. This means that spacetime must present a
local kinematic-related curvature. We have then to verify whether the presence of this
kinematic curvature is consistent with general relativity, the theory that governs the
spacetime dynamics.

Due to the transitivity properties of the de Sitter spacetime, de Sitter relativity
naturally incorporates the proper conformal generators in the definition of spacetime
transitivity. As a consequence, a conformal current will appear as part of the Noether
conserved current, producing a change in the very notions of energy and momentum [29].
To see that, let us consider a general matter field with Lagrangian £,,. Its action integral
is

Sy = ! / Ly diz. (4.5)
C

Under a local spacetime transformation dx”, the change in S is

0Sm = — % /T’“’ 59 v/ —gd'z, (4.6)

*We remark that the relation (4.4) between the local value of A and the energy density ¢ is the same
as that appearing in Einstein universe. See, for example, Ref. [33], page 104.
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where

2 0L
v =9 59#1/

is the symmetric energy-momentum tensor. Although the coefficient of the variation

TH =

(4.7)

is the energy-momentum tensor, the conserved quantity depends on the transformation
dxf. For example, invariance of the action under translations dzf = &P(z) leads to
the conservation of TH¥ itself, whereas the invariance under a Lorentz transformation

5xP = wPy(x) z* leads to the conservation of the total angular momentum tensor [27]
JPHY = gt TPV — ¥ TPH, (4.8)

Now, when the local kinematics is assumed to be ruled by the de Sitter group, the un-
derlying spacetime is necessarily a de Sitter spacetime. As already said, that spacetime is
not transitive under ordinary translations, but under the so called de Sitter “translations”,

whose infinitesimal version is

dxf = w ()", (4.9)

where w®(z) is the transformation parameter and?

fap = 65 — @ (2770(1,[13 ¥ —o (SZ) = 52 — @50/) (410)

represent the Killing vector components, with o2 = N x#x”. Under such a transforma-

tion, the metric tensor changes according to

5guv = _VV[wa(x)gaM] - vﬂ[wa('r)fau]a (411)

with V,, a covariant derivative in the spacetime metric. Using the fact that the &,,’s are

Killing vectors, this can be rewritten in the form
09 = —EauVow™(x) — Lo V(). (4.12)
Substituting in Eq. (4.6), the invariance of the action yields the conservation law
Vv, I =0, (4.13)

where )
I = Tpaé-au — THY _ @ I(,uu7

with TH* the symmetric energy—momentum tensor, and K*¥ the proper conformal cur-
rent [30]

(4.14)

KM =TH§," = THY (2na, 2z” — 0260/’) . (4.15)

3For ordinary translations, as is well known, the Killing vectors reduce to 65.
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When the underlying spacetime is the de Sitter spacetime, the covariant conserved source
is the projection of the energy momentum tensor T#% along the Killing vector £,#.

In general, neither T}, nor K, is conserved separately. In fact, as an explicit calcu-
lation shows,
277, 2"

and V#KMV = m (416)

277, x"

VT = 412 — o2

Only when the trace of the energy-momentum tensor vanishes are the currents T#” and
K" separately conserved, which is something expected because the trace of energy-
momentum tensor is proportional to the mass, then, if the mass is zero conformal sym-
metry must appear. In the formal limit of a vanishing cosmological term (corresponding

to | — 00), we obtain
Vv, T" =0 and VKM =2T°,2". (4.17)

On the other hand, in the formal limit of an infinite cosmological term (corresponding

to ! — 0), we get

xl/

VI =277~ and VKM =0, (4.18)

In this limit, physics becomes conformally invariant, and the proper conformal current

turns out to be conserved.
4.2 Second Bianchi Identity

Let us consider the gravitational action functional

167G

S, = /R\/Tg d*z. (4.19)

Up to a surface term, the variation of this action is

3
_ pv “gd* 4.2
35, 167TG/G Sguw V—gd’z, (4.20)
where
G" =RW —Lg R (4.21)

is Einstein’s tensor. For the specific case of de Sitter “translations”, in which the metric

tensor transforms according to Eq. (4.12), we get

C

3
s [ Ve ) v it 4.22)

0Sy = —
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From the invariance of the action, and considering the arbitrariness of the local param-
eters &, (x), we obtain

YV, (GF€,") = 0. (4.23)

In the case of ordinary general relativity, whose underlying kinematics is ruled by the
Poincaré group, the Killing vectors are simply 0%, and Eq. (4.23) reduces to the usual
contracted form of the second Bianchi identity [34]. When the underlying kinematics is
ruled by the de Sitter group, however, what is covariantly conserved is the projection
of GI7) along the Killing vector &,”. This projection represents Einstein’s tensor of the
total spacetime curvature: the dynamic curvature generated by TH", and the kinematic
curvature associated to the local de Sitter spacetime. It is, for this reason, the Bianchi

identity consistent with de Sitter special relativity.
4.3 Cosmological Term as a Kinematic Effect

In ordinary general relativity, spacetime is assumed to reduce locally to Minkowski,
whose kinematics is ruled by the Poincaré group, and whose homogeneity is related to
the translational Killing vectors §5. As a consequence, Einstein equation is written in
the form

0F G = 8:—4(; ob T, (4.24)
with G** = R — %ho‘“R the Einstein tensor. If instead of Poincaré, local kinematics
is to be ruled by the de Sitter group, spacetime must reduce locally to de Sitter, whose
homogeneity is defined by the “translational” Killing vectors {7. In this case, Einstein

equation must be generalized to

£r Gon — SZTG ep o (4.25)

(67

Using the Killing vectors (4.10), as well as the definition (4.14), the field equation (4.25)

can be rewritten in the form

1 81G 1
Gg_‘ﬂ - @ G%l — 7 <Tp'u - @ Kp'u> 5 (426)

where we have introduced the notations
Gt =60 G*  and  GR¥ =L GO (4.27)

In the limit [ — oo, it reduces to the usual Einstein equation, which is consistent with
ordinary special relativity.
It is important to note that the replacement of ordinary (Poincaré-based) special

relativity by de Sitter relativity changes only the local spacetime symmetry, not the
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dynamics of general relativity. As a matter of fact, it changes only the strong equivalence
principle, which states now that in any locally inertial frame, the non-gravitational laws
of physics are those of de Sitter special relativity. This means essentially that Einstein
equation
8rG
Ggw“ - CT TP/L’ (428)

which describes the dynamic spacetime curvature, and the kinematic equation

G = zg%c KPH, (4.29)

which is an equation describing the de Sitter effects on the spacetime geometry, can be
solved separately. Of course, the total spacetime curvature will always be composed of
two parts: a dynamic part G, whose source is the energy-momentum tensor of matter,
and a kinematic part G%*, whose source is the proper conformal current of matter. The
importance of each part depends on the value of the pseudo-radius I.

Now, since in the present context G4 represents the curvature of the underlying de
Sitter spacetime, it depends necessarily on [. As a matter of fact, if we recall that, for a
de Sitter spacetime,

S )

and taking into account that A = 3/I?, with A the cosmological term, we see from
Eq. (4.27) that
GO = —N 0P g™ (4.31)

Substituting into Eq. (4.29), and taking the trace on both sides, we get

B drG K,/

A=l (4.32)
Using Eq. (4.15), the cosmological term is then found to be given by
ArG
A = CT (2 Tp,LL ’u,pu“ — TM‘LL) y (433)
where
h
e (4.34)
s

is the four-velocity in comoving coordinates, with s the invariant form s = (gw,a:“:c")l/2 =

Q(x) 0. In fact, observe that the variation of the four-velocity of a given point of space-
time depends only on the change of the invariant form s.

According to de Sitter special relativity, therefore, the source of the local de Sitter
spacetime, or equivalently, of the local value of the cosmological term, is not the energy-
momentum current, but the (trace of the) proper conformal current of ordinary matter.

