
UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO”

FACULDADE DE ENGENHARIA

CAMPUS DE ILHA SOLTEIRA

EVANDRO CATELANI FERRAZ

Optimization Models for Majority Logic Synthesis

Ilha Solteira

2022

EVANDRO CATELANI FERRAZ

Optimization Models for Majority Logic Synthesis

Thesis presented to the Faculdade de Engen-

haria – UNESP – Campus de Ilha Solteira as

part of the necessary requirements to obtain the

PhD title in Electrical Engineering. Knowledge

Area: Automation.

Prof. Dr. Alexandre César Rodrigues da Silva

Supervisor

Ilha Solteira

2022

Ferraz Optimization Models for Majority Logic SynthesisIlha Solteira2022 78 Sim Tese (doutorado)Engenharia ElétricaAutomação Não

FICHA CATALOGRÁFICA

Desenvolvido pelo Serviço Técnico de Biblioteca e Documentação

Ferraz, Evandro Catelani.
Optimization models for majority logic synthesis / Evandro Catelani Ferraz. -

- Ilha Solteira: [s.n.], 2022
76 f. : il.

Tese (doutorado) - Universidade Estadual Paulista. Faculdade de Engenharia
de Ilha Solteira. Área de conhecimento: Automação , 2022

Orientador: Alexandre César Rodrigues da Silva
Inclui bibliografia

1. Lógica majoritária. 2. Otimização linear. 3. Solucionadores de otimização .

F381o

ACKNOWLEDGMENTS

I thank my family, Marcos, Elis and Ana for all their support.

I thank my brother, Murilo, for his empathy and companionship.

I thank my partner, Aline, for all the words of encouragement, company, and moments

of joy.

I thank my supervisor, Prof. Alexandre, for all the teachings and advice during this

6 years working together.

I thank all those who, directly or indirectly, contributed to the development of this

work.

I am grateful for the support of the Coordenação de Aperfeiçoamento de Pessoal de

Nı́vel Superior - Brasil (CAPES) - Financing Code 001.

RESUMO

Neste trabalho apresenta-se o algoritmo 3MS (Majority Math Model Solver), utilizado

para śıntese lógica de funções majoritárias com operadores de 3 ou 5 entradas. O novo

algoritmo proposto recebe um vetor de números binários como entrada, representando

a sáıda de uma tabela verdade, e retorna uma função majoritária otimizada para sua

cobertura. A caracteŕıstica principal desta abordagem é a formulação de restrições que

codificam problemas de lógica majoritária em problemas de otimização linear. O conjunto

de restrições é então aplicado a um solucionador de otimização e os resultados transcritos

em uma função majoritária de sáıda. No algoritmo 3MS, considera-se tanto o número de

ńıveis quanto de operadores como primeiro ou segundo critérios de custo, possibilitando

a escolha de qual destes critérios será priorizado. Como terceiro e quarto critérios de

custo, considera-se a minimização de inversores e de literais. O desempenho do algoritmo

3MS foi avaliado a partir de uma comparação com 2 algoritmos de śıntese exata para

funções majoritárias com operadores de 3 e 5 entradas. Em ambas as śınteses, considera-

se apenas o número de ńıveis e de operadores como critérios de custo. Tendo em vista

que no algoritmo 3MS considera-se 2 critérios de custo adicionais, tem-se como objetivo

gerar funções que também sejam exatas em relação ao número de ńıveis e operadores,

porém possuam menos inversores e literais. Quando comparado a ambos algoritmos de

śıntese exata, testes mostraram que o algoritmo 3MS gerou melhores resultados para 64%

de todas as 220.376 funções testadas, enquanto atingiu resultados equivalentes para as

36% restantes. O algoritmo 3MS também foi avaliado a partir de uma comparação com

o benchmark EPFL (École Polytechnique Fédérale de Lausanne), sendo capaz de gerar

resultados competitivos para todos os 10 circuitos que compõem o benchmark.

Palavras-chave: lógica majoritária; funções primitivas; śıntese lógica; solucionadores de

otimização; otimização linear.

ABSTRACT

This work presents the 3MS (Majority Math Model Solver) algorithm, used for majority-

of-three and majority-of-five logic synthesis. The new proposed algorithm receives a vector

of binary numbers as input, representing the output of a truth table, and returns an

optimized majority function for its coverage. Key in this approach is the formulation

of constraints that encodes majority logic problems into linear optimization problems.

The resulting set of constraints is then applied to an optimization solver and the results

translated into the output majority function. The 3MS algorithm considers both depth

and size as first and second cost criteria, making it possible to choose which of these

criteria will be prioritized. As third and fourth cost criteria, the minimization of inverters

and literals is considered. The 3MS algorithm was evaluated based on a comparison with 2

exact synthesis algorithms for both majority-of-three and majority-of-five networks. Both

synthesis have only depth and size as cost criteria. Since the 3MS considers 2 additional

cost criteria, the goal of the algorithm is to generate functions that are also exact in

relation to depth and size, but with less inverters and literals. When compared to both

algorithms, simulation studies have shown that the 3MS was able to further improve 64%

of all 220,376 compared functions, and achieved equal results for the remaining 36%. The

3MS algorithm was also evaluated based on the EPFL (École Polytechnique Fédérale de

Lausanne) benchmark suites, where the algorithm was able to generate competitive results

for all 10 circuits that composes the benchmark.

Keywords: majority logic; primitive functions; logic synthesis; optimization solver; linear

optimization.

LIST OF FIGURES

Figure 1 – Flowchart for the overall 3MS algorithm. 28

Figure 2 – Example of QCA cells and wire. 29

Figure 3 – QCA layout for Z = M(A,B,C) and Z = M(A,B,C,D,E) 29

Figure 4 – QCA layout for basic inverter and Z = M(A,B,C) 30

Figure 5 – QCA layout for Z = M(1,M(A,D, 0),M(B,C, 0)) 31

Figure 6 – QCA layout for Z = M(0,M(A,D, 0),M(B,C, 0)) 31

Figure 7 – Flowchart for the overall 3MS-Depth synthesis. 34

Figure 8 – Flowchart for the overall 3MS-Size synthesis. 46

Figure 9 – Comparison among constant, logarithmic, linear and linearithmic

orders. 50

Figure 10 – Comparison among quadratic, cubic and exponential orders. 51

Figure 11 – Example of O(1). 51

Figure 12 – Example of O(log(N)). 52

Figure 13 – Example of O(N). 52

Figure 14 – Example of O(N · log(N)). 53

Figure 15 – Example of O(N2). 53

Figure 16 – Example of O(N3). 54

Figure 17 – Example of O(2N). 54

Figure 18 – Cost comparison (by number of improved and equal functions)

between the 3MS-Size and the exact m5ig, for criteria S5. 62

Figure 19 – Cost comparison (by number of improved and equal functions)

between the 3MS-Depth and the exact mig, for criteria D3. 63

Figure 20 – Cost comparison (by number of improved and equal functions)

between the 3MS-Size and the exact mig, for criteria S3. 64

Figure 21 – Average runtime comparison (in seconds) for criteria D3. 67

Figure 22 – Average runtime comparison (in seconds) for criteria S3. 68

Figure 23 – Average runtime comparison (in seconds) for criteria S5. 69

LIST OF TABLES

Table 1 – Truth table of an AND operation. 15

Table 2 – Truth table of an OR operation. 15

Table 3 – Truth table of a NOT operation. 16

Table 4 – Example of a majority function. 16

Table 5 – Formulation of an AND function using a maj-3 function. 17

Table 6 – Formulation of an OR function using a maj-3 function. 17

Table 7 – Formulation of an AND function using a maj-5 function. 17

Table 8 – Formulation of an OR function using a maj-5 function. 17

Table 9 – Proof of Ω.C by perfect induction. 18

Table 10 – Proof of Ω.A by perfect induction. 19

Table 11 – Proof of Ω.D by perfect induction. 20

Table 12 – Proof of Ω.I by perfect induction. 21

Table 13 – Proof of Ω.M by perfect induction. 21

Table 14 – List of primitives in set P1 for n = 3. 22

Table 15 – List of primitives in set P2 for n = 3. 23

Table 16 – List of primitives in set P3 for n = 3. 24

Table 17 – Complete list of maj-3 primitives for n = 3. 25

Table 18 – Complete list of maj-3 primitives for n = 4. 26

Table 19 – Matrix Yit for n = m = 3. 33

Table 20 – Example of ft coverage. 37

Table 21 – Example of vector Ht. 44

Table 22 – Main orders of magnitude. 50

Table 23 – Constraint complexity orders for the 2-level optimization model. 56

Table 24 – Complexity orders of Xij bounding and Ω.I application, for the 3-

level optimization model. 57

Table 25 – Complexity for the 3-level optimization model remaining constraints. 58

Table 26 – Constraint complexity orders for the size optimization model. 59

Table 27 – Cost comparison for n = 3 and n = 4, considering criteria D3. 61

Table 28 – Cost comparison for n = 3 and n = 4, considering criteria S3. 61

Table 29 – Cost comparison for n = 3 and n = 4, considering criteria S5. 61

Table 30 – Cost comparison for n = 5 and n = 6, considering criteria D3. 62

Table 31 – Cost comparison for n = 5 and n = 6, considering criteria S3. 63

Table 32 – Runtime comparison between Gurobi and CPLEX, for criteria D3. 65

Table 33 – Runtime comparison between Gurobi and CPLEX, for criteria S3. 65

Table 34 – Average memory usage of Gurobi and CPLEX, for m = 3. 65

Table 35 – Runtime comparison between Gurobi and CPLEX, for criteria D5. 66

Table 36 – Runtime comparison between Gurobi and CPLEX, for criteria S5. 66

Table 37 – Average memory usage of Gurobi and CPLEX, for m = 5. 66

Table 38 – Runtime comparison between 3MS-Depth and exact mig, for criteria

D3. 67

Table 39 – Runtime comparison between 3MS-Size and exact mig, for criteria S3. 67

Table 40 – Average memory usage of 3MS-Depth and exact mig, for criteria D3. 68

Table 41 – Average memory usage of 3MS-Size and exact mig, for criteria S3. 68

Table 42 – Runtime comparison between 3MS-Size and exact m5ig, for criteria

S5. 69

Table 43 – Average memory usage of 3MS-Size and exact m5ig, for criteria S5. 69

Table 44 – EPFL benchmarks for Size optimization. 70

Table 45 – EPFL benchmarks for Depth optimization. 70

LIST OF ABBREVIATIONS

API Application Programming Interface

CMOS Complementary Metal-Oxide-Semiconductor

DSD Disjoint-Support Decomposition

EPFL École Polytechnique Fédérale de Lausanne

M5IG Majority-of-five Inverter Graph

MIG Majority Inverter Graph

QCA Quantum-Dot Cellular Automata

SMT Satisfiability Modulo Theories

XMG XOR-Majority Graph

CONTENTS

1 INTRODUCTION 10

2 MAJORITY BOOLEAN ALGEBRA 14

2.1 CLASSICAL BOOLEAN ALGEBRA 14

2.2 FEATURES OF MAJORITY BOOLEAN ALGEBRA 16

2.3 AXIOMATIZATION OF MAJORITY FUNCTIONS (Ω) 18

2.3.1 Commutativity (Ω.C) 18

2.3.2 Associativity (Ω.A) 18

2.3.3 Distribution (Ω.D) 19

2.3.4 Inverter Propagation (Ω.I) 19

2.3.5 Majority (Ω.M) 20

2.4 MAJORITY PRIMITIVE FUNCTIONS 21

3 3MS ALGORITHM 27

3.1 APPLICABILITY OF THE 3MS ALGORITHM 28

3.2 3MS PRE-SYNTHESIS 31

3.3 3MS-DEPTH SYNTHESIS 33

3.3.1 Optimization model for 2-level majority functions 34

3.3.2 Optimization model for 3-level majority functions 38

3.3.3 Heuristic for majority functions with 4 or more levels 42

3.4 3MS-SIZE SYNTHESIS 45

3.4.1 Size optimization model 45

4 COMPLEXITY OF ALGORITHMS 49

4.1 COMPLEXITY OF THE 3MS ALGORITHM 54

4.1.1 Complexity of the 2-level optimization model 55

4.1.2 Complexity of the 3-level optimization model 56

4.1.3 Complexity of the size optimization model 58

5 TESTS AND RESULTS 60

6 CONCLUSION 71

REFERENCES 72

APPENDIX A -- THE 3MS ALGORITHM CONDITIONAL

CONSTRAINTS 75

10

1 INTRODUCTION

This chapter introduces the main algorithms and methodologies used for majority

logic optimization, aiming for a literature review that points out the different approaches

used by each algorithm and the importance of majority logic synthesis.

The major part of electronic circuits are currently built with CMOS (Complementary

Metal-Oxide Semicondutor) technology, considered a revolutionary advance in the design

of integrated circuits. However, this technology is already reaching its physical limits

and the need for circuits miniaturization is increasing steadily (ZHANG et al., 2019).

Consequently, the study of nanotechnologies with potential to replace CMOS technology

is also growing. Majority logic allows the creation of nanoelectronic circuits for several

different technologies, presenting a possible solution for CMOS limitations (MISHRA et al.,

2021). Examples of emerging majority based technologies include QCA (Quantum-Dot

Cellular Automata) (MAJEED; HUSSAIN; ALKALDY, 2022), Spin Wave Devices (CHUMAK

et al., 2022) and DNA Strand Displacement (WANG; YUAN; SUN, 2020).

CMOS based circuits are designed from classical boolean functions and the

minimization of these functions has a direct impact on reducing hardware cost. Likewise,

majority based circuits will also benefit from the minimization of its corresponding

majority functions, justifying the study of majority synthesis algorithms that can generate

optimized majority circuits. Among the first works that deal with the concept of

majority logic, the works of Richard Lindaman (LINDAMAN, 1960) and Marius Cohn

(COHN; LINDAMAN, 1961) stand out. Lindaman (1960) proposed the first theorem for

applying majority logic in binary decision problems, introducing the majority operator to

classical boolean algebra. The theorem, shown in Equation 1, proposes a boolean function

equivalent to a majority operation.

M(A,B,C) = A ·B + A · C +B · C (1)

Note that M(A,B,C) represents a 3-input majority function with the variables A, B

11

and C. Subsequently, Cohn and Lidaman (1961) presented a set of axioms that defines

the majority algebra independently of the classical boolean algebra. The proposed set of

axioms, represented by Ω, became the basis for current majority algebra axiomatization.

With the goal to improve majority logic applicability, the authors Amaru, Gaillardon e

Micheli (2014) proposed the MIG (Majority Inverter Graph). MIGs are graphic systems,

in ternary tree format, used to describe majority-of-three networks. Being an efficient

data structure, the use of MIGs can be justified for its low computational complexity,

allowing lower runtimes and clearer analogies to study and create majority optimization

algorithms. Soeken et al. (2017) proposed the exact mig algorithm, used for majority-of-

three exact synthesis. As input, the algorithm receives a truth table or a MIG and returns

an optimized majority function that covers the same set of minterms. The most important

characteristic of this algorithm is the proposal of an exact synthesis for majority functions.

This synthesis is built from a set of constraints that shape a given problem accordingly to

the definitions of the majority boolean algebra. The majority output function is generated

with the application of this set to a SMT (Satisfiability Modulo Theories) solver. As cost

criteria, the exact mig can prioritize both the reduction of levels (depth) and gates (size)

in the output function. The authors in Soeken et al. (2018) proposed adaptations of the

exact synthesis used in the exact mig, applying it to classical boolean functions. New

technologies based on constraints and SMT solvers are presented and compared.

Chu et al. (2018) proposed a decomposition algorithm based on XOR and majority

gates. The input function is transcribed into a XMG (XOR-Majority Graph), a new

format also proposed by the authors as an alternative to the previously used MIG. The

decomposition algorithm combines characteristics of majority algebra, Shannon expansion

(SHANNON, 1949) and DSD (Disjoint-Support Decomposition) (BERTACCO; DAMIANI,

1997). Posteriorly, the authors in Chu et al. (2019) proposed an extension of this

decomposition method for general boolean functions, an approach also based on majority

operations and XOR-Majority Graphs. In Riener et al. (2019) the authors proposed a

methodology to decompose monotone boolean functions into 3-input majority operations.

This methodology decomposes binary decision diagrams for monotone functions into

Majority Inverter Graphs, also using a decomposition logic based on Shannon’s expansion.

The authors Chu et al. (2019) proposed the exact m5ig, another exact synthesis

approach for majority functions. This synthesis is built to optimize majority-of-five

networks, differing from the commonly used majority-of-three networks. The functions

are represented by using M5IG (Majority-of-five Inverter Graph) as data structure, an

extension of normal MIGs that uses 5-input majority gates instead of 3-input majority

12

gates. As cost criteria the exact m5ig prioritizes the reduction of size, followed by depth.

Neutzling et al. (2020) also presented an approach that differs from majority-of-three

networks. The proposed algorithm allows majority logic synthesis considering gates with

an arbitrary number of inputs, being based on the relationship between majority functions

and threshold functions and aiming to optimize size as cost criteria.