It should be noticed, however, that there is a crucial difference between the local de Sitter
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spacetime underlying all physical systems, and the usual notion of de Sitter spacetime:
since equation (4.33) is purely kinematics, and considering that the conformal current
KP¥ vanishes outside the source, in this region the local de Sitter spacetime becomes the
flat Minkowski space. This is quite similar to a proposal made by Mansouri in a different
context [35].

41



Chapter 5

Some Application of de Sitter Special and General Relativity

In the last two chapter, we introduce the de Sitter special relativity and its extension to
a de Sitter general relativity. We are going to use the proposals of these theories in some

applications at cosmological level and a high energy scales.
5.1 The de Sitter Scenario for a Variable A

As we have seen, what is conserved in de Sitter special relativity is a combination
of energy-momentum and proper conformal currents. Considering that neither of these
currents is individually conserved, energy-momentum can be transformed into proper
conformal current, and vice-versa. Since the proper conformal current appears as the
source of A, this means that ordinary matter can be transformed into dark energy, and
vice versa. This mechanism provides a natural scenario for an evolving A. When applied
to the universe as a whole, it predicts the existence of a pervading cosmological term
whose value, at each time, is determined by the matter content of the universe [36].

Let us begin by considering a universe with an infinite cosmological term. Such
universe is obtained in the limit { — 0,' under which spacetime becomes a flat, singular
cone-spacetime, transitive under proper conformal transformations [19]. Its kinematic
group is the conformal Poincaré group, the semi-direct product between Lorentz and the
proper conformal groups [26]. In this limit, physics becomes conformal invariant, and
the proper conformal current turns out to be conserved (see section 4.1). Observe that,
since this spacetime is transitive under proper conformal transformations only, the usual
notions of space and time will not be present. As a consequence, the energy-momentum
current cannot be defined, which means that the degrees of freedom of gravity are turned
off. Only the degrees of freedom associated with the proper conformal transformations

2

are active.” It is also interesting to observe that, under such extreme situation, the

'We remark that, in order to consider the limit I — 0, a different parametrization of the generators
must be used. In fact, instead of the parametrization (2.63), which is appropriate to study the limit
I — oo, it would be necessary to use I, = [L,4 [19].

*This is somewhat similar to the “Weyl Curvature Hypothesis" of Penrose [37].
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thermodynamic properties of the de Sitter horizon fit quite reasonably to what one would
expect for an initial condition for the universe: it has an infinite temperature, vanishing
entropy, and vanishing energy; the energy density, however, is infinite [38].

It is important to remark that the limit [ — 0 is purely formal in the sense that
quantum effects preclude it to be fully performed. The outcome of this limit, that
is, the cone spacetime, must be thought of as the frozen geometrical structure behind
the quantum spacetime fluctuations taking place at the Planck scale. A more realistic
situation is to assume that the de Sitter pseudo-radius [ is of the order of the Planck
length Ip, in which case the cosmological term would have the value

Ap = ~1.15x 10% cm™2. (5.1)

>~6\t‘o‘ w

Notice that, due to the fact that spacetime becomes locally a high-A de Sitter spacetime,
it will naturally be endowed with a causal de Sitter horizon, and consequently with a
holographic structure [39]. As the A term decays and the universe expands, the proper
conformal current is gradually transformed into energy-momentum current, giving rise to
a Friedmann-Robertson-Walker universe. Concomitantly, spacetime becomes transitive
under a combination of translations and proper conformal transformations. This means
that our usual (translational) notion of space and time begin to emerge, though at this
stage spacetime is still preponderantly transitive under proper conformal transformation.

As the proper conformal current is continuously transformed into energy-momentum
current, the matter content of the universe turns out to be described by a sum of many
different components. As a simple example, we consider here a one-component perfect

fluid, whose energy-momentum tensor is of the form
TPy = (e +p) uuy —pd’y, (5.2)

with e the energy density, and p the pressure. Substituting in Eq. (4.33), it yields the

cosmological term

e
Observe that, even though A can decay to small values, it cannot vanish.?> This means
that, similar to the limit [ — 0, the limit [ — oo cannot be accomplished either because
it would lead to an empty universe represented by Minkowski spacetime. At the present
time, the matter content of the universe can be accurately described by dust, which is

characterized by p = 0. In this case, expression (5.3) yields

A= —c¢. (5.4)

%It is interesting to note that, in order to have a vanishing A, it would be necessary to suppose the
existence of an exotic fluid satisfying the unphysical equation of state e = —3p.
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Using the current value for the energy density of the universe, we get
A~ 1075 em2, (5.5)

which is consistent with recent observations [40, 41, 42, 43]. For such value of A, spacetime
becomes preponderantly transitive under ordinary spacetime translations.

Now, as is well known, in order to allow the formation of the cosmological structures
we observe today, the universe must necessarily have passed through a period of non-
accelerating expansion, which means that the cosmological term must have decayed to
a tiny value during some cosmological period in the past. The currently observed value
(5.5), however, indicate that the universe is presently entering an accelerated expansion
era. Even though the reason why the universe is entering this accelerated expansion is
an open question, the de Sitter special relativity leaves room for some speculations. For
example, although the total energy E = Ep — (1/41%)Ej is conserved, the translational
energy Er alone is not, in the sense that it can flow to Fx, and vice versa. As discussed
above, at the initial instant of the universe, characterized by the huge cosmological term
(5.1), most of the energy was in the form of conformal energy Ef, and Ep was very
small. As the A term decays and the universe expands, Ex flows to Ep, and the entropy
experience a continuous increase. This process can proceed until most of the energy is in
the form of translational energy, and the cosmological term acquires a very small value.

Then comes the point: the existence of the conformal degrees of freedom allows the
inverse process to occur without violating the energy conservation. In this process, Er
flows back to Ff, entropy begins decreasing, and the value of A would concomitantly
grow up. In fact, considering that the entropy S associated with the de Sitter horizon is

given by [44]
_ kp Ay 12

S = L s 5.6
4l%, Bl%, ( )

with kg the Boltzmann constant and Aj;, = 47l? the area of the horizon, a decrease in
the entropy would imply a decrease in the de Sitter pseudo-radius [, and consequently an
increase in the value of A = 3/12.* A possible source for this mechanism could be a loss
of information occurring in black holes, which could result in a decrease of the universe
entropy [46]. We reinforce that this mechanism turns out to possible just because there
are two notions of energy, which can be transformed into each other. Of course, the
details of these qualitative speculations have yet to be worked out, but they are anyway
useful for getting new insights on the physics underlying the de Sitter special relativity.

An interesting example of such new insight refers to the fact that an accelerated
expansion does not mean necessarily that the universe is breaking apart, but rather that

it is moving back towards its initial state, characterized by an infinite cosmological term.

4Notice that, in this context, the Boltzmann constant represents the entropy of a de Sitter spacetime
with [ = lp. It can be considered, in this sense, a quantum of entropy [45].
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As we have already discussed, such state is represented by a flat, singular cone-spacetime,
transitive under proper conformal transformations, in which all energy is in the form of
proper conformal current (or equivalently, in the form of dark energy). According to the
de Sitter relativity, therefore, in order to return to its initial state, the universe expansion
does not need to stop, and then contracts back. Instead, it is through an accelerated
expansion that the universe will be lead back to its initial state. We notice in passing
that this picture points to a cyclic view of the universe, with the timelike future singular,

conformal spacetime being identified with the initial state of the next era.
5.2 Photon Kinematics in de Sitter Relativity

According to quantum gravity considerations, high energies might cause small-scale
fluctuations in the texture of spacetime. These fluctuations could, for example, act as
small-scale lenses, interfering in the propagation of ultra—high energy photons. The
higher the photon energy, the more it changes the spacetime structure, the larger the
interference will be. This kind of mechanism could be the cause of the recently observed
delay in high energy gamma-ray flares from the heart of the galaxy Markarian 501 [6].
Those observations compared gamma rays in two energy ranges, from 1.2 to 10 TeV, and
from 0.25 to 0.6 TeV. The first group arrived on Earth four minutes later than the second.
Since de Sitter relativity gives a precise meaning to these local spacetime fluctuations,
it provides a precise high energy phenomenology, opening up the door for experimental
predictions.

With this in mind, let us consider a photon of wavelength A and energy E = hc/\.
Although the photons in a gamma-ray beam are not necessarily in thermal equilibrium,

we are going to use the thermodynamic expression [47]

72 (kT)*
= 5.7
T 15 (he) (5.7)
to estimate the photons energy density. Setting kT = FE, it becomes
n? E*
=— ——. 5.8
° 715 (he)? (58)

Substituting in Eq. (5.3) and using the fact that for a photon gas e = 3p, we obtain

873 R

~ £ 5.9
1582c2 B2 (5.9)

where Ep = \/c%h/G is the Planck energy. The corresponding de Sitter length parameter
is given by
[ =+/3/A. (5.10)
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To get an idea of the order of magnitude, we give in Table 1 the local values of [
and A for several photons with different wavelength \.> In the first line are the values
for a photon with energy of the order of the Planck energy. Gamma-rays (1) and (2)
correspond to the two observed gamma-ray flares from Markarian 501. For comparison

purposes, we give also the values for a visible (red) photon.

’ ‘ E (GeV) ‘ A (cm) ‘ [ (cm) ‘ A (cm™?) ‘
Planck photon | 1.2 x 109 | 1.0 x 10732 [ 9.7 x 10734 | 5.9 x 106
Gamma-ray (1) | 1.0 x 10* [ 1.2 x 10717 | 1.4 x 1073 | 2.8 x 10°
Gamma-ray (2) | 0.6 x 103 [ 2.1 x 10710 | 3.8 x 10~! [ 3.7 x 10!
Red light 1.8x1079 [ 7.0 x 107° | 4.5 x 102 [29x 10~

Table 5.1: Local values of I and A for several different photons.

Since the photons produce such A in the place they are located, we can assume that
they are always propagating in a de Sitter spacetime with that cosmological term.

5.2.1 Geometric Optics Revisited

In flat spacetime, the condition for geometric optics to be applicable is that

A<, (5.11)

where [ is the typical dimension of the physical system. Since the physical system is now
the local de Sitter spacetime produced by the photon, that dimension is given by the de
Sitter length parameter [. From Table 1 we see that, for a photon with wavelength of
the order of the Planck length, this condition is not fulfilled. However, for gamma-rays
(1) and (2), as well as for red light, condition (5.11) is fulfilled, which means that we can
use geometric optics to study their propagation.
In the geometric optics domain, any wave-optics quantity A which describes the wave
field is given by an expression of the type
A=be?, (5.12)
where the amplitude b is a slowly varying function of the coordinates and time, and the
phase ¢, the eikonal, is a large quantity which is almost linear in the coordinates and the

time. The time derivative of ¢ yields the angular frequency of the wave,
0 _,
o

5The values given in this table where update with respect to the ones given in [20], because the new
formula (5.9).

(5.13)
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whereas the space derivative gives the wave vector

9o

o=k, (5.14)

The characteristic equation for Maxwell’s equations in an isotropic (but not necessarily

homogeneous) medium of refractive index n(r) is

() - (5 o

which implies the usual relation

k? = n?(r) = (5.16)

Now, as is well known, there exists a deep relationship between optical media and
metrics [48|. This relationship allows to reduce the problem of the propagation of electro-
magnetic waves in a gravitational field to the problem of wave propagation in a refractive
medium in flat spacetime. Let us then consider the specific case of a de Sitter spacetime,

for which the quadratic line element ds? can be written in the form [21]
ds? = dr? — n*(E) 6;j dz'da?, (5.17)
where
n(E) = exp [\/TB T} , (5.18)
with 7 = ct. In these coordinates, the metric components are
go=9" =1, gij =—n’(E)d;, (5.19)
and the components of the “conformal” Ricci tensor is

Ry = — A"y, (5.20)

with A given by Eq. (5.9). It is then easy to see that, with the metric components (5.19),

the curved spacetime eikonal equation for a n = 1 refractive medium,

w00 0

ozt dxv

(5.21)

coincides formally with the flat-spacetime eikonal equation (5.15), valid in a medium of
refractive index n(r). For this reason, g;; is usually called the refractive metric, with

n(FE) playing the role of refractive index [10].
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5.2.2 Electromagnetic Waves in the Geometric Optics Limit

As already remarked, according to de Sitter relativity the photons produce a local de
Sitter spacetime in the place they are located. We can then assume that they are always
propagating in a de Sitter spacetime, with A given by Eq. (5.9). Let us then consider
the electromagnetic field equations in a de Sitter spacetime, restricting ourselves to the
domain of geometric optics. Denoting the electromagnetic gauge potential by A,, and

assuming the generalized Lorenz gauge V, A" = 0, Maxwell’s equation reads
OA* — Riy,, A =0, (5.22)

where [ = g)‘pVAVp. Substituting the Ricci tensor components (5.20), Maxwell equation
(5.22) becomes
OAF + A A* = 0. (5.23)

Although the term involving the cosmological constant looks like a background-dependent
mass for the photon field, this interpretation leads to properties which are physically
unacceptable [49]. In fact, as Maxwell equations in four dimensions are conformally
invariant, and de Sitter spacetime is conformally flat, the electromagnetic field must
propagate on the light—cone [50, 51], which implies a vanishing mass for the photon field.

Assuming a massless photon field, therefore, we take the monochromatic plane-wave
solution to the field equation (5.23) to be

A, = by explikq z], (5.24)

where b, is a polarization vector, and ko = (w(|k|)/c, — k) is the wave-number four-
vector, with w(|k|) the angular frequency. In order to be a solution of equation (5.23),

the following dispersion relation must be satisfied,

Cc

k)= K+ n2(E)A]Y? 2
wlh) = o (¥ +n?(E) 4], (5.25)
where we used the notation k = |k|. Considering that
1
L 5.6

with [ the dimension of the local de Sitter spacetime, and remembering that k ~ A7!,

the condition (5.11) for geometric optics to be applicable turns out to be

k> n(E)AY2. (5.27)
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In this domain, therefore, the dispersion relation (5.25) assumes the form
(5.28)

and the corresponding velocity of propagation of an electromagnetic wave, given by the

group velocity, is [52]

v=—0p :n(E) (5.29)

In the limit A — 0, which corresponds to a contraction from de Sitter to ordinary special
relativity, n(E) — 1, and there will be no effect on the photon propagation.
5.2.3 Application to the Gamma—Ray Flares

Let us consider now the propagation of gamma rays. Substituting the local cosmological

term (5.9) into the refractive index (5.18), we obtain

[ 8r3 E?
n(E) ~ exp [ BI2E By T

For the local de Sitter spacetime produced by a photon, the length 7 can be identified

. (5.30)

with its own wavelength A = he/E. Hence, we get

/3275 F

For energies small compared to Ep, we can write

3270 F
n(E) ~1+/ 42 o (5.32)

For a visible (red) electromagnetic radiation,

. (5.31)

Nred) = 1 +2.2 x 1077, (5.33)
For gamma-rays (1) and (2), we get, respectively,
nay~1412x107" and ngy~1+72x107'°. (5.34)

Taking into account that the velocity of each photon is given by Eq. (5.29), the time

difference At to travel a distance d will be

d
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Using the refractive indices (5.34), we see that, for a distance of 500 millions light—year,

which corresponds to d = 4.7 x 10?6 cm, the time difference will be
At ~ 178 s = 2.96 min. (5.36)

This is of the same order of magnitude of the observed delay between the two gamma ray

flares originated from the center of the galaxy Markarian 501 [6].
5.3 Compton Scattering

The conserved quantities 7 can be used to study the scattering processes subject to
invariance under the de Sitter group. An important property of the conserved charges is
that they are additive and its meaning for a multi-particle process is also well defined.
In a generic scattering process involving n particles we can use conservation of the de
Sitter energy and momentum to solve the dynamics of the process [53]. Additionally, we
can use separately the dispersion relation for each particle in the process once we can
treat them as free particles before and after the interaction. The system of equations

describing any scattering process is
n n
Z E; = Byt and Z T, = Total, (5.37)
% 7

with 7¢ = (E, m). Asymptotically, the electron dispersion relation is
E? =72 4 2, (5.38)
whereas the photon dispersion relation is given by
Ey, =1, (5.39)