This work presents the 3MS (Majority Math Model Solver) algorithm, used for

majority logic synthesis. The 3MS algorithm can synthesize functions with 3-input or

5-input majority gates, being able to optimize both majority-of-three and majority-of-five

networks. As input, the algorithm receives a truth table represented by a vector of binary

numbers. As output, the algorithm returns an optimized majority function that covers

the same minterms. The output majority function is generated from a constraints set

that encodes majority logic problems into linear optimization problems. The built set of

constraints is then applied to an optimization solver and the results translated into the

output majority function. The 3MS can be divided into 2 synthesis: 3MS-Depth and

3MS-Size, which will vary based on cost criteria. The 3MS-Depth synthesis prioritizes

depth optimization, followed by size, while the 3MS-Size synthesis will prioritize size

optimization, having depth as second cost criteria. Both synthesis have the minimization

of inverters and literals as third and fourth cost criteria, where literals are the input

variables, in their complemented form or not. Therefore, the goal of the algorithm is not

to optimize circuits of a specific technology, the 3MS algorithm was built to cover a wide

range of possible cost criteria prioritizations, aiming to optimize circuits of any technology

that can benefit from this range.

Among all emerging technologies based on majority circuits, QCA stands out as

a technology that would benefit from inverter optimization, besides depth and size

optimization, the commonly used criteria (SHI; CHU, 2019). In QCA, the number of cells

needed to form an inverter is at least 2, almost half the cost needed to build a majority

gate, which is 5 (KO et al., 2022). Therefore, even though depth and size optimization are

still priority, to also consider the reduction of inverters results in a great decrease in the

circuits total cost.

This work is organized as follows: Chapter 2 presents the main elements of majority

algebra, including its axiomatization and the concept of primitive functions. Chapter 3

presents the 3MS algorithm, explaining how it works for each of its possible synthesis.

An example of the 3MS algorithm applicability is also presented. Chapter 4 presents

an study about complexity of algorithms, aiming to explain the complexity of each 3MS

13

optimization model. Chapter 5 presents the results obtained comparing the 3MS with

the algorithms exact mig and exact m5ig. Tests to evaluate the 3MS algorithm to large

circuits are also presented, using the EPFL (École Polytechnique Fédérale de Lausanne)

arithmetic benchmarks. Lastly, Chapter 6 presents the conclusion of what was realized in

the work.

14

2 MAJORITY BOOLEAN ALGEBRA

This chapter presents the theory behind majority boolean algebra, including its

axiomatization and the concept of majority primitive functions. The purpose of this

chapter is to introduce the reader to the theory transcribed into an optimization model

in Chapter 3, which will address the algorithm proposed in this work and the logic used

to define the set of constraints that makes this transcription possible. The first section

presents the main concepts of classical boolean algebra, aiming to form a knowledge base

to understand majority algebra, explained in the subsequent sections.

2.1 CLASSICAL BOOLEAN ALGEBRA

The classical boolean algebra, or simply boolean algebra, was introduced in the

literature through the book ”An Investigation of the Laws of Thought”, published in

1854 and written by George Boole. In his work, Boole presents a new type of algebra

that simulates logic decisions of the human thought. Logic decisions are made through a

series of arguments, which can be either true or false. In boolean algebra, these arguments

are represented by variables and the decisions by logic operations (BOOLE, 1854). Each

boolean variable can assume 2 possible values: 0 or 1, representing logic states False and

True, respectively. These logic states express the relationship between the inputs and

the output of an operation, where the output value is determined by the input variables

(TOCCI; WIDMER; MOSS, 2017).

The 3 basic operations in boolean algebra are AND, OR and NOT (FLOYD, 2015).

Operation AND, also known as conjunction, is equivalent to an operation of multiplication

and can be represented by the symbols · or ∧. Likewise, the operation OR, also known

as disjunction, is equivalent to an addition and can be represented by the symbols + or

∨. The operation NOT, also known as complement or inversion, is represented by the

symbol ¬ and will always result in the opposite value of a given variable. A variable X

can be written in its complemented state as X. Therefore, boolean algebra is composed

by the elements in set {B,∧,∨,¬}, where B represents the set of binary numbers {0, 1}.

15

Table 1 shows an example of an AND operation between the variables A and B,

through a truth table. A truth table is the listing of every possible combination between

input variables and its corresponding operation output.

Table 1 – Truth table of an AND operation.

A B A · B
0 0 0

0 1 0

1 0 0

1 1 1

Source: Author.

Note that an AND operation will return a True value only if all input variables are

also True. If at least 1 variable is False, the output value will also be False. Table 2 shows

an example of an OR operation between the variables A and B.

Table 2 – Truth table of an OR operation.

A B A + B

0 0 0

0 1 1

1 0 1

1 1 1

Source: Author.

Note that an OR operation will return a True value if at least 1 of the input variables

are True. The only False output occurs when all input variables are also False. It is

important to point out that, in boolean algebra, an addition will never result in a value

higher than 1. This is true because boolean variables can only assume binary values {0, 1},
and this statement remains true regardless the number of True values in the sum.

Table 3 shows an example of a NOT operation for variable A, generating the output

A. Note that the value of A is always the opposite of A. A NOT operation is also known

as an inverter.

16

Table 3 – Truth table of a NOT operation.

A A

0 1

1 0

Source: Author.

2.2 FEATURES OF MAJORITY BOOLEAN ALGEBRA

Majority boolean algebra is composed by the set {B,¬,M}. Elements B and ¬, as

in classical boolean algebra, represent the boolean constants {0, 1} and the inversion

operator. The remaining element of the set, M , represents the majority operator

(CHATTOPADHYAY et al., 2016). A majority operation returns the most present binary

value among its inputs. The 3-input majority function M(A,B,C), for instance, will

return a True value if and only if at least 2 of its 3 inputs are True. If generalized to m

inputs (maj-m), the majority function will return a True value if
⌈
m
2

⌉
inputs are True,

where m is an odd number. Table 4 shows the truth table of M(A,B,C), where m = 3.

Table 4 – Example of a majority function.

A B C M(A,B,C)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Source: Author

From a majority function it is also possible to formulate AND and OR functions,

performed by setting m − 2 inputs to constant values (RIENER et al., 2019). For maj-3

functions (m = 3), the formulation is performed by setting 1 input to a constant value.

Considering M(A,B,C) as example, if the value of C is set to 0, an AND function between

A and B is created. Similarly, setting C to 1 creates an OR function between A and B.

Truth tables showing this formulation are presented in Tables 5 and 6, for functions AND

and OR, respectively.

The formulation of AND and OR functions through a maj-5 function (m = 5) is

made with a combination of 3 constants: a pair of equal constants and a single constant

17

Table 5 – Formulation of an AND function using a maj-3 function.

A B A · B M(A,B, 0)
0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 1

Source: Author

Table 6 – Formulation of an OR function using a maj-3 function.

A B A + B M(A,B, 1)
0 0 0 0
0 1 1 1
1 0 1 1
1 1 1 1

Source: Author

of opposite value. Considering variables A and B as example, the equivalent AND and

OR functions, respectively, are M(A,B, 0, 0, 1) and M(A,B, 1, 1, 0). Truth tables showing

this formulation are presented in Tables 7 and 8.

Table 7 – Formulation of an AND function using a maj-5 function.

A B A · B M(A,B, 0, 0, 1)
0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 1

Source: Author

Table 8 – Formulation of an OR function using a maj-5 function.

A B A + B M(A,B, 1, 1, 0)

0 0 0 0

0 1 1 1

1 0 1 1

1 1 1 1

Source: Author

A maj-5 function can be written in its optimized maj-3 format as shown in Equation

2, considering depth as primary cost criteria. Note that a maj-3 function with 3 levels

and 4 gates is needed to simulate the logic of a maj-5 function, which justifies the study

of maj-5 logic synthesis when considering depth and size optimization.

18

M(A,B,C,D,E) = M(E,M(B,C,D),M(M(C,D,E), A,B)) (2)

2.3 AXIOMATIZATION OF MAJORITY FUNCTIONS (Ω)

The set of axioms that defines the majority algebra is represented by Ω and can be

divided into axioms of Commutativity, Associativity, Distribution, Inverter Propagation

and Majority. Every axiom in Ω can be proved by perfect induction, with the listing of

every possible result for each term of a truth table (CHATTOPADHYAY et al., 2016).

2.3.1 Commutativity (Ω.C)

The Commutativity axiom (Ω.C), represented in Equation 3, determines that the

input order does not change the output value. Table 9 proves Ω.C by perfect induction.

M(A,B,C) = M(A,C,B) = M(C,B,A) (3)

Table 9 – Proof of Ω.C by perfect induction.

A B C M(A,B,C) M(A,C,B) M(C,B,A)
0 0 0 M(0, 0, 0) = 0 M(0, 0, 0) = 0 M(0, 0, 0) = 0
0 0 1 M(0, 0, 1) = 0 M(0, 1, 0) = 0 M(1, 0, 0) = 0
0 1 0 M(0, 1, 0) = 0 M(0, 0, 1) = 0 M(0, 1, 0) = 0
0 1 1 M(0, 1, 1) = 1 M(0, 1, 1) = 1 M(1, 1, 0) = 1
1 0 0 M(1, 0, 0) = 0 M(1, 0, 0) = 0 M(0, 0, 1) = 0
1 0 1 M(1, 0, 1) = 1 M(1, 1, 0) = 1 M(1, 0, 1) = 1
1 1 0 M(1, 1, 0) = 1 M(1, 0, 1) = 1 M(0, 1, 1) = 1
1 1 1 M(1, 1, 1) = 1 M(1, 1, 1) = 1 M(1, 1, 1) = 1

Source: Author

2.3.2 Associativity (Ω.A)

The Associativity axiom Ω.A states that the exchange of variables between two

functions is possible, as long as they are at subsequent levels and have one variable in

common. An example of an Ω.A application is presented in Equation 4.

M(A,D,M(B,D,C)) = M(C,D,M(B,D,A)) (4)

19

Note that the variable shared between levels isD. Therefore, it is possible to substitute

the remaining variable in the upper level for one in the subsequent level. In the presented

example, we had an exchange between the variables A and C. Table 10 proves Ω.A by

perfect induction.

Table 10 – Proof of Ω.A by perfect induction.

A B C D M(A,D,M(B,D,C)) M(C,D,M(B,D,A))
0 0 0 0 M(0, 0,M(0, 0, 0)) = 0 M(0, 0,M(0, 0, 0)) = 0
0 0 0 1 M(0, 1,M(0, 1, 0)) = 0 M(0, 1,M(0, 1, 0)) = 0
0 0 1 0 M(0, 0,M(0, 0, 1)) = 0 M(1, 0,M(0, 0, 0)) = 0
0 0 1 1 M(0, 1,M(0, 1, 1)) = 1 M(1, 1,M(0, 1, 0)) = 1
0 1 0 0 M(0, 0,M(1, 0, 0)) = 0 M(0, 0,M(1, 0, 0)) = 0
0 1 0 1 M(0, 1,M(1, 1, 0)) = 1 M(0, 1,M(1, 1, 0)) = 1
0 1 1 0 M(0, 0,M(1, 0, 1)) = 0 M(1, 0,M(1, 0, 0)) = 0
0 1 1 1 M(0, 1,M(1, 1, 1)) = 1 M(1, 1,M(1, 1, 0)) = 1
1 0 0 0 M(1, 0,M(0, 0, 0)) = 0 M(0, 0,M(0, 0, 1)) = 0
1 0 0 1 M(1, 1,M(0, 1, 0)) = 1 M(0, 1,M(0, 1, 1)) = 1
1 0 1 0 M(1, 0,M(0, 0, 1)) = 0 M(1, 0,M(0, 0, 1)) = 0
1 0 1 1 M(1, 1,M(0, 1, 1)) = 1 M(1, 1,M(0, 1, 1)) = 1
1 1 0 0 M(1, 0,M(1, 0, 0)) = 0 M(0, 0,M(1, 0, 1)) = 0
1 1 0 1 M(1, 1,M(1, 1, 0)) = 1 M(0, 1,M(1, 1, 1)) = 1
1 1 1 0 M(1, 0,M(1, 0, 1)) = 1 M(1, 0,M(1, 0, 1)) = 1
1 1 1 1 M(1, 1,M(1, 1, 1)) = 1 M(1, 1,M(1, 1, 1)) = 1

Source: Author

2.3.3 Distribution (Ω.D)

The Distribution axiom (Ω.D) determines that it is possible to distribute a set of

variables to gates in subsequent levels. In Equation 5 an example of this theorem is given,

where the distributed set is {A,B}. Table 11 proves Ω.D by perfect induction.

M(A,B,M(D,E,C)) = M(M(A,B,D),M(A,B,E),M(A,B,C)) (5)

2.3.4 Inverter Propagation (Ω.I)

The Inverter Propagation axiom (Ω.I), represented in Equation 6, determines that a

majority function is self-dual, meaning that a majority function is always equivalent to its

dual form. A function’s dual form can be obtained by complementing all input variables

and gates (SASAO, 2012). Note that M(A,B,C) and M(A,B,C) are the dual form of

20

Table 11 – Proof of Ω.D by perfect induction.

A B C D E M(A,B,M(D,E,C)) M(M(A,B,D),M(A,B,E),M(A,B,C))
0 0 0 0 0 M(0, 0,M(0, 0, 0)) = 0 M(M(0, 0, 0),M(0, 0, 0),M(0, 0, 0)) = 0
0 0 0 0 1 M(0, 0,M(0, 1, 0)) = 0 M(M(0, 0, 0),M(0, 0, 1),M(0, 0, 0)) = 0
0 0 0 1 0 M(0, 0,M(1, 0, 0)) = 0 M(M(0, 0, 1),M(0, 0, 0),M(0, 0, 0)) = 0
0 0 0 1 1 M(0, 0,M(1, 1, 0)) = 0 M(M(0, 0, 1),M(0, 0, 1),M(0, 0, 0)) = 0
0 0 1 0 0 M(0, 0,M(0, 0, 1)) = 0 M(M(0, 0, 0),M(0, 0, 0),M(0, 0, 1)) = 0
0 0 1 0 1 M(0, 0,M(0, 1, 1)) = 0 M(M(0, 0, 0),M(0, 0, 1),M(0, 0, 1)) = 0
0 0 1 1 0 M(0, 0,M(1, 0, 1)) = 0 M(M(0, 0, 1),M(0, 0, 0),M(0, 0, 1)) = 0
0 0 1 1 1 M(0, 0,M(1, 1, 1)) = 0 M(M(0, 0, 1),M(0, 0, 1),M(0, 0, 1)) = 0
0 1 0 0 0 M(0, 1,M(0, 0, 0)) = 0 M(M(0, 1, 0),M(0, 1, 0),M(0, 1, 0)) = 0
0 1 0 0 1 M(0, 1,M(0, 1, 0)) = 0 M(M(0, 1, 0),M(0, 1, 1),M(0, 1, 0)) = 0
0 1 0 1 0 M(0, 1,M(1, 0, 0)) = 0 M(M(0, 1, 1),M(0, 1, 0),M(0, 0, 0)) = 0
0 1 0 1 1 M(0, 1,M(1, 1, 0)) = 1 M(M(0, 1, 1),M(0, 1, 1),M(0, 1, 0)) = 1
0 1 1 0 0 M(0, 1,M(0, 0, 1)) = 0 M(M(0, 1, 0),M(0, 1, 0),M(0, 1, 1)) = 0
0 1 1 0 1 M(0, 1,M(0, 1, 1)) = 1 M(M(0, 1, 0),M(0, 1, 1),M(0, 1, 1)) = 1
0 1 1 1 0 M(0, 1,M(1, 0, 1)) = 1 M(M(0, 1, 1),M(0, 1, 0),M(0, 1, 1)) = 1
0 1 1 1 1 M(0, 1,M(1, 1, 1)) = 1 M(M(0, 1, 1),M(0, 1, 1),M(0, 1, 1)) = 1
1 0 0 0 0 M(1, 0,M(0, 0, 0)) = 0 M(M(1, 0, 0),M(1, 0, 0),M(1, 0, 0)) = 0
1 0 0 0 1 M(1, 0,M(0, 1, 0)) = 0 M(M(1, 0, 0),M(1, 0, 1),M(1, 0, 0)) = 0
1 0 0 1 0 M(1, 0,M(1, 0, 0)) = 0 M(M(1, 0, 1),M(1, 0, 0),M(1, 0, 0)) = 0
1 0 0 1 1 M(1, 0,M(1, 1, 0)) = 1 M(M(1, 0, 1),M(1, 0, 1),M(1, 0, 0)) = 1
1 0 1 0 0 M(1, 0,M(0, 0, 1)) = 0 M(M(1, 0, 0),M(1, 0, 0),M(1, 0, 1)) = 0
1 0 1 0 1 M(1, 0,M(0, 1, 1)) = 1 M(M(1, 0, 0),M(1, 0, 1),M(1, 0, 1)) = 1
1 0 1 1 0 M(1, 0,M(1, 0, 1)) = 1 M(M(1, 0, 1),M(1, 0, 0),M(1, 0, 1)) = 1
1 0 1 1 1 M(1, 0,M(1, 1, 1)) = 1 M(M(1, 0, 1),M(1, 0, 1),M(1, 0, 1)) = 1
1 1 0 0 0 M(1, 1,M(0, 0, 0)) = 1 M(M(1, 1, 0),M(1, 1, 0),M(1, 1, 0)) = 1
1 1 0 0 1 M(1, 1,M(0, 1, 0)) = 1 M(M(1, 1, 0),M(1, 1, 1),M(1, 1, 0)) = 1
1 1 0 1 0 M(1, 1,M(1, 0, 0)) = 1 M(M(1, 1, 1),M(1, 1, 0),M(1, 1, 0)) = 1
1 1 0 1 1 M(1, 1,M(1, 1, 0)) = 1 M(M(1, 1, 1),M(1, 1, 1),M(1, 1, 0)) = 1
1 1 1 0 0 M(1, 1,M(0, 0, 1)) = 1 M(M(1, 1, 0),M(1, 1, 0),M(1, 1, 1)) = 1
1 1 1 0 1 M(1, 1,M(0, 1, 1)) = 1 M(M(1, 1, 0),M(1, 1, 1),M(1, 1, 1)) = 1
1 1 1 1 0 M(1, 1,M(1, 0, 1)) = 1 M(M(1, 1, 1),M(1, 1, 0),M(1, 1, 1)) = 1
1 1 1 1 1 M(1, 1,M(1, 1, 1)) = 1 M(M(1, 1, 1),M(1, 1, 1),M(1, 1, 1)) = 1

Source: Author

each other. Table 12 shows the equivalence between the majority functions, proving Ω.I

by perfect induction.

M(A,B,C) = M(A,B,C) (6)

2.3.5 Majority (Ω.M)

The Majority axiom (Ω.M) can be divided into 2 equations. Equation 7 shows that the

output of a majority gate is equal to the most common value among its inputs. Equation

21

Table 12 – Proof of Ω.I by perfect induction.

A B C M(A,B,C) M(A,B,C)

0 0 0 M(0, 0, 0) = 0 M(1, 1, 1) = 0

0 0 1 M(0, 0, 1) = 0 M(1, 1, 0) = 0

0 1 0 M(0, 1, 0) = 0 M(1, 0, 1) = 0

0 1 1 M(0, 1, 1) = 1 M(1, 0, 0) = 1

1 0 0 M(1, 0, 0) = 0 M(0, 1, 1) = 0

1 0 1 M(1, 0, 1) = 1 M(0, 1, 0) = 1

1 1 0 M(1, 1, 0) = 1 M(0, 0, 1) = 1

1 1 1 M(1, 1, 1) = 1 M(0, 0, 0) = 1

Source: Author

8 shows that the output value will be equal to the tie-breaking variable in functions with

the same number of True and False values. Table 13 proves Ω.M by perfect induction.

M(A,A,B) = A (7)

M(A,A,B) = B (8)

Table 13 – Proof of Ω.M by perfect induction.

A B M(A,A,B) = A M(A,A,B) = B

0 0 M(0, 0, 0) = 0 M(0, 1, 0) = 0

0 1 M(0, 0, 1) = 0 M(0, 1, 1) = 1

1 0 M(1, 1, 0) = 1 M(1, 0, 0) = 0

1 1 M(1, 1, 1) = 1 M(1, 0, 1) = 1

Source: Author

2.4 MAJORITY PRIMITIVE FUNCTIONS

Majority primitive functions (also known as primitives) are functions formed by at

most one majority gate, often used in the formulation of more complex functions (WANG

et al., 2015). The complete list of primitives can be obtained from the sets Pq, where

0 ≤ q ≤ m. Each set Pq comprises functions with q literals, formed by maj-m gates.

Set P0 comprises the constants 0 and 1 and, therefore, the number of functions in P0

22

will always be 2. Set P1 comprises functions with a single literal, being simply the list

of input variables, in its complemented form or not. The number of input variables is

represented by n and the number of functions in P1 can be calculated by Equation 9.

|P1| = 2 · n (9)

Table 14 shows the list of functions in set P1, considering n = 3. Note that both

classical and majority forms are the same, since set P1 is composed only by functions

with a single literal and no gates.

Table 14 – List of primitives in set P1 for n = 3.

Classical Function Majority Function

A A

B B

C C

A A

B B

C C

Source: Author

Set P2 is formed by maj-m gates with 2 literals and m−2 constant values, comprising

the formulation of AND and OR gates. The number of functions in P2 can be calculated

by the number of possible 2-to-2 combinations among input variables, without repeated

pairs, multiplied by 8. This calculation is shown in Equation 10.

|P2| =
n!

2! · (n− 2)!
· 8 (10)

The multiplication by 8 refers to the number of possible inversion variations, which

is always 4 for each AND and OR simulations. Considering n = 3, the possible

2-to-2 combinations are AB, AC and BC. Combination AB and constant 0, for

instance, generates the maj-3 function M(A,B, 0) with the possible inversion variations:

M(A,B, 0), M(A,B, 0), M(A,B, 0) and M(A,B, 0). Table 15 shows the list of functions

in set P2 for n = 3, considering both m = 3 and m = 5. Note that for m = 5

the formulation of AND and OR functions is done with a combination of 3 constants

(m− 2 = 3).

Set P3 is formed by majority gates with 3 literals, also without considering repeated

pairs. The number of functions in P3 can be calculated by the number of possible 3-to-3

23

Table 15 – List of primitives in set P2 for n = 3.

Classical Function Maj-3 Function Maj-5 Function

A ·B M(A,B, 0) M(A,B, 0, 0, 1)

A ·B M(A,B, 0) M(A,B, 0, 0, 1)

A ·B M(A,B, 0) M(A,B, 0, 0, 1)

A ·B M(A,B, 1) M(A,B, 1, 1, 0)

A · C M(A,C, 0) M(A,C, 0, 0, 1)

A · C M(A,C, 0) M(A,C, 0, 0, 1)

A · C M(A,C, 0) M(A,C, 0, 0, 1)

A · C M(A,C, 1) M(A,C, 1, 1, 0)

B · C M(B,C, 0) M(B,C, 0, 0, 1)

B · C M(B,C, 0) M(B,C, 0, 0, 1)

B · C M(B,C, 0) M(B,C, 0, 0, 1)

B · C M(B,C, 1) M(B,C, 1, 1, 0)

A+B M(A,B, 1) M(A,B, 1, 1, 0)

A+B M(A,B, 1) M(A,B, 1, 1, 0)

A+B M(A,B, 1) M(A,B, 1, 1, 0)

A+B M(A,B, 0) M(A,B, 0, 0, 1)

A+ C M(A,C, 1) M(A,C, 1, 1, 0)

A+ C M(A,C, 1) M(A,C, 1, 1, 0)

A+ C M(A,C, 1) M(A,C, 1, 1, 0)

A+ C M(A,C, 0) M(A,C, 0, 0, 1)

B + C M(B,C, 1) M(B,C, 1, 1, 0)

B + C M(B,C, 1) M(B,C, 1, 1, 0)

B + C M(B,C, 1) M(B,C, 1, 1, 0)

B + C M(B,C, 0) M(B,C, 0, 0, 1)

Source: Author

combinations among inputs variables multiplied by 8, where 8 refers to the number of

possible inversion variations for each 3-to-3 combination. This calculation is shown by

Equation 11. For m = 5, the combination of constants 01 is considered as input aside

from the 3 literals. Table 16 shows the list of functions in set P3 for n = 3. Note that the

only possible 3-to-3 combination is ABC.

|P3| =
n!

3! · (n− 3)!
· 8 (11)

The total number of primitives, represented by p, is given by the sum of the elements

in all sets, as shown in Equation 12.

24

Table 16 – List of primitives in set P3 for n = 3.

Classical Function Maj-3 Function Maj-5 Function

A ·B + A · C +B · C M(A,B,C) M(A,B,C, 0, 1)

A ·B + A · C +B · C M(A,B,C) M(A,B,C, 0, 1)

A ·B + A · C +B · C M(A,B,C) M(A,B,C, 0, 1)

A ·B + A · C +B · C M(A,B,C) M(A,B,C, 0, 1)

A ·B + A · C +B · C M(A,B,C) M(A,B,C, 0, 1)

A ·B + A · C +B · C M(A,B,C) M(A,B,C, 0, 1)

A ·B + A · C +B · C M(A,B,C) M(A,B,C, 0, 1)

A ·B + A · C +B · C M(A,B,C) M(A,B,C, 0, 1)

Source: Author

p =
m∑
q=0

Pq (12)

Considering m = 3, the maximum value of q is 3. Therefore, for n = 3, |P0| + |P1| +
|P2| + |P3| = 40, and for n = 4, |P0| + |P1| + |P2| + |P3| = 90. Tables 17 and 18 shows,

respectively, the complete list of primitive functions for n = 3 and n = 4, considering

m = 3.

For m = 5 the maximum value of q is 5, resulting in the additional sets P4 and P5.

Set P4 is formed by majority functions with 4 literals and a single constant. Set P5 is

formed by majority functions with 5 literals. Both sets P4 and P5 allows the repetition of

literals as long as this repetition is a pair of the same literal with the same complement.

An example of a valid pair would be the combination AABC, while AABC exemplifies an

invalid combination. The majority function M(A,A,B,C, 0), formed based on the invalid

combination AABC, is disregarded because it can be simplified (based on the Ω.M axiom)

to M(B,C, 0, 0, 1), a lower cost primitive when considering the number of literals as cost

criteria. Equation 13 shows how to calculate the number of elements in P4.

|P4| = (
n!

3! · (n− 3)!
· 3) · 16 +

n!

4! · (n− 4)!
· 24 (13)

The calculation n!
3!·(n−3)! · 3 comprises functions formed by 2 literals and a pair of a

different literal, totalizing 4 inputs. The multiplication by 16 refers to 8 possible inversion

variations for each constant 0 and 1. The rest of the equation calculates the number

of 4-to-4 combinations among input variables, multiplied by 24 and meaning 12 possible

inversion variations for each constant. For n = 3, only the elements in (n!
3!·(n−3)! · 3) · 16

25

Table 17 – Complete list of maj-3 primitives for n = 3.

Nº Classical Function Majority Function Nº Classical Function Majority Function

0 0 0 20 A+B M(A,B, 1)

1 1 1 21 A+B M(A,B, 1)

2 A A 22 A+B M(A,B, 1)

3 B B 23 A+B M(A,B, 0)

4 C C 24 A+ C M(A, 0, C)

5 A A 25 A+ C M(A, 1, C)

6 B B 26 A+ C M(A, 1, C)

7 C C 27 A+ C M(A, 0, C)

8 A ·B M(A,B, 0) 28 B + C M(1, B, C)

9 A ·B M(A,B, 0) 29 B + C M(1, B, C)

10 A ·B M(A,B, 0) 30 B + C M(1, B, C)

11 A ·B M(A,B, 1) 31 B + C M(0, B, C)

12 A · C M(A, 0, C) 32 A ·B + A · C +B · C M(A,B,C)

13 A · C M(A, 0, C) 33 A ·B + A · C +B · C M(A,B,C)

14 A · C M(A, 0, C) 34 A ·B + A · C +B · C M(A,B,C)

15 A · C M(A, 1, C) 35 A ·B + A · C +B · C M(A,B,C)

16 B · C M(0, B, C) 36 A ·B + A · C +B · C M(A,B,C)

17 B · C M(0, B, C) 37 A ·B + A · C +B · C M(A,B,C)

18 B · C M(0, B, C) 38 A ·B + A · C +B · C M(A,B,C)

19 B · C M(1, B, C) 39 A ·B + A · C +B · C M(A,B,C)

Source: Author

are added to the primitives list. For n ≥ 4, all elements in P4 are added to the primitives

list.

The number of elements in set P5 can be calculated by Equation 14. The calculation
n!

4!·(n−4)! ·4 comprises functions formed by 3 literals and a pair of a different literal, whereas
n!

5!·(n−5)! calculates the number of 5-to-5 combinations among input variables.

|P5| = (
n!

4! · (n− 4)!
· 4) · 24 +

n!

5! · (n− 5)!
· 48 (14)

The multiplication by 24, as in set P4, represents 12 possible inversion variations

for each constant 0 and 1. The multiplication by 48 represents the possible inversion

variations among the 5 different literals. For n = 4, only the elements in (n!
4!·(n−4)! · 4) · 24

are added to the primitives list. For n ≥ 5, all elements in P5 are added to the primitives

list.

26

Table 18 – Complete list of maj-3 primitives for n = 4.

Nº Classical Function Majority Function Nº Classical Function Majority Function

0 0 0 45 A+D M(A, 0, D)

1 1 1 46 B + C M(B, 1, C)

2 A A 47 B + C M(B, 1, C)

3 B B 48 B + C M(B, 1, C)

4 C C 49 B + C M(B, 0, C)

5 D D 50 B +D M(B, 1, D)

6 A A 51 B +D M(B, 1, D)

7 B B 52 B +D M(B, 1, D)

8 C C 53 B +D M(B, 0, D)

9 D D 54 D + C M(1, C,D)

10 A ·B M(A,B, 0) 55 D + C M(1, C,D)

11 A ·B M(A,B, 0) 56 D + C M(1, C,D)

12 A ·B M(A,B, 0) 57 D + C M(0, C,D)

13 A ·B M(A,B, 1) 58 A ·B + A · C +B · C M(A,B,C)

14 A · C M(A, 0, C) 59 A ·B + A · C +B · C M(A,B,C)

15 A · C M(A, 0, C) 60 A ·B + A · C +B · C M(A,B,C)

16 A · C M(A, 0, C) 61 A ·B + A · C +B · C M(A,B,C)

17 A · C M(A, 1, C) 62 A ·B + A · C +B · C M(A,B,C)

18 A ·D M(A, 0, D) 63 A ·B + A · C +B · C M(A,B,C)

19 A ·D M(A, 0, D) 64 A ·B + A · C +B · C M(A,B,C)

20 A ·D M(A, 0, D) 65 A ·B + A · C +B · C M(A,B,C)

21 A ·D M(A, 1, D) 66 A ·B + A ·D +B ·D M(A,B,D)

22 B · C M(0, B, C) 67 A ·B + A ·D +B ·D M(A,B,D)

23 B · C M(0, B, C) 68 A ·B + A ·D +B ·D M(A,B,D)

24 B · C M(0, B, C) 69 A ·B + A ·D +B ·D M(A,B,D)

25 B · C M(1, B, C) 70 A ·B + A ·D +B ·D M(A,B,D)

26 B ·D M(0, B,D) 71 A ·B + A ·D +B ·D M(A,B,D)

27 B ·D M(0, B,D) 72 A ·B + A ·D +B ·D M(A,B,D)

28 B ·D M(0, B,D) 73 A ·B + A ·D +B ·D M(A,B,D)

29 B ·D M(1, B,D) 74 A · C + A ·D + C ·D M(A,C,D)

30 D · C M(0, D,C) 75 A · C + A ·D + C ·D M(A,C,D)

31 D · C M(0, D, C) 76 A · C + A ·D + C ·D M(A,C,D)

32 D · C M(0, D, C) 77 A · C + A ·D + C ·D M(A,C,D)

33 D · C M(1, D,C) 78 A · C + A ·D + C ·D M(A,C,D)

34 A+B M(A,B, 1) 79 A · C + A ·D + C ·D M(A,C,D)

35 A+B M(A,B, 1) 80 A · C + A ·D + C ·D M(A,C,D)

36 A+B M(A,B, 1) 81 A · C + A ·D + C ·D M(A,C,D)

37 A+B M(A,B, 0) 82 B · C +B ·D + C ·D M(B,C,D)

38 A+ C M(A, 1, C) 83 B · C +B ·D + C ·D M(B,C,D)

39 A+ C M(A, 1, C) 84 B · C +B ·D + C ·D M(B,C,D)

40 A+ C M(A, 1, C) 85 B · C +B ·D + C ·D M(B,C,D)

41 A+ C M(A, 0, C) 86 B · C +B ·D + C ·D M(B,C,D)

42 A+D M(A, 1, D) 87 B · C +B ·D + C ·D M(B,C,D)

43 A+D M(A, 1, D) 88 B · C +B ·D + C ·D M(B,C,D)

44 A+D M(A, 1, D) 89 B · C +B ·D + C ·D M(B,C,D)

Source: Author

27

3 3MS ALGORITHM

In this chapter the 3MS (Majority Math Model Solver) algorithm, proposed in this

work, is presented. The 3MS algorithm receives a vector of binary values as input,

representing the output of a truth table, and returns the minimum cost majority function

for its coverage. The input binary vector is represented by ft, where 0 ≤ t < 2n and index t

a to the input table’s terms. The coverage of ft is based on the formulation of a constraints

set, represented by K, that encodes a majority logic problem into a linear optimization

model. The built set of constraints K is then applied to an optimization solver, generating

results that will be posteriorly interpreted by the algorithm and translated into the output

majority function.

The 3MS algorithm can be divided into two different synthesis, which varies depending

on the chosen cost criteria. The 3MS-Depth synthesis prioritizes the minimization of levels

(depth), followed by the minimization of gates (size) in the output majority function. The

3MS-Size synthesis prioritizes the minimization of size, followed by depth. Both synthesis

consider the minimization of inverters and literals as third and fourth cost criteria. In

addition, for both synthesis the cost of repeated gates is disregarded.