As a simple, but illustrative example, we are going to use the above conservation laws
and the dispersion relation to study the scattering of a photon and an electron. To this
end, it is necessary to solve the energy and momentum conservation equations, which are

given by

E) + E® = Ep, + E. (5.40)
WI(J(;L) + 7Tr(30) = Tph + Te, (5.41)
with the superscript (90 denoting the initial energy and momentum. To begin with, we
recall that the electromagnetic field is conformal invariant. Considering that the de Sitter

spacetime is conformally flat, the energy of the photon in the de Sitter relativity is the
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same as in Minkowski spacetime. Namely, it is given by E,, = v. We then suppose that
initially (#+ = 0) the electron is at rest in the origin (z° = 0). In this case, the conservation
laws reduce to
1/2
W —v) + e = (w2 + pu2)" (5.42)

Tl']()(,)l) — Tpp, = T, (5.43)

where we have used the dispersion relation (5.38) for the electron in the first equation.

Squaring both equations and taking into account that 7T]2)h = 12, we obtain
(D —v) +pe)® = w4 p (5.44)
P4+ —200@coshd = =2, (5.45)

where 6 is the angle between the incident and the scattered photons. Adding u2 to both
sides of the second equation, and equating the left hand sides of both equations, we
obtain the following relation between the wavelengths of the incident and the scattered

photons:

: (1 —cosf) =X — A, (5.46)

This result resembles the standard one of ordinary special relativity,

1

— (1 —cosf) = A=\, (5.47)
Me

but with a crucial difference: the Poincaré mass m, is replaced by the de Sitter mass .,

which from Eq. (7.11) with s = 1/2 is found to be 6

5h? 5A2
2 _ 2 — 2 e
us =ms+ 12p = e (1 + 4l2> , (5.48)
where A\ = h/(mec) is the (reduced) Compton wavelength of the electron. We see from
this expression that, for [ of the order of A, the de Sitter corrections to the Compton
scattering turn out to be of the same order of the electromagnetic effect, and consequently

detectable. In terms of Planck length, on the other hand, we get

p2 =m? 1+i@ (5.49)

N € dag 12 )’ '
where ag = Gm?/(he) = m?2/m3 is the gravitational analog of the fine structure con-
stant, with mp the Planck mass. In the limit [ — oo, the eigenvalue p. reduces to the
mass me, and we recover the result of ordinary special relativity.

However, for small values of [, or equivalently, for large values of A, which according

5We re-insert now the fundamental constants # and ¢ to match the usual unities.
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to the de Sitter special relativity corresponds to high energy-density phenomena, the
corrections can be significant. For example, let us consider a high energy photon. Even
though the photons in a beam are not necessarily in thermal equilibrium, we can use the
thermodynamic expression [47]

2 E4

£ = 15 TP (5.50)

to estimate the photons energy density. Substituting in Eq. (5.9), we obtain

873 E*

~ e — 5.51
15h%¢? E3’ (5:51)

where Ep = /c®h/G is the Planck energy. In the extreme case of a photon with the
Planck energy E = Ep, the value of A in the region occupied by the photon will be

A ~10% cm—2, (5.52)

which corresponds to a de Sitter length parameter of order of the Planck length { ~ 1033

cm. In this case, the eigenvalue of the Casimir invariant turns out to be
2 2
He = Mp, (553)

and the Compton scattering expression assumes the form

h
mpc

(1—cosf) ~ -\, (5.54)

As expected, the Compton shift is very small: it will be at most twice the Planck length,

a value obtained when the scattering angle is 6 = 7.
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Chapter 6

Spin-2 Fields and Helicity

In this chapter, the different representations of Poincaré group are presented. We will
discuss the cases for massless particles where the concept of helicity turns to be the great
importance for the different representations [54|. Then we will focus in the case of spin
2, where we can have waves with helicity +1 or +2, and we will give arguments in favour

of the representations with helicity +£1.
6.1 Representations of the Lorentz group

For every field (or particle) of nature there exists a given representation of the
Poincaré group [55, 56|, the semi-direct product between Lorentz and the translation
groups. The eigenvalues of the translational generators define the mass of the field,
whereas the eigenvalues of the Lorentz generators define the spin of the field. The com-
mutation relations of the six Lorentz generators, which we denote here by a and b, can
be written in the form [27]

axa=ia (6.1)
bxb=1ib (6.2)
[ai,bj] =0. (63)

A general spin s representation of the Lorentz group can be constructed as either a
field transforming under an irreducible representation, or as a direct sum of irreducible

representations, each characterized by an integer or half-integer A and B, with
a’=A(A+1) and b*=DB(B+1). (6.4)

These representations are labeled by the numbers (A, B), where s = A+ B. The number

of components n of the representation (A, B) is

n=(24+1)(2B + 1). (6.5)
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For massless particles, which is the case we will be interested here,
c=B—-A, (6.6)

represents the helicity of the corresponding wave [57].

When A # B, the irreducible representation can be written as a direct sum of the
form (A, B) & (B, A), with the number of independent components given by 2n. The
simplest example is the (Lorentz invariant) spin-0 field ¢, which is associated with the

one-component representation (0,0). It satisfies the field equation’
Oo¢ =0, (6.7)

with O = n*” 0,0, the d’Alembertian operator. The most fundamental representations,
however, are the spinor representations. The (1/2,0) representation has spin 1/2 and
describes a (let us say) left-handed Weyl spinor. The (0, 1/2) representation describes a
right-handed Weyl spinor. The linear combination

(1/2,0) @ (0,1/2) (6.8)

describes a Dirac spinor. The reason why the spinor representations are the most funda-
mental is that they can be used to construct, by multiplying them together, any other

representation of the Lorentz group.
6.2 A Warming Up Example: The Massless Spin-1 Field

In order to get some insight on the theory of representations, as well as on the
corresponding wave equations, let us review the well-known case of a massless vector

field.

6.2.1 Potential waves

The first way to construct a spin-1 representation is to consider the direct product
(1/2,0) ®(0,1/2) = (1/2,1/2), (6.9)

where (1/2,1/2) describes a spin-1 field with n = 4 components. The electromagnetic

vector potential A, transforms according to this representation, and in the Lorenz gauge

'We use the Greek alphabet p, v, p,--- =0,1,2,3 to denote indices related to spacetime, also known
as world indices. The first half of the Latin alphabet a,b,c,--- = 0,1,2,3 will be used to denote
algebraic indices related to the tangent spaces, each one a Minkowski spacetime with metric 1. =
diag(+1,-1,-1,-1).
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0" A, = 0 satisfies the wave equation
0A, = 0. (6.10)
The solutions to this equation represent waves with helicity o = 0.

6.2.2 Field strength waves

A second way to construct a spin-1 representation follows from the direct product
(1/2,0) ® (1/2,0) = (1,0) @ (0,0). (6.11)

The representation (1,0) can be identified with an antisymmetric, self-dual second-rank
tensor. Analogously, the representation (0,1) can be identified with an antisymmetric,
anti self-dual second-rank tensor. The representation that describes a parity invariant
2-form field is, consequently,

(1,0) @ (0,1). (6.12)

The electromagnetic field strength F,, = d,A, — 0,4, with n = 6 components, trans-

forms under this spin-1 representation. It satisfies the dynamical field equation
o, FH =0, (6.13)
which follows from the lagrangian
L=—1F,Fm". (6.14)

In terms of the potential A,, and in the Lorenz gauge, the field equation (6.13) coincides
with the potential field equation (6.10).