The first step of the 3MS algorithm is the creation of the primitives list, using the logic

described in subsection 2.4. If ft could not be covered by a primitive, the chosen synthesis

is started. For each synthesis the 3MS algorithm builds a different set of constraints,

molding the minimization problem for the corresponding cost criteria. Both synthesis

can also consider majority gates with 3 (maj-3) or 5 (maj-5) inputs when building its

constraints. Figure 1 presents a flowchart for the overall 3MS logic.

Section 3.1 presents a brief explanation about Quantum-Dot Cellular Automata

(QCA), aiming to exemplify a majority based nanotechnology that would benefit from the

exact synthesis approach presented in this work. Section 3.2 presents the first steps of the

3MS algorithm, explaining how the primitives table is stored and the variables generated

from it. 3MS-Depth and 3MS-Size synthesis are presented, respectively, in sections 3.3

and 3.4. All constraints are explained individually in detail for each synthesis.

28

Figure 1 – Flowchart for the overall 3MS algorithm.

Source: Author

3.1 APPLICABILITY OF THE 3MS ALGORITHM

The main goal of this work is to present a new exact synthesis algorithm for optimal

depth and size minimization, for both maj-3 and maj-5 functions, that can also optimize

2 additional cost criteria, the number of inverters and literals, without losing the optimal

results for depth and size optimization.

In QCA technology, circuits are formed by quantum cells composed by 4 quantum

dots and 2 electrons. Electrons can not leave the QCA cell but are able to travel between

the dots. Due to Coulomb’s law, electrons can only occupy opposite diagonals in the cells,

generating the 2 possible polarizations P = +1 and P = −1. The polarization of a cell

defines its logical value: P = −1 represents the logic state False (constant 0) and P = +1

represents the logic state True (constant 1) (CHUNG et al., 2017).

The main QCA components include the QCA cell, the QCA wire, the QCA majority

gate and the QCA inverter. The QCA wire is simple a line of cells that holds the

polarization. Figure 2 shows an example of a QCA cell for each polarization and an

example of a QCA wire, holding the polarization P = −1.

A QCA majority gate represents the main logic operation of a QCA circuit. The

totals of cells needed to build a majority gate are, respectively, 5 for a maj-3 gate and 10

29

for a maj-5 gate. Figure 3 shows the layout of both maj-3 and maj-5 gates, considering

functions Z = M(A,B,C) and Z = M(A,B,C,D,E).

Figure 2 – Example of QCA cells and wire.

Source: Author

Figure 3 – QCA layout for Z = M(A,B,C) and Z = M(A,B,C,D,E)

Source: Author

The basic QCA inverter needs a total of 11 cells to be built. However, in QCA

technology, cells placed diagonally to each other have reverse polarizations. This

characteristic can be exploited to implement an inverter using only 2 cells (KONG;

SHANG; LU, 2010). Figure 4 shows the basic QCA inverter and the majority function

Z = M(A,B,C), exemplifying both inverter layouts.

Note that in QCA the number of cells needed to build an inverter is at least 2, almost

30

half the cost needed to build a maj-3 gate, which is 5 (KO et al., 2022). Therefore, even

though depth and size optimization are still priority, to also consider the reduction of

inverters results in a great decrease in the circuits total cost.

Figure 4 – QCA layout for basic inverter and Z = M(A,B,C)

Source: Author

To exemplify the impact of inverter optimization in QCA circuits, consider the

majority function M(1,M(A,D, 0), M(B,C, 0)), which has 2 levels, 3 gates, 4 inverters

and 4 literals. Even though this function is already optimized for depth and size,

it can still be further optimized to M(0,M(A,D, 0),M(B,C, 0)), which has the same

depth, size and literals but with 3 less inverters. Figure 5 shows the layout and

amount of needed QCA cells to build the function before inverter optimization, where

Z = M(1,M(A,D, 0),M(B,C, 0)).

Before inverter optimization, a total of 22 QCA cells were needed to build the circuit.

Figure 6 shows the layout and the amount of needed QCA cells to build the function

after inverter optimization, where Z = M(0,M(A,D, 0),M(B,C, 0)). After inverter

optimization, the number of QCA cells needed to build Z was reduced to 16 cells,

generating a 28% reduction.

31

Figure 5 – QCA layout for Z = M(1,M(A,D, 0),M(B,C, 0))

Source: Author

Figure 6 – QCA layout for Z = M(0,M(A,D, 0),M(B,C, 0))

Source: Author

3.2 3MS PRE-SYNTHESIS

The primitives list is created based on the variables n and m, that represents,

respectively, the number of input variables in ft and the number of majority gate inputs.

32

Since the 3MS can consider maj-3 or maj-5 functions, variable m will always be 3 or 5.

From the primitives table, vector Ci is created. Vector Ci stores the cost of each primitive

i, where 0 ≤ i < p and p represents the amount of functions in the primitives table.

Positions C0 and C1 corresponds to the constants 0 and 1, respectively, and have a cost

equal to 0. The cost of the remaining primitives can be calculated by Equation 15.

Ci = 104 ·Gi + 100 · Ii + Li ∀ i | 2 ≤ i < p. (15)

Vectors Gi, Ii and Li corresponds, respectively, to the number of gates, inverters and

literals of a primitive i. Literals are the input variables, in their complemented form or

not. The weights assigned to each vector defines the prioritization of each cost criteria.

The primitive M(A,B, 0), for instance, is composed by 1 gate, 1 inverter and 2 literals,

resulting in a total cost of 10,102. The numerical difference of each weight is intended to

avoid cases where stacking a cost criteria would imply addition to another cost criteria,

when building higher level functions.

Matrix Yit stores the truth table of every primitive function in binary vector format.

To exemplify, table 19 shows the matrix Yit considering n = m = 3, where 0 ≤ t < 8. Set e

is also created, storing the index i of all primitives with an inverted root. Primitives with

an inverted root can be single complemented literals or a complemented gate. Examples

are A and M(A,B,C). Based on set e, set k is also created, which stores all elements in e

along with the indexes that represents the constants 0 and 1: i = 0 and i = 1, respectively.

33

Table 19 – Matrix Yit for n = m = 3.

Index i Primitive Function Line i of Yit Index i Primitive Function Line i of Yit

0 0 00000000 20 M(A,B, 1) 00111111

1 1 11111111 21 M(A,B, 1) 11110011

2 A 00001111 22 M(A,B, 1) 11001111

3 B 00110011 23 M(A,B, 0) 11111100

4 C 01010101 24 M(A, 1, C) 01011111

5 A 11110000 25 M(A, 1, C) 11110101

6 B 11001100 26 M(A, 1, C) 10101111

7 C 10101010 27 M(A, 0, C) 11111010

8 M(A,B, 0) 00000011 28 M(1, B, C) 01110111

9 M(A,B, 0) 00110000 29 M(1, B, C) 11011101

10 M(A,B, 0) 00001100 30 M(1, B, C) 10111011

11 M(A,B, 1) 11000000 31 M(0, B, C) 11101110

12 M(A, 0, C) 00000101 32 M(A,B,C) 00010111

13 M(A, 0, C) 01010000 33 M(A,B,C) 11101000

14 M(A, 0, C) 00001010 34 M(A,B,C) 01110001

15 M(A, 1, C) 10100000 35 M(A,B,C) 10001110

16 M(0, B, C) 00010001 36 M(A,B,C) 01001101

17 M(0, B, C) 01000100 37 M(A,B,C) 10110010

18 M(0, B, C) 00100010 38 M(A,B,C) 00101011

19 M(1, B, C) 10001000 39 M(A,B,C) 11010100

Source: Author

3.3 3MS-DEPTH SYNTHESIS

If 3MS-Depth is the chosen synthesis and ft could not be covered by a primitive

function, the initial formulation of K considers a 2-level output majority function. Every

time K is applied to the optimization solver and a valid output function could not

be found, the set of constraints K is rebuilt considering an output function with one

additional level, until a maximum of 3 levels. If ft can not be covered by an output

function with up to 3 levels, a heuristic is used to cover ft considering functions with 4 or

more levels.

Set K is constructed based on the variables d and r, where d and r represents,

respectively, the number of levels (depth) and primitives in the output function. Since

a 2-level majority function is always formed by m primitives, d = 2 will always imply

r = m. The synthesis for 3-level functions (d = 3) is subdivided based on the value

of r, that will range from (2 · m) − 1 to m2 and be incremented by m − 1 every

34

time K could not be solved. Therefore, m = 3 implies 5 ≤ r ≤ 9, where r is

incremented by 2, and m = 5 implies 9 ≤ r ≤ 25, where r is incremented by 4.

Function M(M(A,D,M(B,C, 1)), 0,M(B,C,D)), for instance, is a 3-level maj-3 function

where r = 5, since its formed by 5 primitives. Figure 7 shows a flowchart for a better

understanding of the overall 3MS-Depth synthesis.

Figure 7 – Flowchart for the overall 3MS-Depth synthesis.

Source: Author

3.3.1 Optimization model for 2-level majority functions

This subsection presents the formulation of constraints set K when the coverage of ft

by a 2-level majority function is being considered. First step is the creation of the integer

vector Xi, where the value of each position i can range from 0 to
⌊
m
2

⌋
. Each position of

Xi pertains to a primitive i and the value assigned to that position represents the number

of times that a primitive i appears in the output majority function. Since a 2-level maj-m

function will always be formed by a combination of m primitives, the constraint shown in

Equation 16 is added to K.

p−1∑
i=0

Xi = m (16)

Next step is the creation of the integer variables S1 and S2, followed by the addition

35

of the constraints shown in Equations 17 and 18 to K.

∑
i ∈ e

Xi = m→ S1 =
⌊m

2

⌋
(17)

∑
i ∈ k

Xi = m→ S2 =
⌊m

2

⌋
(18)

Note that the constraints consider the elements of set e and k, respectively. This pair

of constraints guaranties the reduction of inverters based on the Ω.I axiom, which states

that a majority function is self dual. Set k considers the constants 0 and 1 along with all

primitives with and inverted root, stored by set e. Therefore, variable S2 will value to⌊
m
2

⌋
if all selected primitives are either in set e or are constants. Variable S1 will value to⌊

m
2

⌋
if all selected primitives are in set e, but none is a constant. For m = 3 and m = 5

we have, respectively,
⌊
3
2

⌋
= 1 and

⌊
5
2

⌋
= 2.

To exemplify consider m = n = 3 and the solution Xi = {X5 = 1, X11 = 1, X39 = 1}.
For n = 3, index i = 5, i = 11 and i = 39 corresponds, respectively, to the primitives A,

M(A,B, 1) and M(A,B,C). Without considering Ω.I, the 2-level output function would

be M(A,M(A,B, 1),M(A,B,C)), having a total cost of 30, 406 based on the weights

of Equation 15, which calculates the cost vector Ci. Considering Ω.I, S1 will value to

1 because X5 + X11 + X39 = 3 and all 3 primitives are no constants and contained in

e. Since S1 = 1 also implies S2 = 1, the number of inverters will be decreased by

2, generating a total cost of 30, 206 and updating the output function to its optimized

version M(A,M(A,B, 1),M(A,B,C)).

To exemplify a case where only S2 values to 1, we replace X5 = 1 for X0 = 1 in the

previous example, forming M(0,M(A,B, 1),M(A,B,C)) with a total cost of 30, 305. The

condition X0+X11+X39 = 1 implies S1 = 0 and S2 = 1, since only S2 considers constants

in its sum. The optimized output function will then be M(1,M(A,B, 1),M(A,B,C)),

with 1 less inverter and a total cost of 30, 205.

The objective function for the optimization model is defined by Equation 19. Note

that Z is composed simply by the sum of Xi multiplied by each respective cost Ci, with

the subtraction of the excluded inverters signaled by S1 and S2.

minZ =

p−1∑
i=0

Xi · Ci − 100 · (S1 + S2) (19)

36

The coverage constraints are built from the binary matrix Yit, defined in the pre-

synthesis phase. Each line i of Yit stores the truth table of a primitive i, in binary vector

format. Likewise, each column t of Yit stores a vector of p elements representing the

coverage of a term t by each primitive i. If Yit = 1, then term t is covered by primitive i.

If Yit = 0, then term t is not covered by primitive i. From Yit, a set of 2n constraints is

created, each constraint corresponding to a term t of ft. For minterms, where ft = 1, the

constraint shown in Equation 20 is added to K.

p−1∑
i=0

Xi · Yit >
⌊m

2

⌋
∀ ft = 1 | 0 ≤ t < 2n (20)

For maxterms, where ft = 0, the constraint shown in Equation 21 is added to K.

Note that the bound is replaced for ≤
⌊
m
2

⌋
, since ft = 0 implies that the term t should

not be covered by the majority of the selected primitives in Xi.

p−1∑
i=0

Xi · Yit ≤
⌊m

2

⌋
∀ ft = 0 | 0 ≤ t < 2n (21)

These 2n constraints ensures that the m selected primitives will, together, cover

all minterms (ft = 1) more than
⌊
m
2

⌋
times and, at the same time, will not cover

maxterms (ft = 0) more than
⌊
m
2

⌋
times. As an example, consider n = 4, m = r =

5, the input binary vector ft = 0100000011000101 and vector Xi with the solution

{X0 = 2, X1 = 1, X40 = 1, X86 = 1}, all other positions of Xi being equal to 0. The

indexes i = 0, i = 1, i = 40 and i = 86 represents, respectively, the primitives 0, 1,

M(B,C, 1, 1, 0) and M(A,B,D, 0, 1), resulting in Z = 20, 205 and forming the output

majority function M(0, 0, 1,M(B,C, 1, 1, 0),M(A,B,D, 0, 1)). Therefore, for m = 5, the

combined primitives must cover every minterm of ft at least 3 times and can not cover

any maxterm more than 2 times. Table 20 shows the coverage of ft in truth table format.

Note that the combination of constants 001 was simplified to 0, since M(0, 0, 1) = 0.

Equation 22 shows the complete optimization model for 2-level majority functions.

The set of constraints K is then applied to the optimization solver, being translated into

the output function if K could be solved. If K could not be solved, all constraints are

reset and K is rebuild to cover ft using a 3-level majority function.

37

Table 20 – Example of ft coverage.

t 0 M(B,C, 1, 1, 0) M(A,B,D, 0, 1) ft = M(0, 0, 1,M(B,C, 1, 1, 0),M(A,B,D, 0, 1))

0 0 1 0 0

1 0 1 1 1

2 0 0 0 0

3 0 0 1 0

4 0 1 0 0

5 0 1 0 0

6 0 1 0 0

7 0 1 0 0

8 0 1 1 1

9 0 1 1 1

10 0 0 1 0

11 0 0 1 0

12 0 1 0 0

13 0 1 1 1

14 0 1 0 0

15 0 1 1 1

Source: Author.

minZ =

p−1∑
i=0

Xi · Ci − 100 · (S1 + S2)

s.t.

p−1∑
i=0

Xi = m

p−1∑
i=0

Xi ≥ 0∑
i ∈ e

Xi = m→ S1 =
⌊m

2

⌋
∑
i ∈ k

Xi = m→ S2 =
⌊m

2

⌋
S1, S2 ∈ {0,

⌊m
2

⌋
}

p−1∑
i=0

Xi · Yit >
⌊m

2

⌋
∀ ft = 1 | 0 ≤ t < 2n

p−1∑
i=0

Xi · Yit ≤
⌊m

2

⌋
∀ ft = 0 | 0 ≤ t < 2n

(22)

38

3.3.2 Optimization model for 3-level majority functions

This subsection presents the formulation of K for the coverage of ft with a 3-level

majority function (d = 3). The first step is to update vector Xi into the matrix Xij, where

1 ≤ j ≤ 1 +
⌊

r
m

⌋
. Each position of Xij represents a primitive i assigned to a majority

function j that composes the output function. Position j = 1 refers to the first level

of the output function, while positions j ≥ 2 represents 2-level functions, formed by m

primitives each, in the second level of the output function.

As shown in the 3MS-Depth flowchart, presented in Figure 7, for d = 3 the

value of r will range from 2 · m − 1 to m2 and be incremented by m − 1 every

time K could not be solved. Considering m = 3, the initial value of r = 5

implies 1 ≤ j ≤ 2. Therefore, considering r = 5, Xij is composed by vectors

Xi1 and Xi2, where 2 inputs of Xi1 are primitives and the third input is a 2-level

function, formed by 3 primitives, defined by Xi2. As an example, consider the 3-

level output function M(M(1, D,M(B,C, 1)), A,M(B,C,D)). The 2-level function

M(1, D,M(B,C, 1)), formed by 3 primitives, corresponds to Xi2, which is an input for

Xi1 in conjunction with the primitives A and M(B,C,D).

The constraints shown in Equations 23 and 24 define the number of primitives in each

function j of Xij. Since all 2-level functions are formed by m primitives, Xij is equal

to m for each j > 1. The number of primitives in the first level of the output function,

represented by Xi1, is given by r −m ·
⌊

r
m

⌋
.

p−1∑
i=0

Xij = m ∀ j > 1 (23)

p−1∑
i=0

Xi1 = r −m ·
⌊ r
m

⌋
(24)

Therefore, for all values of r, j > 1 corresponds to 2-level majority functions in the

second level of the output function and j = 1 refers to the primitives in the first level,

represented by vector Xi1.

The solution of K consists on a sequence of values for matrix Xij and the total cost

of the selected primitives, represented by Z. Each position of Xij represents how many

times a primitive function i was selected to build a determined function j. The 3MS

algorithm reads the Xij matrix and builds the output majority function based on i and

39

j, adding every primitive to its respective level and creating a new maj-m operator to

comprise all created functions. For each level j > 1, a maj-m function is also created for

each m selected primitives.

As an example consider m = d = 3, n = r = 5 and the matrix Xij with the solution

{X[0, 1] = 1, X[57, 1] = 1, X[2, 2] = 1, X[6, 2] = 1, X[31, 2] = 1}, all other positions of

Xij being equal to 0. The indexes i = 0, i = 2, i = 6, i = 31 and i = 57 represents,

respectively, the primitives 0, A, E, M(B,C, 0) and M(D,E, 1).

From index j, function M(D,E, 1) and constant 0 are set to level 1 (j = 1), while the

primitives A, E and M(B,C, 0) are set to level 2 (j = 2). Since there are 3 primitives

in level 2, a new maj-3 operator is created, resulting in the 2-level majority function

M(A,E,M(B,C, 0)) that will be an input for level 1 along with 0 and M(D,E, 1). Lastly,

the maj-3 operator for level 0 is created, resulting in the 3-level output majority function

M(0,M(D,E, 1),M(A,E,M(B,C, 0))).

Next step is to update the variables S1 and S2 into the vectors S1j and S2j, adding

Equations 25 and 26 to K. This constraints represent the application of Ω.I’s logic to

every function where j > 1.

∑
i ∈ e

Xij = m→ S1j =
⌊m

2

⌋
∀ j > 1 (25)

∑
i ∈ k

Xij = m→ S2j =
⌊m

2

⌋
∀ j > 1 (26)

The constraints shown in Equations 27 and 28 ensures the application of Ω.I for the

first level of the output function, considering the inverted root primitives and the constants

in Xi1 together with S1j and S2j, respectively.

∑
i ∈ e

Xi1 +

1+b r
mc∑

j=2

S1j = m→ S11 =
⌊m

2

⌋
(27)

∑
i ∈ k

Xi1 +

1+b r
mc∑

j=2

S2j = m→ S21 =
⌊m

2

⌋
(28)

To exemplify the application of Ω.I through vectors S1j and S2j, consider d = m = 3,

n = 4, r = 7 and the matrix Xij with the solution {X[61, 1] = 1, X[17, 2] = 1, X[7, 2] =

1, X[0, 2] = 1, X[57, 3] = 1, X[8, 3] = 1, X[85, 3] = 1}, all other positions of Xij being

40

equal to 0. Considering r = 7 we have j = 3, meaning that the output function is formed

by 1 primitive in the first level (j = 1) and by 2 functions formed by 3 primitives each,

corresponding to 2 ≤ j ≤ 3.

The positions X[17, 2], X[7, 2] and X[0, 2] corresponds, respectively, to the functions

M(A, 1, C), B and 0, forming the 2-level function M(M(A, 1, C), B, 0) for j = 2. For

m = 3 we have
⌊
m
2

⌋
= 1. Therefore, for j = 2, S22 will value to 1 because all 3

selected primitives are in set k, being primitives with an inverted root or a constant.

The function M(M(A, 1, C), B, 0), which has a total cost of 20, 203, can be simplified

to M(M(A, 1, C), B, 1), updating its cost to 20, 103 since the updated form has 1 less

inverter.

The positions X[57, 3] = 1, X[8, 3] = 1 and X[85, 3] = 1 corresponds,

respectively, to the functions M(0, C,D), C and M(B,C,D), forming the 2-level function

M(M(0, C,D), C,M(B,C,D)) for j = 3. For j = 3, both S13 and S23 will value to

1, since all 3 selected primitives are in set e, which is contained by set k. The function

M(M(0, C,D), C,M(B,C,D)) will have its cost of 30, 405 updated to 30, 205, since it

can be simplified to M(M(0, C,D), C,M(B,C,D)), which has 2 less inverters.

The position X[61, 1] refers to the primitive M(A,B,C) in the first level of the

output function, where j = 1. Combining all j functions we have the output 3-level

function M(M(A,B,C),M(M(A, 1, C), B, 0),M(M(0, C,D), C,M(B,C,D))), which has

a total cost of 70, 511. Through Equations 27 and 28, that defines Ω.I’s logic to the

first level of the output function, we have
∑1+b r

mc
j=2 S1j = 1 and

∑1+b r
mc

j=2 S2j = 2,

signaling the already removed inverters, along with the inverted root primitives in the

first level. Since M(A,B,C) is both on set e and k, we have S11 and S21 valuing to 1,

resulting in a decrease of 2 more inverters and updating the output majority function to

M(M(A,B,C),M(M(A, 1, C), B, 0),M(M(0, C,D), C,M(B,C,D))), which has a total

cost of 70, 311.

Next step is the creation of binary vector Wi and set c. Set c stores the index of all

primitives with a majority gate, where Ci ≥ 10,000. Vector Wi stores the weight applied

to every Ci where i ∈ c, resulting in Wi = 1 if that primitive is assigned at least once

to the output function and to Wi = 0 otherwise. This logic is defined by the constraints

shown in Equations 29 and 30, ensuring that the cost of repeated primitives is disregarded

in the total cost of the output function.

41

1+b r
mc∑

j=1

Xij ≥ 1→ Wi = 1 ∀ i ∈ c (29)

1+b r
mc∑

j=1

Xij ≤ 0→ Wi = 0 ∀ i ∈ c (30)

The objective function for d = 3 is defined by Equation 31.

minZ =
∑
i ∈ c

Wi · Ci +
∑
i 6∈ c

1+b r
mc∑

j=1

Xij · Ci − 100 · (
1+b r

mc∑
j=1

S1j +

1+b r
mc∑

j=1

S2j) (31)

Note that Z is composed by the sum of all Ci multiplied by Wi if i ∈ c or by Xij

otherwise, followed by the subtraction of all inverters signaled by S1j and S2j.

The coverage of ft for d = 3 follows the same logic as d = 2. Based on the matrix Yit,

2n constraints are added to K, each for a term t of ft. The constraint shown in Equation

32 is added to K if ft = 1. If ft = 0, the bound is replaced by ≤
⌊
m
2

⌋
, as shown in

Equation 33.

p−1∑
i=0

Xi1 · Yit +

∑p−1
i=0

∑1+b r
mc

j=1 Xij · Yit⌊
m
3
· 2
⌋ >

⌊m
2

⌋
∀ ft = 1 | 0 ≤ t < 2n (32)

p−1∑
i=0

Xi1 · Yit +

∑p−1
i=0

∑1+b r
mc

j=1 Xij · Yit⌊
m
3
· 2
⌋ ≤

⌊m
2

⌋
∀ ft = 0 | 0 ≤ t < 2n (33)

The division by
⌊
m
3
· 2
⌋

ensures the proper coverage weight to all 2-level functions

that composes the 3-level output function, where j > 1. Also, this logic is not applied to

Xi1 because primitives in the first level does not form a 2-level function, having a higher

weight in the coverage of ft. Equation 34 shows the complete optimization model for

3-level majority functions.

The set of constraints K is then applied to the optimization solver and translated into

the output function if K could be solved. If K could not be solved, the constraints are

updated considering the increment r = r + (m − 1). If r = m2 and K still could not be

solved, an heuristic is used to cover ft considering functions with 4 or more levels.

42

minZ =
∑
i ∈ c

Wi · Ci +
∑
i 6∈ c

1+b r
mc∑

j=1

Xij · Ci − 100 · (
1+b r

mc∑
j=1

S1j +

1+b r
mc∑

j=1

S2j)

s.t.

p−1∑
i=0

Xij = m ∀ j > 1

p−1∑
i=0

Xi1 = r −m ·
⌊ r
m

⌋
Xij ≥ 0∑
i ∈ e

Xij = m→ S1j =
⌊m

2

⌋
∀ j > 1∑

i ∈ k

Xij = m→ S2j =
⌊m

2

⌋
∀ j > 1

∑
i ∈ e

Xi1 +

1+b r
mc∑

j=2

S1j = m→ S11 =
⌊m

2

⌋
∑
i ∈ k

Xi1 +

1+b r
mc∑

j=2

S2j = m→ S21 =
⌊m

2

⌋
S1j, S2j ∈ {0,

⌊m
2

⌋
}

1+b r
mc∑

j=1

Xij ≥ 1→ Wi = 1 ∀ i ∈ c

1+b r
mc∑

j=1

Xij = 0→ Wi = 0 ∀ i ∈ c

p−1∑
i=0

Xi1 · Yit +

∑p−1
i=0

∑1+b r
mc

j=1 Xij · Yit⌊
m
3
· 2
⌋ >

⌊m
2

⌋
∀ ft = 1 | 0 ≤ t < 2n

p−1∑
i=0

Xi1 · Yit +

∑p−1
i=0

∑1+b r
mc

j=1 Xij · Yit⌊
m
3
· 2
⌋ ≤

⌊m
2

⌋
∀ ft = 0 | 0 ≤ t < 2n

(34)

3.3.3 Heuristic for majority functions with 4 or more levels

This subsection presents an heuristic to cover ft considering majority functions with

4 or more levels (d ≥ 4). The main logic of the heuristic consists in subdividing the input

table ft into truth tables that can be covered by majority functions with up to 3 levels,

43

using the optimization models presented in the previous subsections. Table ft will be

subdivided into m truth tables represented by Fst, where 1 ≤ s ≤ m.

The first step is to apply don’t care state status to half (2n−1) the terms of ft,

generating the first truth table to be covered, represented by the integer vector F1t. A

term is a don’t care state if its coverage is irrelevant in the formulation of the output

function. Don’t care states are applied by setting the position of the chosen terms to 2,

while all other positions of F1t have the same value of ft. The number 2 is a random value,

any single digit different than 0 or 1 can also be used. The goal is to skip the don’t care

state term in the coverage Equations 32 and 33. With an assigned value different than

0 or 1, a term t will neither be considered a minterm (ft = 1) nor a maxterm (ft = 0),

being simply ignored in the coverage constraints.

Since the initial value of d = 4 implies that a 3-level function is needed in the output

majority function, F1t will be covered based on the optimization model for 3-level majority

functions. If F1t can not be covered by a 3-level function, new 2n−1 terms will be randomly

selected as don’t care states and a new optimization model will be created. Once F1t has

been covered, the cost Ci of every primitive used to build F1t will be set to 0, since the

cost of repeated gates is disregarded in the output function.

Every non don’t care state term in F1t will be considered a don’t care state in F2t,

all other terms being equal to ft. Therefore, F1t considers half the terms of ft as don’t

care states while F2t considers the other half. The coverage of F2t is also done through

a 3-level optimization model, along with the updated vector Ci. Since the cost of the

primitives used to cover F1t are set to 0, the optimization solver will prioritize the use

of those primitives in the coverage of F2t, reducing the overall size cost of the output

function.

Next step is to update F1t and F2t with the truth table of the newly generated

functions. From the updated vectors F1t and F2t, a new vector Ht is created. Vector Ht

stores the number of times that each term t is covered by all Fst functions. From vector

Ht, it is possible to define all remaining truth tables Fst, where s > 2. The combined Fst

functions must cover all minterms (ft = 1) at least
⌈
m
2

⌉
times and, at the same time, can

not cover any maxterms (ft = 0) more than
⌈
m
2

⌉
times. Therefore, if ft = 1 and term

t is covered less than
⌈
m
2

⌉
times, it must be covered by the next Fst function. Likewise,

if ft = 0 and term t is covered
⌈
m
2

⌉
− 1 times, it must not be covered by the next Fst

function. For any other case, term t is considered a don’t care state. For s > 2, Fst can

also be covered by primitives or 2-level functions, so the standard 3MS-Depth sequence

44

of optimization models is used. The heuristic ends when all m tables Fst are covered,

completing the output majority function.

As an example, consider m = 3, d = n = 4 and ft = 0110100110010110.

This truth table refers to the boolean function A ⊕ B ⊕ C ⊕ D, one of the

only 2 functions for n = 4 (from a total 65,536) that needs a 4-level majority

function to be covered. From ft, suppose F1t = 2112122210010222 and F2t =

0220200122222110, where value 2 represents the randomly assigned don’t care states.

Applying F1t to the 3-level optimization model generates the majority function

M(0, A,M(C,M(B,C,D),M(B,C,D))). Applying F2t to the 3-level optimization model

generates the majority function M(1, A,M(C,M(B,C,D),M(B,C,D))). Note that the

majority functions share 3 primitives, greatly decreasing the total cost of the output

function.

Next step is to update F1t and F2t to the truth table of the generated majority

functions, resulting in F1t = 1111111110010110 and F2t = 0110100111111111. Using the

vectors ft, F1t and F2t as a base, vector Ht is created. Table 21 shows vector Ht for the

presented example.

Table 21 – Example of vector Ht.

t F1t F2t ft Ht

0 1 0 0 1

1 1 1 1 2

2 1 1 1 2

3 1 0 0 1

4 1 1 1 2

5 1 0 0 1

6 1 0 0 1

7 1 1 1 2

8 1 1 1 2

9 0 1 0 1

10 0 1 0 1

11 1 1 1 2

12 0 1 0 1

13 1 1 1 2

14 1 1 1 2

15 0 1 0 1

Source: Author.

The positions where Ht = 2 or Ht = 0 represents don’t care states for the next

45

function F3t, since this positions refers to maxterms that were never covered and minterms

that were already covered twice. The positions where Ht = 1 refers to maxterms of ft that

were already covered once. Therefore, since
⌈
m
2

⌉
= 2 for m = 3, function F3t can not cover

any term where Ht = 1. The resulting truth table would be F3t = 0220200222220220,

where value 2 represents the don’t care state terms. The lowest cost function that can

effectively cover F3t is the constant 0. Therefore, the complete output majority function is

M(0,M(0, A,M(C,M(B,C,D),M(B,C,D))),M(1, A,M(C,M(B,C,D),M(B,C,D)))),

with a total cost of 6 gates (disregarding repeated gates), 3 inverters and 9 literals.

If ft can not be covered by the resulting 4-level majority function, the heuristic

considers the newly formed 4-level majority function as F1t, incrementing d to d = 5.

The terms with different values between F1t and ft are considered don’t care states for F2t

and, from F1t and F2t, vector Ht and the s > 2 truth tables are created. It’s important

to point out that this heuristic was tested only for the coverage of functions with up to 5

levels. Even though, in theory, this heuristic could work for d > 5 if extended to a higher

number of iterations, the high computational time required to synthesize functions with

more than 5 levels limits the heuristic viability.

3.4 3MS-SIZE SYNTHESIS

The 3MS-Size synthesis introduces a new variable R to the construction of set K.

The variable R represents the limit of different gates in the output majority function.

Since all functions with up to 1 gate are primitives, the initial value of R is R =
⌈
m
2

⌉
,

meaning that K is only solved if the combined selection of primitives covers ft and, at

the same time, do not have more than
⌈
m
2

⌉
different gates. Variable r has a initial value

of r = m, representing the limit of selected primitives, including repeated gates. Every

time K could not be solved, the variable R is incremented by 1, up to a maximum of r,

and the constraints in K are rebuilt. If R = r, variable r is incremented to r = r+m− 1.

Figure 8 shows a flowchart for the overall 3MS-Size synthesis.

3.4.1 Size optimization model

The first step in the formulation of K is the creation of matrix Xij, representing the

assignment of a primitive i into a maj-m 2-level function j that composes the output

function, following the same logic of primitives distribution presented in the 3-level

optimization model. Likewise, variable j ranges from 1 to 1 +
⌊

r
m

⌋
, where r bounds

46

Figure 8 – Flowchart for the overall 3MS-Size synthesis.

Source: Author.

the number of selected primitives in the coverage of ft, as shown in Equation 35.

p−1∑
i=0

1+b r
mc∑

j=1

Xij = r (35)

The 3MS-Size synthesis utilizes the same Wi vectors as the 3-level optimization model

to disregard the cost of repeated gates in the output majority function, as shown in

Equations 36 and 37. The main goal of the size optimization model is to combine the

same primitives as much as possible, aiming to find a solution with the least possible

number of different primitives, represented by R.

1+b r
mc∑

j=1

Xij ≥ 1→ Wi = 1 ∀ i ∈ c (36)

1+b r
mc∑

j=1

Xij ≤ 0→ Wi = 0 ∀ i ∈ c (37)

Vector Wi will value to 1 if a primitive i in set c (where Ci ≥ 10, 000) is selected at

least once to cover ft, valuing to 0 otherwise. Therefore, the sum of the elements in Wi

represents the number of different primitives (considering only non literals since literals

are not in set c) that composes the majority output function. Equation 38 bounds the

total of elements in Wi to R.

47

∑
i ∈ c

Wi ≤ R (38)

The objective function, represented by Z, can be calculated by Equation 39.

minZ =
∑
i ∈ c

Wi · Ci +
∑
i 6∈ c

1+b r
mc∑

j=1

Xij · Ci (39)

Next step is the creation of vector Tj, storing the weight in the coverage of ft, for

each maj-m function j. For the functions in the first level of the output function (j = 1),

the assigned weight is Tj = m3. If j > 1 and j ≤ m, meaning that the function j is in

the second level of the output function, the assigned weight will be Tj = m2. Likewise,

m < j ≤ m2 refers to functions on the third level of the output function and the assigned

weight is Tj = m. Lastly, a function j is on the fourth level of the output function if

m2 < j ≤ m3 and the assigned weight is Tj = 1. Note that functions in the higher levels

have lower weights in the coverage of the output function. It is important to point out

that a higher number of levels is not considered because the computational viability of

the size optimization model is limited to the coverage of functions with up to 5 levels.