If an electromagnetic wave has helicity ¢ = +1, it cannot be described by a solu-
tion of the wave equation (6.10) because the electromagnetic potential A, lives in the
representation (1/2,1/2), which describes waves with helicity zero. Rather, it must be
identified with the solution of the wave equation (6.13). In fact, since F),, lives in the
representation (0, 1)@ (1,0), its solution will represent waves with helicity o = £1. Iden-
tifying the electric and magnetic components of the electromagnetic field, respectively,
by

E'=F" and H'=1é*Fy, (6.15)

the field equation (6.13) is found to be equivalent to

OE=0 and OH =0, (6.16)

where E = (E') and H = (H'). Electromagnetic waves are solutions to these equations.
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As such, they are not potential waves, but field strength waves.
6.3 Massless spin-2 field

6.3.1 Potential waves

The first way to construct a spin-2 representation is to consider the direct product [58]
(1/2,1/2) @ (1/2,1/2) = [(1,1) @ (0,0)]s & [(0, 1) & (1,0)]a, (6.17)

where the subscripts s and a denote, respectively, the symmetric and the anti-symmetric
parts of the direct product. Such representation corresponds to the components of a
translational-valued 1-form ¢, = %, P,, with 16 components. Conceptually, it is equiv-

alent to a linear perturbation of the tetrad,
ht, = e, + ¢y, (6.18)

with e, a trivial background tetrad related to the Minkowski spacetime [10]. As such,
it satisfies the condition d,e%, = 0. In the so-called harmonic gauge, in which the field

satisfies
0", = 0" (") — %eauﬁp) =0, (6.19)

where ¢ = e, the field equation for ¥*, assumes the form
Oy, = 0. (6.20)
This theory, as can be easily verified, is invariant under the gauge transformations
P, =Pty — D,EY, (6.21)

with £* an arbitrary parameter. From the sixteen original components of ¢%,, the four
coordinate conditions (6.19) and the four constraints implied by the gauge transforma-
tions (6.21) eliminate eight components. The invariance of the field equation (6.20) under

local Lorentz transformations,

W, = A%, (6.22)

eliminates the additional 6 components of ¥%,, reducing the number of independent
components to only two, as appropriate for a massless field.

In the study of gravitational waves, however, one usually assumes them to be repre-
sented by a symmetric second-rank tensor ¢, = ¢,,, in which case the representation

on the right-hand side of (6.17) reduces to the 10 components representation
(1,1) & (0,0). (6.23)
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Conceptually, this field is equivalent to a linear perturbation of the metric,

G = N + Puvs (6.24)

with 7, the background Minkowski metric. In harmonic coordinates, in which the field
satisfies the condition

oYt = 0" (") — %5NV@) =0, (6.25)

the field equation is found to be
U, = 0. (6.26)

This theory, as is well known, is invariant under the gauge transformations

%V = %u - ,ugu - 81/5;;7 (6.27)

with £, an arbitrary parameter. The four coordinate conditions (6.25) and the four
constraints implied by the gauge invariance (6.27) reduce, as appropriate, the original
ten components of 1, to only two.

In Minkowski spacetime, v, and 1, are related by

%w = ea,uway + eay¢au- (628)

It is then easy to see that in this case their field equations, given respectively by
Egs. (6.26) and (6.20), are completely equivalent. This means that the potentials 1,
and 14, describe equivalent free theories. When coupled to gravitation, however, they
are no longer equivalent. In the last section we will be back to this point.

6.3.2 Field strength waves

Differently from the electromagnetic field, there are two ways of constructing field strength
waves for a fundamental spin-2 field. One of them has helicity ¢ = £1 and the other has

helicity 0 = £2. In what follows we explore in details each one of them.

Helicity ¢ = +1 waves

Let us consider the spin-2 representation that comes from the direct product
(1/2,1/2) @ [(1,0) @ (0,1)] = [(3/2,1/2) @ (1/2,3/2)] & ..., (6.29)

where the dots represent additional terms that can be eliminated by the imposition of
supplementary conditions. By construction, it describes a vector-valued 2-form with

twenty four components. As a matter of fact, it describes the Fierz tensor F " [59],
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which is the excitation 2-form of a fundamental spin-2 field. It satisfies the field equation
O, F " =0, (6.30)

which can be obtained by linearizing the potential form [60] of Einstein equation in the
tetrad formalism.

A much simpler way to approach the Fierz—Pauli formulation of a spin-2 fundamental
field is to note that it is similar to the teleparallel equivalent of general relativity. In
fact, the field equation (6.30) follows quite naturally from linearizing the gravitational
equation of teleparallel gravity [61]. In this context, the Fierz tensor is easily seen to be
given by

Fol' =es” KM, + e ey Fb”p —eq” ey’ Fb“,,7 (6.31)

where
Kk, = % (eg” F*#, 4 e, F M — et %)) (6.32)

is a contortion type tensor, with
F = 0up®y — 009y (6.33)

a torsion type tensor which represents the spin-2 field strength. Its lagrangian is, ac-

cordingly, given by the teleparallel-type lagrangian
L=3FM"F. (6.34)

Analogously to the electromagnetic case, in the harmonic gauge (6.19), the field
equation (6.30) reduces to the field equation (6.20) for the potential ¢°,. Following the
same analogy, we can define the gravitoelectric and the gravitomagnetic components of

the gravitational field, respectively, by [62]
EY =F and H" =1ekFa,. (6.35)
Equation (6.30) is then found to be equivalent to
OFE“=0 and OH"=0, (6.36)

where E* = (E%) and H® = (H®). Owing to the fact that E* and H® are components
of F®V which is a field that lives in the representation (1/2,3/2) @ (3/2,1/2) of the
Lorentz group, the solutions to the equations (6.36) represent spin-2 waves with helicity
o= =*1.
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Helicity ¢ = +2 waves

Another spin-2 representation can be constructed by considering the direct product
[(0,D) @ (L,0)]®[(0,1) & (1,0)] = [(0,2) & (2,0)] & ... ., (6.37)

where again the dots represent additional terms coming from the direct product. As is
well known, this representation describes a fourth rank tensor which is antisymmetric
within each pair of indices, and symmetric between the pairs. It represents actually
the twenty components of a Riemann type tensor R”y,, constructed out of the second

derivatives of the symmetric field ¢,
Rz = Ol ny — 0,17 5y, (6.38)

with
Fp)u/ = %npa (BAQOVU + 81/90)\0 - 80(;(7)\1/) . (639)

Defining the Ricci-type tensor Ry, = R”),,, the curvature wave is found to satisfy the
Einstein—type equation
Ry =0, (6.40)

which in harmonic coordinates reduces to the potential field equation (6.26), that is,
U = 0. (6.41)
As is well known, it follows from the Einstein-Hilbert—type lagrangian
L=-R=-1"Ry. (6.42)

Due to the fact that R?),, lives in the representation (0,2) @ (2,0) of the Lorentz group,
the solution of the equation (6.40) describes spin-2 waves with helicity o = £2.

Up to a surface term, the lagrangian (6.42) is equivalent to the teleparallel-type
lagrangian (6.34). The presence of this surface term is related to the fact that R depends
on second derivatives of 1),,,. For the same reason, the field equation (6.40) does not
involve derivatives of the curvature tensor. The curvature-like tensor R” ), , therefore,
is a derived geometrical entity which does not have its own dynamics: its propagation
is simply a consequence of the dynamics of the potential v,,. This is different from
the electromagnetic case, whose field strength F*¥ satisfies a dynamical equation. It is
also different from the Fierz—Pauli (or of the teleparallel) formulation of gravity, whose

excitation 2-form F, "V, satisfies a dynamical equation.
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Chapter 7

Invariant Field Equations

We see from generators (2.57) that the de Sitter spacetime is transitive under a com-
bination of translations and proper conformal transformations [19]. The replacement of
Minkowski by de Sitter as the spacetime representing absence of gravitation, therefore,
naturally changes the group governing the spacetime kinematics: instead of Poincaré,
it turns out to be the de Sitter group. Since the latter includes the proper conformal
transformations, the field equations obtained from the first Casimir operator of the de
Sitter group are proved to be conformal invariant [63]. In this section we are going to de-
velop the formalism, as well as obtain the conformal invariant field equation for a general

massless bosonic field ¥ with helicity o.
7.1 Conformal Transformations

Under a conformal re-scaling of the metric tensor,
T = 0? s (7.1)
with Q = Q(z) the conformal factor, a general field ¥ transforms according to
T =07y, (7.2)

where d is a matrix that multiplies every Fermi field by 3/2 and every Bose field by 1,
and 7 is a real number that depends on the spin s of the field [64]. For fermions, it is

given by 7 = 2(s — 1), in which case we obtain
¥ =360 g, (7.3)
For bosons, on the other hand, it is given by 7 =s — 1, which yields

T =0"tw (7.4)
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The power of €2 is known as the conformal weight w of the field W. A scalar field has
conformal weight w = —1, a vector field has w = 0, and a spin-2 field has w = 1. The
corresponding conformal transformations of massless fields are obtained by replacing the
spin s with the helicity o of the field.