Based on the matrix Yit, built in the pre-synthesis phase, the coverage of each term t

of ft is shown in Equations 40 and 41, for minterms and maxterms, respectively.

∑p−1
i=0

∑1+b r
mc

j=1 Xij · Tj · Yit >
⌊
m
2

⌋
·m3 ∀ ft = 1 | 0 ≤ t < 2n (40)

∑p−1
i=0

∑1+b r
mc

j=1 Xij · Tj · Yit ≤
⌊
m
2

⌋
·m3 ∀ ft = 0 | 0 ≤ t < 2n (41)

The bound
⌊
m
2

⌋
·m3 represents the coverage by the majority of the selected primitives,

considering the weights defined by the vector Tj. The complete size optimization model

is shown in Equation 42. If ft could not be covered, variable R is incremented and the

algorithm builds a new optimization model considering an output majority function with

greater size.

48

minZ =
∑
i ∈ c

Wi · Ci +
∑
i 6∈ c

1+b r
mc∑

j=1

Xij · Ci

s.t.

p−1∑
i=0

1+b r
mc∑

j=1

Xij = r

Xij ≥ 0

1+b r
mc∑

j=1

Xij ≥ 1→ Wi = 1 ∀ i ∈ c

1+b r
mc∑

j=1

Xij ≤ 0→ Wi = 0 ∀ i ∈ c

∑
i ∈ c

Wi ≤ R

p−1∑
i=0

1+b r
mc∑

j=1

Xij · Tj · Yit >
⌊m

2

⌋
·m3 ∀ ft = 1 | 0 ≤ t < 2n

p−1∑
i=0

1+b r
mc∑

j=1

Xij · Tj · Yit ≤
⌊m

2

⌋
·m3 ∀ ft = 0 | 0 ≤ t < 2n

(42)

49

4 COMPLEXITY OF ALGORITHMS

This chapter presents an introduction about complexity of algorithms, including the

concept of orders of magnitude and the complexity calculation for the optimization models

in both 3MS-Depth and 3MS-Size synthesis. The study of computational complexity can

be defined as the study of the computational effort needed to solve a determined problem

through an algorithm. The performance of an algorithm is measured by how the size of

its input, represented by N , impacts the overall runtime, whereas runtime is measured

by the number of operations to be performed by the algorithm (AGARWAL; BAKA, 2018).

Since the runtime of an algorithm depends on the input size, as N increases, the runtime

also increases. For example, a sorting algorithm will need more time to sort a list of 1,000

elements as compared to the time needed to sort a list of 100 elements. Therefore, the

runtime depends on the more complex operation to be executed. In a sorting algorithm,

the operation to compare elements have a higher complexity and thus will take more time

to execute, time that will be increased based on the value of N .

Orders of magnitude, represented by O, are the mathematical relationship between

the input size N and the necessary time for the algorithm to execute. There are 3 possible

ways to characterize an order of magnitude: The worst-case scenario considers the upper-

bound complexity, resulting in the maximum runtime required for the algorithm to run.

In this case, the higher complexity operations should be executed the maximum number

of times. Best-case scenario is the opposite, being the lower-bound complexity where the

minimum runtime is considered. Lastly, the average-case scenario considers the average

runtime required for an algorithm to execute (ASCENCIO; ARAÚJO, 2010).

With an worst-case scenario approach, its possible to ignore variables and operations

that, at large values of N , do not impact the overall complexity of the algorithm. This

makes the complexity calculation mathematically easier, while also allowing to focus on

more relevant operations. Therefore, worst-case scenario is the most useful and the most

used analysis to generate complexity orders of magnitude (DEDOV, 2020). In this work,

the complexity of the 3MS algorithm is calculated based on worst-case scenarios.

50

The main possible complexity orders are shown in Table 22. Figure 9 presents a

complexity comparison among the constant, logarithmic, linear and linearithmic orders of

magnitude, aiming to exemplify the increase in the number of operations for each order.

In this example, we consider logarithmic base 2 for O(log(N)) and O(N · log(N)). Figure

10 presents a complexity comparison among the remaining, and more complex, orders of

magnitude: quadratic, cubic and exponential.

Table 22 – Main orders of magnitude.

Order of Magnitude Complexity

O(1) Constant

O(log(N)) Logarithmic

O(N) Linear

O(N · log(N)) Linearithmic

O(N2) Quadratic

O(N3) Cubic

O(2N) Exponential

Source: Author.

Figure 9 – Comparison among constant, logarithmic, linear and linearithmic orders.

Source: Author

According to Wilf (2019), an algorithm is considered efficient if composed mostly by

polynomial functions. Therefore, to be considered efficient, an algorithm must have a

complexity order of at most O(N3). Exponential orders of magnitude, O(2N), are only

51

considered efficient if the algorithm can not be further simplified.

Figure 10 – Comparison among quadratic, cubic and exponential orders.

Source: Author

The constant order of magnitude, represented by O(1), means that the number of

operations of an algorithm is not related to the size of N . An example of O(1) would be

an algorithm that receives a number as input and prints it on the screen. In this example,

independently of the input, the number of operations in the algorithm would always be

the same: one operation to read the number and another to print it. Figure 11 shows this

example coded in Python language.

Figure 11 – Example of O(1).

Source: Author

An algorithm has a logarithmic order of magnitude, O(log(N)), if each iteration

divides the input, performing the inverse operation of a exponentiation. Binary search

is a classic example of logarithmic complexity. In a binary search, the goal is to find

a specific item in an already sorted sequence by dividing the input in half with each

iteration. Therefore, binary search algorithms have a logarithmic complexity of base 2,

O(log2(N)). Figure 12 presents the code of a binary search algorithm.

52

Figure 12 – Example of O(log(N)).

Source: Author

The linear order of magnitude O(N) means that the number of operations in an

algorithm is linearly dependant of its input size. An example of linear complexity is

an algorithm that receives a number as input and prints all numbers from 0 up to that

number. This algorithm is formed by a repetition loop that performs the print operation

N times, where N is the input number. Figure 13 shows an example of this algorithm

code.

Figure 13 – Example of O(N).

Source: Author

Note that the operation with higher complexity will define the overall complexity of

the algorithm. Even through the input operation on line 2 has a constant complexity O(1),

in large values of N this constant loses relevance when compared to the linear complexity

O(N) of the repetition loop. If N = 10, 000, for instance, the repetition loop would be

responsible for 10, 000 of the total 10, 001 operations realized by the algorithm.

Similar to logarithmic complexity, algorithms with linearithmic complexy, O(N ·
log(N)), also utilize a sequence of divisions to travel the search space. The key difference

is that in a linearithmic algorithm both halves of the input are retained after each division.

Quick sorts are a classic example of linearithmic algorithms. In a quick sort algorithm, the

goal is to sort a sequence of numbers by selecting a random number, called pivot, that will

be used as parameter. The correct index for the pivot is calculated by dividing the other

53

numbers in the sequence into 2 subsets, one receiving values lower than the pivot and

the other receiving the numbers with a higher value. This logic will be applied to every

element in the sequence. Therefore, linearithmic complexity means that an operation of

logarithmic complexity will be realized a linear number of times. Figure 14 shows the

code of a quick sort function.

Figure 14 – Example of O(N · log(N)).

Source: Author

Quadratic complexity, O(N2), represents an algorithm whose performance is directly

proportional to the squared size of N . An example of O(N2) complexity is an algorithm

that prints all elements of an N×N matrix. This algorithm can be programmed with 2

repetition loops, as shown in Figure 15.

Figure 15 – Example of O(N2).

Source: Author

Likewise, cubic complexity represents an algorithm where the number of operations is

proportional to the cube value of the input size. An example of O(N3) complexity is an

algorithm that receives 3 vectors of N elements and has to print all 3-to-3 combinations

of those vectors. Figure 16 shows this example in Python code.

54

Figure 16 – Example of O(N3).

Source: Author

A classic example of exponential complexity, O(2N), is the Fibonacci algorithm.

Exponential complexity refers to algorithms where the number of operations doubles with

each increase to the input size N . Figure 17 shows the recursive programming of a

Fibonacci function. Note that for each iteration the function is called 2 more times until

N = 1 or N = 0, generating an exponential growth in the number of operations.

Figure 17 – Example of O(2N).

Source: Author

4.1 COMPLEXITY OF THE 3MS ALGORITHM

This section presents the complexity calculation for both 3MS-Depth and 3MS-Size

synthesis, the complexity order of each optimization model is addressed and explained

individually. The input data received by the 3MS algorithm are the variable m and the

binary vector ft. The variable m represents the number of majority gate inputs considered

to generate the output function. Vector ft represents a truth table of 2n terms, where

n refers to the number of input variables. Based on n, m and ft, the pre-synthesis of

the 3MS algorithm, described in section 3.2, builds the primitives table and stores the

necessary information to build all optimization constraints. Both 3MS-Depth and 3MS-

Size synthesis considers the complete table of primitives to build its constraints and the size

of each constraint is mainly dependant of the amount of primitive functions, represented

by p. Therefore, since the number of primitives p has the higher impact in every 3MS

55

optimization model, we consider N = p to calculate the complexity orders.

It is also important to point out that only the complexity of the constraints formulation

is being considered. The complexity of the solution provided by the optimization solvers

is not being considered, since the solution will vary based not only for the optimization

solver but also for each optimization model created.

4.1.1 Complexity of the 2-level optimization model

The complexity of an optimization model is given by its highest complexity

constraints. In this section we explain the individual programming complexity for

each constraint that composes the 2-level optimization model and then combine these

complexities to form the overall complexity of the optimization model. Equation 16

bounds the sum of elements in Xi to m. The number of elements in the sum will increase

linearly based on the value of p, resulting in the linear complexity O(N).

Equations 17 and 18, that simulates the Ω.I axiom, can be programmed by using a

loop of p iterations. Since set e does not include the constants 0 and 1, the initial index

is i = 2. Each iteration is composed by at least 1 operation to verify if a primitive i is in

set e or in set k. The attributions S1 =
⌊
m
2

⌋
or S2 =

⌊
m
2

⌋
are done once after the loop,

thus having a constant complexity. Therefore, the constraint defined by Equation 17 has

a total complexity of O(N − 2) + O(1). For Equation 18, set k includes all p primitives,

resulting in the complexity O(N) +O(1). Both constraints can be simplified to O(N).

The objective function Z, shown in Equation 19, can be divided into 2 operations.

The operation
∑p−1

i=0 Xi ·Ci has a linear complexity, since the multiplication is done once

for each primitive i, totalizing p multiplications. The operation −100 · (S1 + S2) is done

a single time independently of the value of p, having a constant complexity. Therefore,

the complexity of the objective function is given by O(N) +O(1), simplified to O(N).

The total number of multiplications in the coverage constraints, represented by

Equations 20 and 21, is given by p · 2n, since the operation
∑p−1

i=0 Xi · Yit implies one

sum of p multiplications for each term t of ft, where 0 ≤ t < 2n. Additionally, each term

t has an operation to verify if t is a minterm or a maxterm and another to verify the

condition which its corresponding sum is bound to. Therefore, the complexity of each

coverage constraint is defined by a repetition loop of 2n iterations and p+ 2 operations in

each iteration, resulting in the complexity order 2n ·O(N + 2).

Table 23 shows each constraint and its respective complexity order. The complete

56

complexity of the 2-level optimization model is given by the sum 2·(2n ·O(N+2))+O(N−
2)+3·O(N)+3·O(1). Based on the worst case scenario approach, that considers the highest

order of magnitude as the overall complexity, the 2-level optimization complexity can be

further simplified to O(N). Therefore, considering N = p, the 3MS-Depth optimization

model for 2-level majority functions has a linear complexity.

Table 23 – Constraint complexity orders for the 2-level optimization model.

Constraints Order of Magnitude∑p−1
i=0 Xi = m O(N)∑

i ∈ eXi = m→ S1 =
⌊
m
2

⌋
O(N − 2) +O(1)∑

i ∈ kXi = m→ S2 =
⌊
m
2

⌋
O(N) +O(1)

minZ =
∑

iXi · Ci − 100 · (S1 + S2) O(N) +O(1)∑p−1
i=0 Xi · Yit >

⌊
m
2

⌋
∀ ft = 1 | 0 ≤ t < 2n 2n ·O(N + 2)∑p−1

i=0 Xi · Yit ≤
⌊
m
2

⌋
∀ ft = 0 | 0 ≤ t < 2n 2n ·O(N + 2)

Source: Author.

4.1.2 Complexity of the 3-level optimization model

The first constraints of the 3-level optimization model bounds the values of Xij.

Equation 23 bounds the value of Xij for all j > 1. The total of elements in the constraint

is defined by p ·
⌊

r
m

⌋
, representing

⌊
r
m

⌋
sums of p elements. Therefore, the complexity

can be calculated by O(N) ·
⌊

r
m

⌋
and, since

⌊
r
m

⌋
is a fixed value in the model and not a

variable, it can be simplified to O(N). Equation 24 bounds the value Xi1 for j = 1, being

a single sum of p elements and thus also having a linear complexity.

The complexity of the Ω.I constraints for j > 1, defined by Equations 25 and 26,

can be calculated by considering the same complexity applied to the 2-level optimization

model, multiplied by
⌊

r
m

⌋
, since the logic is applied for every j > 1 and 1 ≤ j ≤ 1 +

⌊
r
m

⌋
.

Therefore, Equation 25 have a total complexity of
⌊

r
m

⌋
· (O(N − 2) +O(1)). Likewise, the

total complexity of Equation 26 is given by
⌊

r
m

⌋
· (O(N) +O(1)). Both complexities can

be simplified to O(N), considering the worst case scenario approach.

The remaining Ω.I constraints, represented by Equations 27 and 28, that defines the

values of S11 and S21, have a individual complexity order of O(N) + (2 +
⌊

r
m

⌋
) + O(1).

This complexity can be calculated by considering the p operations of Xi1, to verify if the

primitive i is in set e or set k, followed by the sum of all values in S1j and S2j. Lastly,

an operation to assign the correct values to S11 or S21 is also considered. Table 24 shows

the equation and the individual complexity of the constraints for Xij bounding and Ω.I

57

application.

Table 24 – Complexity orders of Xij bounding and Ω.I application, for the 3-level
optimization model.

Constraints Order of Magnitude∑p−1
i=0 Xij = m ∀ j > 1 O(N) ·

⌊
r
m

⌋∑p−1
i=0 Xi1 = r −m ·

⌊
r
m

⌋
O(N)∑

i ∈ eXij = m→ S1j =
⌊
m
2

⌋
∀ j > 1

⌊
r
m

⌋
· (O(N − 2) +O(1))∑

i ∈ kXij = m→ S2j =
⌊
m
2

⌋
∀ j > 1

⌊
r
m

⌋
· (O(N) +O(1))∑

i ∈ eXi1 +
∑

j S1j = m→ S11 =
⌊
m
2

⌋
O(N) + (2 +

⌊
r
m

⌋
) +O(1)∑

i ∈ kXi1 +
∑

j S2j = m→ S21 =
⌊
m
2

⌋
O(N) + (2 +

⌊
r
m

⌋
) +O(1)

Source: Author.

Equations 29 and 30, responsible for the assignment values of Wi, share the same

complexity and both can be build using similar calculations. For each primitive i the

algorithm sums all 1 +
⌊

r
m

⌋
elements in Xij (since the maximum value of j is 1 +

⌊
r
m

⌋
)

and, after the sum, verifies the condition of each constraint and assigns the value of

Wi accordingly, totalizing 2 operations for each i. Therefore, the complexity of both

constraints is given by (3 +
⌊

r
m

⌋
) ·O(N).

the by Equation 31, can be divided into 3 calculations. The first calculation consists

in multiplying vector Wi with its respective cost Ci, totalizing at least p operations to

verify if each i pertains to c. Therefore, for
∑

i ∈ cWi · Ci, we have linear complexity of

O(N). The complexity of the second calculation,
∑

i 6∈ c

∑1+b r
mc

j=1 Xij ·Ci, is defined by the

sum of p ·(1+
⌊

r
m

⌋
) multiplications, since 0 ≤ i < p−1 and 1 ≤ j ≤ 1+

⌊
r
m

⌋
. A second set

of p multiplications is also needed to multiply Ci, along with a constant operation in every

multiplication to verify if the primitive i does not pertains to c. The complexity for this

calculation is O(N) · (
⌊

r
m

⌋
+2). The last calculation, −100 · (

∑1+b r
mc

j=1 S1j +
∑1+b r

mc
j=1 S2j),

is composed by 2·(1+
⌊

r
m

⌋
) calculations that does not depend on the value of N = p, being

of complexity 2 ·
⌊

r
m

⌋
·O(1). The complete complexity order for the objective function is

O(N) · (
⌊

r
m

⌋
+ 3) + 2 ·

⌊
r
m

⌋
·O(1).

The coverage constraints, represented by Equations 32 and 33, can be divided into

2 base calculations. The first calculation refers to
∑p−1

i=0 Xi1 · Yit, which generates the

complexity 2n·O(N+2), following the same logic as the coverage of the 2-level optimization

model. The second calculation refers to the application of the coverage logic to every

function where j > 1. Additionally, the weight calculation is considered as an operation

of constant complexity for each j > 1. Therefore, the total complexity for each coverage

constraint is (2n ·O(N + 2)) · (1 +
⌊

r
m

⌋
) + (O(1) ·

⌊
r
m

⌋
).

58

Table 25 shows the equation and the individual complexity of the remaining

constraints for the 3-level optimization model. Based on the worst case scenario approach,

since O(N) is the highest order of magnitude, the 3MS-Depth optimization model for 3-

level majority functions also has a linear complexity.

Table 25 – Complexity for the 3-level optimization model remaining constraints.

Constraints Order of Magnitude∑
j Xij ≥ 1→ Wi = 1 ∀ i ∈ c (3 +

⌊
r
m

⌋
) ·O(N)∑

j Xij = 0→ Wi = 0 ∀ i ∈ c (3 +
⌊

r
m

⌋
) ·O(N)

minZ =
∑

i ∈ cWi · Ci +
∑

i 6∈ c

∑
j Xij · Ci − 100 · (

∑
j S1j +

∑
j S2j) O(N) · (

⌊
r
m

⌋
+ 3) + 2 ·

⌊
r
m

⌋
·O(1)∑p−1

i=0 Xi1 · Yit +
∑

i

∑
j Xij ·Yit

bm3 ·2c
>
⌊
m
2

⌋
∀ ft = 1 | 0 ≤ t < 2n (2n ·O(N + 2)) · (1 +

⌊
r
m

⌋
) + (O(1) ·

⌊
r
m

⌋
)∑p−1

i=0 Xi1 · Yit +
∑

i

∑
j Xij ·Yit

bm3 ·2c
≤
⌊
m
2

⌋
∀ ft = 0 | 0 ≤ t < 2n (2n ·O(N + 2)) · (1 +

⌊
r
m

⌋
) + (O(1) ·

⌊
r
m

⌋
)

Source: Author.

4.1.3 Complexity of the size optimization model

This section presents the complexity calculation when the reduction of size is being

prioritized. Since the size optimization model utilizes several constraints also used by the

3-level optimization model, which can all be simplified to a linear complexity O(N), in

this section we will address only the constraints that are exclusive to the size optimization

model. The first constraint, represented by Equation 35, bounds the sum of Xij to r. The

total of elements in the constraint is defined by p · (1 +
⌊

r
m

⌋
), representing (1 +

⌊
r
m

⌋
) sums

of p elements. Therefore, the complexity can be calculated by O(N) · (1 +
⌊

r
m

⌋
), being

simplified to O(N).

Equations 38 limits the sum of elements in Wi to the upper bound R. Since at least

1 iteration for each primitive i is needed to verify if the primitive pertains to set c, the

number of iterations can be given by p. Therefore, Equation 38 have a linear complexity

O(N).

The objective function Z, shown in Equation 39, is formed by the
∑p−1

i=0 Xi ·Ci, having

linear complexity since the multiplication is done once for each primitive i, totalizing p

multiplications.

The coverage constraints in the size optimization model, represented by Equations

40 and 41, are composed by p · (1 +
⌊

r
m

⌋
) calculations, since 0 ≤ i < p − 1 and 1 ≤ j,

multiplied by j (application of weight Tj for each function j) and 2n (since a constraint is

created for each term t), respectively. Additionally, the weight calculation is considered

59

as an operation of constant complexity for each j. Therefore, the coverage constraints

have an individual complexity of 2n · 2 · (1 +
⌊

r
m

⌋
) · O(N) + (1 +

⌊
r
m

⌋
) · O(1), which can

be simplified to 2n · 2 · (1 +
⌊

r
m

⌋
) · O(N) and then further simplified to O(N). Table 26

presents the complexity orders of the size optimization model.

Table 26 – Constraint complexity orders for the size optimization model.

Constraints Order of Magnitude∑p−1
i=0

∑1+b r
mc

j=1 Xij = r O(N) ·
⌊

r
m

⌋∑
i ∈ cWi ≤ R O(N)

minZ =
∑

i ∈ cWi · Ci +
∑

i 6∈ c

∑1+b r
mc

j=1 Xij · Ci O(N)∑p−1
i=0

∑1+b r
mc

j=1 Xij · Tj · Yit >
⌊
m
2

⌋
·m3 ∀ ft = 1 | 0 ≤ t < 2n 2n · 2 · (1 +

⌊
r
m

⌋
) ·O(N)∑p−1

i=0

∑1+b r
mc

j=1 Xij · Tj · Yit ≤
⌊
m
2

⌋
·m3 ∀ ft = 0 | 0 ≤ t < 2n 2n · 2 · (1 +

⌊
r
m

⌋
) ·O(N)

Source: Author.

60

5 TESTS AND RESULTS

This chapter presents the results obtained from the comparisons between the 3MS

algorithm and other exact synthesis algorithms for maj-3 and maj-5 functions. The

exact mig algorithm (SOEKEN et al., 2017), used for maj-3 synthesis (m = 3), is viable for

functions with up to 6 input variables, while the exact m5ig algorithm (CHU et al., 2019),

used for maj-5 synthesis (m = 5), is viable for functions with up to 4 input variables.

Both algorithms are exact when optimizing size, but only the exact mig can also optimize

depth as primary cost criteria. Currently there are no algorithms other than the 3MS

that can optimize depth for maj-5 functions.

The 3MS algorithm can optimize inverters and literals, without losing optimal

minimization for depth and size. Since 2 additional cost criteria are considered, the goal

of the algorithm is to further reduce the production cost of technologies where inverters

and gate inputs are expensive to build. Considering m = 3, the 3MS algorithm is viable

for functions with up to 8 input variables. Considering m = 5, the 3MS can synthesize

functions with a maximum of 5 input variables. For both m = 3 and m = 5, the 3MS

algorithm can synthesize functions with a higher number of input variables when compared

to the exact mig and exact m5ig.

The 3MS algorithm can be divided into 2 synthesis, the 3MS-Depth, prioritizing depth

over size, and the 3MS-Size, prioritizing size over depth. Both synthesis also considers the

number of inverters and literals as third and fourth cost criteria. From the possibilities

of prioritization, 4 cost criteria were selected. Criteria D3 considers m = 3 and refers

to the prioritization of depth, followed by size, inverters and literals. Criteria D5 follows

the same sequence of prioritization, but considering m = 5 instead. Similarly, criteria

S3 considers m = 3 and prioritizes the minimization of size, followed by depth, inverters

and literals. Criteria S5 considers the same sequence for m = 5. All tests were made

using a computer with a 16 GB (gigabytes) RAM memory and a 2.2 GHZ CPU. The

3MS algorithm was implemented in Python, using Gurobi (Gurobi Optimization LLC, 2021)

and CPLEX (IBM CPLEX LOG, 2021) optimizers to solve the optimization models. Both

61

optimizers were implemented through their respective API (Application Programming

Interface). Additionally, both optimizers were able to generate optimal results for all

tested functions.

For n = 3 and n = 4, the 3 algorithms were executed for all possible functions,

totalizing 256 and 65,536 functions, respectively. Table 27 shows the cost comparison

between the 3MS-Depth synthesis and the exact mig for criteria D3.

Table 27 – Cost comparison for n = 3 and n = 4, considering criteria D3.

n = 3 n = 4
3MS-Depth < exact mig 155 51,799
3MS-Depth = exact mig 101 13,737

Total Functions 256 65,536

Source: Author

For n = 3, the 3MS-Depth was able to further reduce the cost of 155 (61%) functions

and achieved equivalent results for the remaining 101 (39%). For n = 4, the 3MS-Depth

achieved a lower cost for 51,799 (79%) and an equal cost for 13,737 (21%) functions. Table

28 shows the comparison between the 3MS-Size synthesis and the exact mig for criteria

S3, also considering n = 3 and n = 4.

Table 28 – Cost comparison for n = 3 and n = 4, considering criteria S3.

n = 3 n = 4
3MS-Size < exact mig 143 33,657
3MS-Size = exact mig 113 31,879

Total Functions 256 65,536

Source: Author

For n = 3, the 3MS-Size achieved better results for 143 (56%) functions and equal

cost results for 113 (44%). For n = 4, the 3MS-Size was able to further improve 33,657

(51%) and generated equal cost results for the remaining 31,879 (49%). Table 29 shows

the comparison of the 3MS-Size synthesis and the exact m5ig, considering criteria S5,

n = 3 and n = 4.

Table 29 – Cost comparison for n = 3 and n = 4, considering criteria S5.

n = 3 n = 4
3MS-Size < exact m5ig 158 38,616
3MS-Size = exact m5ig 98 26,920

Total Functions 256 65,536

Source: Author

For n = 3, the 3MS-Size was able to achieve a lower cost for 158 (62%) and an equal

62

cost for 98 (38%) functions. For n = 4, the 3MS-Size was able to improve 38,616 (59%)

functions and achieved equal cost for the remaining 26,920 (41%). Therefore, considering

3 ≤ n ≤ 4 and criteria S5, the 3MS-Size was able to further reduce the cost of 38,774 (59%)

functions out of a total of 65,792 compared functions. Figure 18 shows the comparison

between the 3MS-Size and the exact m5ig in graph format.

Figure 18 – Cost comparison (by number of improved and equal functions) between the
3MS-Size and the exact m5ig, for criteria S5.

158

38616 38774

98

26920 27018

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

𝑛 = 3 𝑛 = 4 3 ≤ 𝑛 ≤ 4
Título do Eixo3𝑀𝑆 < 𝑒𝑥𝑎𝑐𝑡_𝑚5𝑖𝑔 3𝑀𝑆 = 𝑒𝑥𝑎𝑐𝑡_𝑚5𝑖𝑔

Source: Author

Since the total number of possible functions is calculated by 22n , comparing the

algorithms for all functions where n > 4 is impracticable. Considering n = 5, for instance,

we have 232 = 4,294,967,296 possible functions. For that reason, samples of 10,000 and

1,500 functions were generated for n = 5 and n = 6, respectively. Table 30 shows the

comparison between the 3MS-Depth synthesis and the exact mig for criteria D3.

Table 30 – Cost comparison for n = 5 and n = 6, considering criteria D3.

n = 5 n = 6
3MS-Depth < exact mig 8,222 1,366
3MS-Depth = exact mig 1,778 134

Total Functions 10,000 1,500

Source: Author

Considering n = 5 and n = 6, the 3MS-Depth was able to further reduce the cost of

8,222 (82%) and 1,366 (91%) functions, respectively, and generated equivalent results for

1,778 (18%) and 134 (9%). Figure 19 shows the cost comparison between the 3MS-Depth

and the exact mig for criteria D3 and 3 ≤ n ≤ 6. Note that the 3MS-Depth was able to

further reduce the cost of 61,542 (79%) functions out of a total of 77,292 functions.

63

Figure 19 – Cost comparison (by number of improved and equal functions) between the
3MS-Depth and the exact mig, for criteria D3.

155

51799

8222

1366

61542

101

13737

1778 134

15750

0

10000

20000

30000

40000

50000

60000

𝑛 = 3 𝑛 = 4 𝑛 = 5 𝑛 = 6 3 ≤ 𝑛 ≤ 6
Título do Eixo3𝑀𝑆 < 𝑒𝑥𝑎𝑐𝑡_𝑚𝑖𝑔 3𝑀𝑆 = 𝑒𝑥𝑎𝑐𝑡_𝑚𝑖𝑔

Source: Author

Table 31 shows the comparison between the 3MS-Size synthesis and the exact mig for

criteria S3, for both n = 5 and n = 6.

Table 31 – Cost comparison for n = 5 and n = 6, considering criteria S3.

n = 5 n = 6
3MS-Size < exact mig 7,407 1,208
3MS-Size = exact mig 2,593 292

Total Functions 10,000 1,500

Source: Author

For n = 5, the 3MS-Size was able to further improve 7,407 (74%) of the compared

functions, achieving equal cost results for the remaining 2,593 (26%). For n = 6, the

number of improved and equal cost functions was, respectively, 1,208 (81%) and 292

(19%). Figure 20 shows the cost comparison between the 3MS-Size and the exact mig

for criteria S3 and 3 ≤ n ≤ 6. Note that, from a total of 77,292 compared functions, the

3MS-Size was able to improve the cost of 42,415 (55%) functions.

Therefore, considering all comparisons regarding the 3 cost criteria variations D3, S3

and S5, the 3MS algorithm was able to generate lower cost results for 142,731 (64%) of all

220,376 compared functions. It is important to point out that comparisons using the cost

criteria D5 were not presented because, to our knowledge, there are no other synthesis

than the 3MS-Depth that can prioritize depth as primary cost criteria for maj-5 functions.

Additionally, all 220,376 compared functions could be covered using at maximum 5 levels

64

in the output function, for both m = 3 and m = 5.

Figure 20 – Cost comparison (by number of improved and equal functions) between the
3MS-Size and the exact mig, for criteria S3.

143

33657

7407

1208

42415

113

31879

2593
292

34877

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

𝑛 = 3 𝑛 = 4 𝑛 = 5 𝑛 = 6 3 ≤ 𝑛 ≤ 6
Título do Eixo3𝑀𝑆 < 𝑒𝑥𝑎𝑐𝑡_𝑚𝑖𝑔 3𝑀𝑆 = 𝑒𝑥𝑎𝑐𝑡_𝑚𝑖𝑔

Source: Author

To apply the 3MS to maj-3 functions where n > 6, two samples of 1,000 randomly

generated functions each were created for n = 7 and n = 8. The 3MS was able to generate

optimal solutions for all functions in the sample, using both 3MS-Depth and 3MS-Size.

Likewise, to apply the 3MS algorithm to maj-5 functions where n = 5, a sample of 10,000

functions was created. The 3MS was also able to effectively cover all 10,000 functions,

using both 3MS-Depth and 3MS-Size synthesis.

Both CPLEX and Gurobi optimizers were able to generate optimal solutions for all

tested functions. However, when considering runtime and memory usage, the CPLEX

optimizer was able to generate optimal solutions using less memory and in a lower amount

of time, for both m = 3 and m = 5. Table 32 shows the runtime comparison (in seconds

and hours) between the Gurobi and the CPLEX optimizers, for criteria D3 and 3 ≤ n ≤ 8.

Likewise, Table 33 shows the same comparison for criteria S3.

Considering criterias D3 and S3, along with all 158,584 generated results for 3 ≤ n ≤ 8,

the total runtime of the 3MS algorithm was 101.85 hours when using the CPLEX API and

121.06 hours when using the Gurobi API. Therefore, for m = 3, the CPLEX optimizer

resulted in a 16% lower runtime. Table 34 shows the memory usage comparisons (in

megabytes) between the CPLEX and the Gurobi optimizers, for 3 ≤ n ≤ 8 and criterias

D3 and S3.

65

Table 32 – Runtime comparison between Gurobi and CPLEX, for criteria D3.

Gurobi CPLEX
n Total Functions Total Runtime Avg. Runtime Total Runtime Avg. Runtime
3 256 20.48 s 0.08 s 17.49 s 0.06 s
4 65,536 35.49 h 1.95 s 31.23 h 1.71 s
5 10,000 7.52 h 2.71 s 6.22 h 2.23 s
6 1,500 1.34 h 3.23 s 1.07 h 2.56 s
7 1,000 5.70 h 20.55 s 5.20 h 18.75 s
8 1,000 7.13 h 25.70 s 6.12 h 22.04 s

Source: Author

Table 33 – Runtime comparison between Gurobi and CPLEX, for criteria S3.

Gurobi CPLEX
n Total Functions Total Runtime Avg. Runtime Total Runtime Avg. Runtime
3 256 15.36 s 0.06 s 14.82 s 0.05 s
4 65,536 38.04 h 2.09 s 31.49 h 1.73 s
5 10,000 9.66 h 3.48 s 8.02 h 2.89 s
6 1,500 1.98 h 4.75 s 1.79 h 4.29 s
7 1,000 6.21 h 22.39 s 4.82 h 17.36 s
8 1,000 7.99 h 28.83 s 5.89 h 21.23 s

Source: Author

Table 34 – Average memory usage of Gurobi and CPLEX, for m = 3.

Gurobi CPLEX
n Total Functions D3 S3 D3 S3
3 256 5.13 MB 4.60 MB 4.91 MB 4.27 MB
4 65,536 7.47 MB 6.89 MB 7.09 MB 6.16 MB
5 10,000 9.25 MB 8.42 MB 8.82 MB 7.33 MB
6 1,500 10.58 MB 10.16 MB 10.63 MB 9.51 MB
7 1,000 21.03 MB 19.77 MB 20.12 MB 18.06 MB
8 1,000 36.74 MB 33.26 MB 33.91 MB 23.57 MB

Source: Author

The average memory usages for the 3MS algorithm, using the Gurobi and CPLEX

APIs respectively, were 7.78 megabytes and 7.30 megabytes. Therefore, for m = 3, the

CPLEX optimizer resulted in a 6% lower memory usage.