7.2 Casimir Operator and Field Equations

When acting on a general field ¥, the first Casimir invariant of the de Sitter group is

. 1 ..
Cis = o 2 nBP Jap Jop, (7.5)

where
Jap = Lap + Sas, (7.6)

with L 4p the orbital generators and Sap the matrix spin generators appropriate for the

field ¥. In terms of the stereographic coordinates, it assumes the form

. 1 . s 3
Cis = _ﬁ (77&5 77’Y(S Jow J55 - 277&6 J4oc<]45) : (7'7)

Substituting the relations

Joy = Loy + S0y and  Jy, =1L, + 3,), (7.8)
it becomes
. 1 /. N oA A A A . N
cdsz—ﬁ(L2+L-S+S-L+52)+H2+H.E+E.H+22. (7.9)

For particles belonging to representations on the principal series, the eigenvalues Cyg

of the Casimir operator Cyg are given by [32]

1
Cas = —m? + 7 [s(s+1)—2], (7.10)

with m the mass and s the spin of the field. In the massless case, instead of the spin s,
the eigenvalue is written in terms of the helicity o of the field:

cdszl%[a(aﬂ) 9. (7.11)

Using the identity CAdS\IlmmHU = CasV ;... 4y, the massless field equation is then found to
be

4 R
Cas¥py.py = T lo(c+1) = 2]%,, . 4, (7.12)

with R the scalar curvature of the de Sitter spacetime, given by Eq (2.53). The kinematic
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generators L and II, given by Eqs. (2.56) and (2.57), are the same for all fields. The
matrix generators S and i, on the other hand, depend on the spin of the field and are
consequently different for fields with different spins.

Now, similarly to the Minkowski case, the Casimir operator of the de Sitter spacetime
gives rise to field equations already in the Lorenz gauge. Since the Lorenz gauge is not
conformal invariant, the massless version of the field equation (7.12) is not conformal
invariant either. It is then necessary to re-introduce the Lorentz gauge into the field
equation. This can be done by adding a Lorenz gauge term, such that the massless field

equation becomes

R R
CdS‘I’m...ua + avuavp\l/m...uo_lp = 12 [o(c+1) — 2]\11/11...;157 (7.13)

with a given by [65]
20
= — 7.14
¢ o+1 (7.14)

and V,, the covariant derivative in the Christoffel connection (2.51). This is the conformal
invariant field equation in de Sitter spacetime. Considering that it is covariant, if it is
true in de Sitter spacetime, it will be true in any pseudo-Riemannian spacetime with

non-constant curvature.
7.3 Examples: Scalar and Vector Field Equations

As an illustration, we are going to obtain in this section the well-known conformal
invariant equations for the scalar and the vector fields. First, however, it is necessary to
obtain the explicit form of the matrix representations gag and 3, for the scalar and the

vector cases.

7.3.1 Matrix Representation of the Conformal Transformation

The matrix representation of the conformal transformation can be obtained from the

vanishing of the Lie derivative along the de Sitter Killing vectors,
(,CXg)ag = X”’c%gag + 804X’Yg"yﬁ + 85X7g,ya =0, (7.15)

where gop is the de Sitter metric (2.24). In this expression, X7 is either the Lorentz
Killing vector
L7 = eaﬁLzaﬁ) =B (nm;x‘ség - 77551:553>, (7.16)

or the de Sitter “translation” Killing vector

I = 1eO‘L7

o 1
7€ Hlaa) =€ [52 — —(2nasa’z” — 0253)}, (7.17)

412
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with € = —€#® and € the ten parameters of the de Sitter group. They satisfy the

algebra
[Lap)s L)) = N7 Lias) + NasL(sy) = M55 Lian) — NavLiss) (7.18)
1
(M), )] = 7 Lias) (7.19)
where
Liag) = L]p50y = Nlas2’ g — npsz’ D (7.20)
and . ,
U@ =7 L1py0y = Oa — P (2005227 — 0267)0,. (7.21)

In order to obtain the matrix representations appropriate for vector field ¢, it is
necessary to compute the Lie derivative of the field along the direction of the de Sitter

Killing vectors. These derivatives are given by

0oy = (Lrd), = eaﬁL(Vaﬂ Dy + €79 Loy B (7.22)
and
5H¢,u = (£H¢)u - eaH’y 7¢;}, + €*0 H? )Q[) (723)

The first term on the right-hand side of these two equations represent the action of the
orbital generators. The last term, on the other hand, represent the action of the spin

matrix generators. From these terms, therefore, we get the matrix representations

(Saﬁ)uvgf’v = 3#%@% = (Napdp” — nguda”) by (7.24)
and )
(Ba) oy = OMI'['(Y&)gb7 = 272(%53:55&7 — Napt”! — na/gxﬁéﬂ)gbfy. (7.25)

Equation (7.24) is the usual spin-1 representation of the Lorentz group. Equation (7.25) is
the matrix representation of the proper conformal transformations. In the flat spacetime
limit [ — oo this representation vanishes, a result consistent with the fact that ordinary
translations do not have matrix representation.

In the case of a scalar field ¢, the Lie derivative along the direction of the de Sitter

Killing vectors are given by
016 = Lo = L] 50y +0 (7.26)

and
bt = Lt = 117, 0,0, + 0. (7.27)

From these expressions we see that both the Lorentz and the conformal spin matrix
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representations for a scalar field vanish:
(Sap)’@=0  and  (3a)."¢=0. (7.28)

7.3.2 The Scalar Field

For a scalar field ¢, for which S'gb =0 and f](b = 0, the Casimir operator (7.9) reduces to

. 1.y 1
Cug = —ﬁﬁ + 112 = Q279,05 + 7 QO 1290, (7.29)

As a simple inspection shows, it can be rewritten in the form
Cas = g*PV, Vs =0, (7.30)

with V, the covariant derivative in the Christoffel connection (2.51), and O the corre-
sponding Laplace-Beltrami operator for a scalar field. For ¢ = 0, therefore, the field
equation (7.13) for ¢ is found to be

Ol — §¢ 0, (7.31)

where R is the scalar curvature of the de Sitter spacetime. Although obtained in de
Sitter spacetime, since it is invariant under general coordinate transformations, it will be
true in any pseudo-Riemannian spacetime with non-constant curvature. In this case, as

is well known, it represents the conformal invariant equation for a scalar field.

7.3.3 The Vector Field

Using the kinematic generators (2.56) and (2.57), as well as the vector matrix generators

(7.24) and (7.25), the Casimir operator (7.9) for this specific case assumes the form

5 9w Ot 01 1
(Cas)u” =9 277 'Baoﬁ[géu” + l—z(.W@u — nu,\n”’pzAﬁp) + 1725#7 — 2—1477,1,\:5\1‘7. (7.32)
As a simple inspection shows, it can be rewritten in the form
(Cas)) =06, =R, (7.33)

where [ = gaﬁvavg is the Laplace-Beltrami operator, and R,” is the Ricci curvature
tensor (2.53). Therefore, for s = 1, the field equation (7.13) for A, is found to be

OA, — R, A, - V,VTA, =0, (7.34)
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Using the identity
R Ay =[V7,V,]A,, (7.35)

it can be rewritten in the form
DAM — V”VMAV =0. (7.36)

This is the gravitationally coupled Maxwell equation. As is well known, it is conformal

invariant. In terms of the field strength F),,, it reads

V,F* = 0,(/—gF*) =0, (7.37)
with g = det(gu).
7.4 Conformal Invariant Spin-2 Field Equation

The dynamics of a fundamental spin-2 field in Minkowski spacetime is expected to co-
incide with the dynamics of a linear perturbation of the metric (,,, around flat spacetime
[66]:

Guv = M + Cuv- (7.38)
For this reason, a fundamental spin-2 field is usually assumed to be described by a
symmetric, second-rank tensor (., = (,,. However, there are some problems with this
assumption. First, if a spin-2 field were defined as a perturbation of the metric, its
conformal transformation would coincide with the metric transformation (7.1), and con-
sequently it would have a conformal weight w = 2. But, according to the general trans-
formation (7.4), a spin-2 field should have conformal weight w = 1. A possible solution
to this problem is to introduce a scalar field ¢, and assume that the metric perturbation

Cuv and a fundamental spin-2 field ¢, are related by

Puv = ¢C,uz/- (7.39)

This is actually a matter of necessity because, in addition of presenting the correct field

dimension, ¢,,,, has conformal weight w = 1, as appropriate for a spin-2 field:
Puvr = Q. (7.40)

Let us then construct the Casimir operator for the spin-2 field ¢,,. It is given by

A v 1 T v o
(Cas)ly = =55 0P (Jac), (JBD)os (7.41)

where generators with four indices are the spin-2 generators. Like in the spin-1 case,
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these generators can be decomposed in orbital and spinorial parts,

(Jap)hy = (Lap)1 + (Sap)hy (7.42)

The orbital generators are the same for all fields, and is just
(Lap)h% = (Lap)dh o%. (7.43)

On the other hand, the spinorial generators are obtained by summing two spin-1 repre-

sentations, one for each index of ¢,
(Sap)hy = (Sap)h 0y + (SaB)y o, (7.44)

where the generators with fwo indices are the spin-1 generators. In terms of these gen-

erators, the Casimir operator (7.41) assumes the form

(Cas)hly = —T;UABUCD [(LAC)(LBD)5“55 + (Lac)(SBp)a 05 + (Lac)(Sep)j 0
+2(Sac)a(Lp)dj + 2(Sac)j(Lep)dk + (Sac)y (SBD)7 s
+(Sac)y(SBp)d 05 +2(Sac)a(Sep)j|-(7-45)

Like in the previous case, all terms in the right-hand side that involves an orbital gen-
erator L oo will contribute to the Laplace-Beltrami operator of the field. On the other
hand, terms involving two spin generators Sac will contribute with a non-minimal cou-
pling between the field and the spacetime curvature. More specifically, those bearing
one Kronecker delta will contribute with terms involving the Ricci tensor. Since the last
term does not involve any Kronecker delta, it can only contribute with a term involving
the scalar curvature. Substituting then the representations (7.20, 7.21, 7.24, 7.25), after
a long but straightforward calculation, Eq. (7.45) can be shown to reduce to

(Cas)iy = D68, — 2 R (0} —

B
v) 7R5(u5

2
v) + 3 R(“V) ga’B, (7.46)

with the parentheses indicating symmetrization with a factor 1/2.
As already mentioned, the Casimir approach gives rise to field equations in the Lorenz

gauge. Taking into account that, in the spin-2 theory, it is the combination
Y, =ty — %(5#1/()0[);7 (747)

that satisfies the Lorenz gauge (has vanishing covariant derivative), we assume that the
Casimir approach yields field equation for ¥*,,. Furthermore, the field excitation 2-form of
a symmetric second-rank potential ¥*,, is a curvature-like tensor Raﬁw, which is nothing

but the linearized Riemann tensor written in terms of ¥*,. Since RB uv belongs to the
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representation (2,0) @ (0,2) of the Lorentz group, such field excitation describes waves
with helicity o = £2. Considering the case of a traceless field, ¢ = §%g Yo =0, it is
then an easy task to verify that, for the Casimir operator (7.46), the field equation (7.13)

with o = 2, yields in this case

4 o o 1
Ut — 3 V(MV ¢ay) —2R (u ¢ay) + 5 R, = 0. (7.48)
Using the identity

[v(;u va]wau) = _Ra(uwau) + Ra(ufyu) wa77 (749)

it can be rewritten in the form

4. 2 4 1
D¢pu - § \Y V(,ﬂﬂau) - § R (uwau) - g R ,u’yu ¢a’y + 6 R¢;w =0. (7'50)

Although obtained in de Sitter spacetime, owing to its covariance, it holds also in any
pseudo-Riemannian spacetime with non-constant curvature. It represents, therefore, the

conformal invariant field equation for a symmetric second-rank tensor [67, 65].
7.5 Consistency Problems, and a Possible Solution

Although conformal invariant, the field equation (7.50) has consistency problems. In

fact, it is not invariant under the transformations

ww/ - ¢uu - augu - 8u5ua (7.51)

usually called gauge transformations. As a consequence, it is not possible to remove
all spurious components of the field, and it turns out to involve more components than
necessary to describe a massless field |68, 69]. On the other hand, a symmetric second-
rank tensor is not the only way to represent a spin 2 field. In fact, it can also be

represented by a 1-form assuming values in the Lie algebra of the translation group [54],
G = Cau P, (752)

with P, = 0, the translation generators. This second possibility is related to the existence
of the metric and the tetrad representation of gravity: whereas ¢, is conceptually similar

to a perturbation of the metric, (%, is conceptually similar to a perturbation of the tetrad,

ht, =€, + Cauv (7'53)
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with e?, a trivial tetrad representing the Minkowski spacetime. Like before, the variable

representing a fundamental translational-valued 1-form is

o" = ¢ (%, (7.54)

with ¢ a scalar field.

Let us then use the Casimir approach to obtain the conformal invariant equation for
Py =% — %halﬂpa (7.55)

with ¢ = h.p°,. We begin by noting that, similarly to the electromagnetic field, 1%,
has conformal weight w = 0:
P, =%, (7.56)
Considering that ¢, = 9%, P, is ultimately a (translational-valued) vector field, the
Casimir operator (7.9) for ¢, coincides with that for a vector field:
-1 -1

. Q 0
(Cas)u” = Q0P 06050, + =5 (2" 0y — nuanPa0,) +

1 v
& B Nz z”. (7.57)

5,]‘—274

In terms of the Laplace-Beltrami operator acting on ), it assumes the form
(Cas) "ty = Oy — R, (7.58)
where R,” is the Ricci curvature tensor (2.53). Substituting the identity
R, 1, = [V, V], (7.59)

it becomes
(édS)uV¢au = Dwau - vyvu¢au + vuvy¢au7 (7'60)

where we have re-introduced the algebraic index of ¥%,. Then comes the point: the
excitation 2-form of the translational-valued 1-form %, is the Fierz tensor F,*” [59],
which is also a field assuming values in the Lie algebra of the translation group [61]. Since
it belongs to the representation (1/2,3/2)® (3/2,1/2) of the Lorentz group, it represents
spin 2 waves with helicity ¢ = £1. In this case, the field equation (7.13) with ¢ = 1
yields

Oy®, — VYV, 0%, =0. (7.61)

Using the transformation (7.56), it is easy to see that this equation is conformal invariant.

Furthermore, it is invariant under the gauge transformations

WV — ¢au - VEa’ (7.62)
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and consequently it is able to eliminate the spurious components of 1%, , remaining with
the correct number of components to describe a massless field.

One may wonder why the theory for 1, results inconsistent, whereas the theory
for ¢%, turns out to be consistent. The reason is related to their different structure
of the indices: whereas spacetime indices has to do with gravitation, the translational
algebraic index has to do with inertial effects of the frame only, not with gravitation [70].
As a consequence, the gravitational coupling prescription will be different for each case:
whereas the coupling prescription of 1, will include a connection term for each index of
the field, the coupling prescription of 1%, will include a connection term for the spacetime
index, but not for the algebraic (or gauge) index. This difference between the two cases
is the responsible for rendering the theory, consistent in one case, but inconsistent in the

other case.
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Chapter 8

Conclusions

8.1 de Sitter Relativity

The de Sitter special relativity emerges when one adds an invariant length parameter
[ to the kinematics of the Poincaré group [28, 29]. Since the de Sitter group has Lorentz
as subgroup, the introduction of such length scale does not imply that Lorentz symmetry
is broken. Rather, it is spacetime translations that are violated, leading to new notions
of energy and momentum. These new notions are given by a combination of translations
and proper conformal transformations. As a consequence, the source of total spacetime
curvature turns out to be a combination of energy-momentum and proper conformal
currents: whereas the energy-momentum tensor 7}, appears as source of dynamic curva-
ture, the proper conformal current K, appears as source of the local de Sitter spacetime,
which is necessary to comply with the local kinematics, now governed by the de Sitter
group |[20].

When applied to the whole universe, de Sitter general relativity is able to predict,
from the current matter content of the universe, the value of A for the universe [36]. It
gives, furthermore, an explanation for the cosmic coincidence problem. When applied
to study the propagation of ultra-high energy photons, it gives a good estimate for the
recently observed delay in high energy gamma-ray flares coming from the center of the
galaxy Markarian 501 [6]. If this delay is a manifestation of the small-scale fluctuations in
the texture of spacetime, predicted to exist at very high energies, de Sitter relativity can
be seen as a new paradigm to approach quantum gravity. Of course, the experimental
evidences of the above delays are still very fragile. Independently of this fact, de Sitter
general relativity predicts the existence of such delay. It is important to mention that
the energy of these gamma rays are far away from the Planck energy. However, since
the de Sitter-induced interference on their propagation are cumulative, it gives rise to
measurable effects.

Concerning the Compton scattering [53], owing to the fact that the de Sitter kine-

matics involves an invariant length parameter, a gravitational contribution is naturally
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introduced into the expression describing the electromagnetic effect. In this case, how-
ever, the effect is not cumulative, and consequently will become relevant only at energies
near the Planck scale, where quantum gravity is expected to be in action. In fact, at
this energy scale, all masses become negligible, and the Compton scattering expression
appears with the Planck mass replacing the electron mass, which makes the Compton
shift very small. It is interesting to remark that, due to the fact that the de Sitter
eigenvalues (7.11) vanish for the case of the electromagnetic field (m = 0 and s = 1),
the de Sitter relativity produces no changes in the photon-photon scattering. This is
an expected result because electromagnetism is conformal invariant, and the de Sitter
spacetime is conformally flat.

A crucial property of de Sitter general relativity is that, since neither energy-momen-
tum nor proper conformal currents is individually conserved, energy-momentum can be
transformed into proper conformal current, and vice-versa. Such mechanism yields a
natural scenario for an evolving cosmological term. In fact, from a huge primordial A,
in which most of the universe energy was in the form of dark energy, the cosmological
term is then found to evolve according to the matter content of the universe, as given
by the relation (4.33). After a decaying process, in order to allow the formation of
the cosmological structures we see today, the universe has necessarily passed through
a period of non-accelerating expansion, which means that the cosmological term must
have assumed a tiny value during this period. Recent observations, however, indicate
that the universe is presently entering an accelerated expansion era. This means that
the energy-momentum current is transforming back into proper conformal current, which
produces an increase in the value of the cosmological term. This mechanism is possible
because, according to the de Sitter special relativity, an increasing A makes the usual
notions of time and space gradually fade away, until they completely disappear at the

Planck scale, where only their conformal counterparts exist.
8.2 Spin-2 and Conformal Invariant Equations

Minkowski is a homogeneous space, transitive under spacetime translations, whose
kinematics is ruled by the Poincaré group. The first Casimir operator of the Poincaré
group yields the d’Alembertian operator in Minkowski spacetime. When equaled to
its eigenvalue, it gives rise to the Klein-Gordon equation. The de Sitter spacetime is
also a homogeneous space, but transitive under a combination of translations and proper
conformal transformations. The simple replacement of Minkowski by de Sitter, therefore,
naturally introduces the conformal transformations in the spacetime kinematics. Due to
this property, the first Casimir operator of the de Sitter group, when equaled to its
eigenvalue, gives rise to conformal invariant equations for any massless field [63]. One

has just to use the appropriate representations for each field. Since these equations
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are covariant, and true in de Sitter, they will also be true in any spacetime with non-
constant curvature. We can then say that this procedure constitutes then a new method
of obtaining conformal invariant field equations.

Using this approach, we have initially obtained the well-known conformal invariant
equations for scalar and vector fields. We have then turned to the spin-2 case. First,
we have found the conformal invariant equation for a symmetric second-rank tensor v,
which is given by the field equation (7.50). The field excitation 2-form in this case is a
curvature-like tensor R*? uv Written in terms of the the potential v,,,. Since this field exci-
tation belongs to the representation (2,0)@® (0, 2) of the Lorentz group, it describes waves
with helicity o = £2. Although conformal invariant, however, the field equation (7.50)
has consistency problems. In fact, it is not gauge invariant, and consequently involves
more independent components than necessary to describe a massless field [68, 69].

On the other hand, a symmetric second-rank tensor is not the only way to represent a
spin-2 field. As a matter of fact, it can also be represented by a 1-form assuming values in
the Lie algebra of the translation group, ¥, = ¥%, P,, with P, the translation generators.
The excitation 2-form in this case is the Fierz tensor F,*”, which is a field that belongs
to the representation (1/2,3/2) @ (3/2,1/2) of the Lorentz group. As such, it represent
spin 2 waves with helicity o = £1 |54]. Relying on this interpretation of a spin 2 field,
we have used the Casimir operator method to obtain the conformal invariant equation
for the translational-valued 1-form v%,, which is given by Eq. (7.61). In addition to
be conformal invariant, it is gauge invariant, and consequently fully consistent. These
results may be seen as an evidence that a spin-2 field should be interpreted, not as a a
symmetric second-rank tensor with helicity ¢ = +2, but as a translational-valued vector
field with helicity o = +1.

On the other hand, when a spin-2 field is considered to be a 1-form assuming values
in the Lie algebra of the translation group, and the teleparallel coupling prescription
is applied to the field equation (6.30), a sound and consistent gravitationally-coupled
spin-2 field theory emerges 70|, which is quite similar to the gravitationally-coupled
electromagnetic theory. The reasons behind such consistency are twofold. First, since
the index “a” of the translational-valued potential %, is not an ordinary vector index,
but a gauge index, it is irrelevant for the gravitational coupling prescription. This con-
trasts with the usual metric approach, which considers both indices of ¢, on an equal
footing. As a result of this difference, whereas the gravitational coupling coupling of
1)?, keeps the gauge invariance, the gravitational coupling coupling of 1, is found to
break the gauge invariance of the theory. Furthermore, owing to the fact that the spin
connection of teleparallel gravity represents inertial effects only, not gravitation [71], the
corresponding covariant derivative commutes, and no unphysical constraints are imposed
on the geometry of spacetime.

Put together, the above facts can be considered a compelling evidence favoring the
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Fierz-Pauli approach (or equivalently, the teleparallel approach) to a fundamental spin-
2 field, and consequently the interpretation of spin-2 waves as helicity ¢ = +1 waves
[54]. However, since the concept of helicity can only be defined at the linear level [72],
and taking into account that gravitational waves are essentially non-linear [73], it is not
clear whether the concepts related to a fundamental spin-2 field can be automatically
extended to gravitational waves. Even if the linear approximation to the gravitational
waves theory makes physical sense, it can always be corrected by higher-order terms, in

which case the very notion of helicity would be lost.
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