Tables 35 and 36 shows, respectively, the runtime and memory usage comparisons

between the CPLEX and the Gurobi optimizers for criteria D5 and S5, considering 3 ≤
n ≤ 5. Considering criterias D5 and S5, along with all 151,584 generated results for

3 ≤ n ≤ 5, the total runtime of the 3MS algorithm was 106.81 hours when using the

CPLEX API and 118.08 hours when using the Gurobi API. Therefore, for m = 5, the

CPLEX optimizer had a 10% lower runtime when compared to the Gurobi optimizer.

66

Table 35 – Runtime comparison between Gurobi and CPLEX, for criteria D5.

Gurobi CPLEX
n Total Functions Total Runtime Avg. Runtime Total Runtime Avg. Runtime
3 256 2.17 m 0.51 s 1.75 m 0.41 s
4 65,536 47.13 h 2.58 s 41.35 h 2.27 s
5 10,000 11.41 h 4.11 s 10.88 h 3.92 s

Source: Author

Table 36 – Runtime comparison between Gurobi and CPLEX, for criteria S5.

Gurobi CPLEX
n Total Functions Total Runtime Avg. Runtime Total Runtime Avg. Runtime
3 256 2.04 m 0.48 s 1.97 m 0.46 s
4 65,536 48.42 h 2.66 s 44.72 h 2.45 s
5 10,000 11.05 h 3.98 s 9.83 h 3.54 s

Source: Author

Table 37 shows the memory usage comparisons between the CPLEX and the Gurobi

optimizers, considering 3 ≤ n ≤ 5 and m = 5.

Table 37 – Average memory usage of Gurobi and CPLEX, for m = 5.

Gurobi CPLEX
n Total Functions D5 S5 D5 S5
3 256 23.04 MB 22.36 MB 19.12 MB 17.44 MB
4 65,536 36.53 MB 33.61 MB 31.05 MB 35.28 MB
5 10,000 41.07 MB 42.15 MB 39.11 MB 38.33 MB

Source: Author

The average memory usages for the Gurobi and CPLEX optimizers were 29.99

megabytes and 35.89 megabytes, respectively. Therefore, for m = 5, the CPLEX optimizer

resulted in a 17% lower memory usage when compared to the Gurobi optimizer.

Since CPLEX generated better results for both runtime and memory usage, the

following comparisons considers the 3MS algorithm runtime and memory usage with the

CPLEX optimizer as the chosen API. Table 38 shows the runtime comparison between

the 3MS-Depth synthesis and the exact mig, for criteria D3 and 3 ≤ n ≤ 6. Figure 21

shows the average runtime comparison in graph format for each n.

The exact mig algorithm had a total runtime of 76,17 hours for criteria D3 and 3 ≤
n ≤ 6, whereas the 3MS-Depth had a 97% faster total runtime of 38,52 hours. Table 39

shows the runtime comparison between the 3MS-Size and the exact mig, for criteria S3

and 3 ≤ n ≤ 6. Figure 22 shows this comparison in graph format.

67

Table 38 – Runtime comparison between 3MS-Depth and exact mig, for criteria D3.

3MS-Depth exact mig
n Total Functions Total Runtime Avg. Runtime Total Runtime Avg. Runtime
3 256 17.49 s 0.06 s 23.04 s 0.09 s
4 65,536 31.23 h 1.71 s 51.70 h 2.84 s
5 10,000 6.22 h 2.23 s 20.66 h 7.44 s
6 1,500 1.07 h 2.56 s 3.81 h 9.15 s

Source: Author

Figure 21 – Average runtime comparison (in seconds) for criteria D3.

0,06

1,71
2,23

2,56

0,09

2,84

7,44

9,15

0

1

2

3

4

5

6

7

8

9

10

𝑛 = 3 𝑛 = 4 𝑛 = 5 𝑛 = 6
Título do Eixo3𝑀𝑆 𝑒𝑥𝑎𝑐𝑡_𝑚𝑖𝑔

Source: Author

Table 39 – Runtime comparison between 3MS-Size and exact mig, for criteria S3.

3MS-Size exact mig
n Total Functions Total Runtime Avg. Runtime Total Runtime Avg. Runtime
3 256 14.82 s 0.05 s 25.6 s 0.10 s
4 65,536 31.49 h 1.73 s 53.15 h 2.92 s
5 10,000 8.02 h 2.89 s 23.69 h 8.53 s
6 1,500 1.79 h 4.29 s 4.94 h 11.86 s

Source: Author

Tables 40 and 41 shows, respectively, the average memory usage of the 3MS and

exact mig algorithms for criterias D3 and S3. The average memory usage, considering

3 ≤ n ≤ 6 and both criterias D3 and S3, was 3.51 megabytes for the exact mig algorithm

and 6.87 megabytes for the 3MS algorithm. Therefore, the 3MS algorithm had a 96%

higher average memory usage when compared to the exact mig.

68

Figure 22 – Average runtime comparison (in seconds) for criteria S3.

0,05

1,73

2,89

4,29

0,1

2,92

8,53

11,86

0

2

4

6

8

10

12

14

𝑛 = 3 𝑛 = 4 𝑛 = 5 𝑛 = 6
Título do Eixo3𝑀𝑆 𝑒𝑥𝑎𝑐𝑡_𝑚𝑖𝑔

Source: Author

Table 40 – Average memory usage of 3MS-Depth and exact mig, for criteria D3.

n Total Functions 3MS-Depth exact mig
3 256 4.91 MB 2.65 MB
4 65,536 7.09 MB 3.52 MB
5 10,000 8.82 MB 4.57 MB
6 1,500 10.63 MB 6.34 MB

Source: Author

Table 41 – Average memory usage of 3MS-Size and exact mig, for criteria S3.

n Total Functions 3MS-Size exact mig
3 256 4.27 MB 2.18 MB
4 65,536 6.16 MB 3.17 MB
5 10,000 7.33 MB 3.98 MB
6 1,500 9.51 MB 5.72 MB

Source: Author

The runtime and average memory usage comparisons between the 3MS-Size and the

exact m5ig, for criteria S5 and 3 ≤ n ≤ 4, are presented, respectively, in Tables 42 and

43. Figure 23 shows the average runtime comparison in graph format.

Considering criteria S5, to cover all 65,792 functions where 3 ≤ n ≤ 4, the 3MS and

exact m5ig algorithms had a total runtime of, respectively, 44.75 and 71.63 hours, while

having an average memory usage of 35.21 megabytes and 26.32 megabytes. Therefore,

the 3MS algorithm was 60% faster when compared to the exact m5ig algorithm, but had

69

a 33% higher memory usage.

Table 42 – Runtime comparison between 3MS-Size and exact m5ig, for criteria S5.

3MS-Size exact m5ig
n Total Functions Total Runtime Avg. Runtime Total Runtime Avg. Runtime
3 256 1.97 m 0.46 s 5.41 m 1.27 s
4 65,536 44.72 h 2.45 s 71.54 h 3.93 s

Source: Author

Table 43 – Average memory usage of 3MS-Size and exact m5ig, for criteria S5.

n Total Functions 3MS-Size exact m5ig
3 256 17.44 MB 13.59 MB
4 65,536 35.28 MB 26.37 MB

Source: Author

Figure 23 – Average runtime comparison (in seconds) for criteria S5.

0,46

2,45

1,27

3,93

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

𝑛 = 3 𝑛 = 4
Título do Eixo3𝑀𝑆 𝑒𝑥𝑎𝑐𝑡_𝑚5𝑖𝑔

Source: Author

From all 220,376 comparisons, considering all criterias D3, S3 and S5, it is important

to point out that even though the 3MS has a lower runtime, it also has a higher average

memory usage. To evaluate the 3MS application to large circuits, experiments on the 10

EPFL arithmetic benchmarks were conducted (AMARU; MICHELI, 2015). Size and depth

are the commonly used cost criteria to compare algorithms through the EPFL bechmarks.

Without considering inverters and literals, the 3MS algorithm generates majority networks

with the same cost, when compared to the exact mig and the exact m5ig, for all 10 EPFL

circuits. To find a valid output majority network we first apply 4-LUT mapping, meaning

that each circuit network will be divided into smaller functions with up to 4 inputs. Each

70

4-LUT function is synthesized and the equivalent majority function is added to the output

network. When equivalent majority functions have been found for every 4-LUT, those

functions are merged together to form the optimized output majority network. Table 44

shows the EPFL benchmark results for size optimization. The 3MS-Size was compared

with the exact mig for m = 3 and with the exact m5ig for m = 5, being able to generate

equivalent results in both comparisons.

Table 44 – EPFL benchmarks for Size optimization.

Initial Cost 3MS-Size = exact mig 3MS-Size = exact m5ig
Benchmark Inputs/Outputs Size Depth Size Depth Size Depth

Adder 256/129 1,020 255 512 130 386 129
Barrel Shifter 135/128 3,336 12 3,238 14 2,496 14

Divisor 128/128 57,247 4,372 44,331 4,381 47,147 4,231
Hypotenuse 256/128 214,335 24,801 160,678 9,518 141,850 9,334

Log2 32/32 32,060 444 27,645 383 22,314 338
Max 512/130 2,865 287 2,535 294 2,302 237

Multiplier 128/128 27,062 274 22,720 188 19,362 186
Sine 24/25 5,416 225 4,768 169 3,822 157

Square-root 128/64 24,618 5,058 19,746 6,043 16,972 4,097
Square 64/128 18,484 250 15,670 156 13,855 129

Source: Author

Note that, when considering the same cost for maj-3 and maj-5 gates, the utilization

of maj-5 logic synthesis is able to further improve the size and depth of 9 out of 10 EPFL

benchmarks. Table 45 shows the EPFL benchmark results for depth optimization, where

the 3MS-Depth results, for m = 3, are equivalent to exact mig’s. Results considering

m = 5 for depth optimization are also presented. Note that maj-5 logic synthesis also

generates improved results when compared to maj-3 for depth optimization. All 10 circuits

have a lower depth if synthesized to maj-5 networks and 9 out of 10 have a lower size.

Table 45 – EPFL benchmarks for Depth optimization.

Initial Cost 3MS-Depth = exact mig 3MS-Depth for m = 5
Benchmark Inputs/Outputs Size Depth Size Depth Size Depth

Adder 256/129 1,020 255 583 107 512 85
Barrel Shifter 135/128 3,336 12 3,357 9 2,811 7

Divisor 128/128 57,247 4,372 49,579 3,066 51,291 2,962
Hypotenuse 256/128 214,335 24,801 181,415 6,091 167,318 5,728

Log2 32/32 32,060 444 28,361 322 23,117 285
Max 512/130 2,865 287 2,906 255 2,647 205

Multiplier 128/128 27,062 274 24,183 167 21,990 159
Sine 24/25 5,416 225 4,959 141 4,871 123

Square-root 128/64 24,618 5,058 22,994 5,266 22,780 3,553
Square 64/128 18,484 250 17,892 102 16,045 84

Source: Author

71

6 CONCLUSION

In this work the 3MS (Majority Math Model Solver) algorithm is presented, which

aims to synthesize majority functions through linear optimization models. As cost criteria

the reduction of depth and size is prioritized, followed by the reduction of inverters and

literals. Considering the proposed cost criteria, the 3MS achieved at least equivalent

results when compared to other depth and size exact synthesis algorithms for majority-

of-three (m = 3) and majority-of-five (m = 5) functions, being able to further improve

their results with the optimization of inverters and literals, without losing optimal results

for depth and size minimization.

Considering all cost criteria variations, for n = 3 the 3MS was compared to a total of

768 functions, being able to reduce the cost of 456 (59%) functions while achieving equal

cost results for the remaining 312 (41%). For n = 4, from a total of 196,608 functions,

the 3MS further improved 124,072 (63%) functions and achieved equivalent results for

72,536 (37%). For n = 5 and n = 6, from totals of 20,000 and 3,000 functions, the 3MS

achieved better results for 15,629 (78%) and 2,574 (86%) functions, while also achieving

equivalent results for the remaining 4,371 (22%) and 426 (14%). Therefore, from the

total of 220,376 comparisons, the 3MS was able to further reduce the cost of 142,731

(64%) functions. The 3MS algorithm was also evaluated for functions where m = 3 and

n > 6, being able to surpass exact mig’s limit of 6 input variables. Samples of 1,000

randomly generated functions were created, for both n = 7 and n = 8, and the 3MS was

able to effectively cover all 2,000 functions. The 3MS algorithm was also able to surpass

exact m5ig’s limit of 4 input variables. A sample of 10,000 functions where m = n = 5

was created and effectively covered. Additionally, the EPFL arithmetic benchmark was

used to evaluate the performance of the 3MS algorithm on large circuits, where the 3MS

was able to generate competitive results for all 10 circuits in the benchmark, for both size

and depth optimization.

72

REFERENCES

AGARWAL, B.; BAKA, B. Hands-On Data Structures and Algorithms with Python:
Write complex and powerful code using the latest features of Python 3.7. Mumbai:
Packt Publishing Ltd, 2018. 183–186 p.

AMARU, L.; GAILLARDON, P.-E.; MICHELI, G. D. Majority-inverter graph: a
novel data-structure and algorithms for efficient logic optimization. In: ANNUAL
DESIGN AUTOMATION CONFERENCE, 51., 2014, San Francisco. Proceedings... San
Francisco: IEEE. 2014. p. 1–6.

AMARU, P. G. L.; MICHELI, G. D. The epfl combinational benchmark suite. In:
INTERNATIONAL WORKSHOP ON LOGIC AND SYNTHESIS, 1., 2015, Bremen.
Proceedings... Bremen: IWLS. 2015. p. 55–63.

ASCENCIO, A. F. G.; ARAÚJO, G. S. d. Estruturas de Dados: algoritmos, análise
da complexidade e implementações em JAVA e C/C++. 3. ed. São Paulo: Pearson
Prentice Halt, 2010. 20-24 p.

BERTACCO, V.; DAMIANI, M. The disjunctive decomposition of logic functions. In:
INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN - ICCAD, 15.,
1997, San Jose. Proceedings... San Jose: IEEE. 1997. p. 78–82.

BOOLE, G. An investigation of the laws of thought: on which are founded the
mathematical theories of logic and probabilities. Cork: Dover Publications, 1854.
24-38 p.

CHATTOPADHYAY, A. et al. Notes on majority boolean algebra. In: MULTIPLE-
VALUED LOGIC - ISMVL, 46., 46., 2016, Sapporo. Proceedings... Sapporo: IEEE.
2016. p. 50–55.

CHU, Z. et al. Exact synthesis of boolean functions in majority-of-five forms. In: 2019
IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 1.,
2019, Sapporo. Proceedings... Sapporo: IEEE. 2019. p. 1–5.

CHU, Z. et al. Functional decomposition using majority. In: ASIA AND SOUTH
PACIFIC DESIGN AUTOMATION CONFERENCE, 23., 2018, Jeju. Proceedings...
Jeju: IEEE. 2018. p. 676–681.

CHU, Z. et al. Advanced functional decomposition using majority and its applications.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
Lausanne, v. 39, n. 8, p. 1621–1634, 2019.

CHUMAK, A. V. et al. Advances in magnetics roadmap on spin-wave computing. IEEE
Transactions on Magnetics, Giza, v. 58, n. 6, p. 1–72, 2022.

73

CHUNG, C.-C. et al. Majority logic circuits optimization by node merging. In: 22ND
ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC),
22., 2017, Chiba. Proceedings... Chiba: IEEE. 2017. p. 714–719.

COHN, M.; LINDAMAN, R. Axiomatic majority-decision logic. IRE Transactions on
Electronic Computers, New York, EC-10, n. 1, p. 17–21, 1961.

DEDOV, F. The Bible of Algorithms and Data Structures: A Complex Subject Simply
Explained (Runtime Complexity, Big O Notation, Programming). 1. ed. California:
Neural Nine, 2020. 24-27 p.

FLOYD, T. L. Digital fundamentals. 11. ed. Dallas: Pearson Education, 2015. 125–149 p.

Gurobi Optimization LLC. Gurobi Optimizer Reference Manual. Available in:
https://www.gurobi.com. 2021.

IBM CPLEX LOG. 12.8 User’s Manual for CPLEX. Available in:
https://www.ibm.com/docs/en/icos/12.8.0.0?topic=cplex-users-manual. 2021.

KO, C.-C. et al. Majority logic circuit minimization using node addition and removal.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
IEEE, v. 41, n. 3, p. 642–655, 2022.

KONG, K.; SHANG, Y.; LU, R. An optimized majority logic synthesis methodology for
quantum-dot cellular automata. IEEE Transactions on Nanotechnology, Delft, v. 9,
n. 2, p. 170–183, 2010.

LINDAMAN, R. A theorem for deriving majority-logic networks within an augmented
boolean algebra. IRE Transactions on electronic computers, New York, v. 9, n. 3, p.
338–342, 1960.

MAJEED, A. H.; HUSSAIN, G. A.; ALKALDY, E. Design a low-cost majority gate
in qca nanotechnology. In: 2022 MUTHANNA INTERNATIONAL CONFERENCE
ON ENGINEERING SCIENCE AND TECHNOLOGY (MICEST), 1., 2022, Samawah.
Proceedings... Samawah: IEEE. 2022. p. 6–9.

MISHRA, V. K. et al. A heuristic-driven and cost effective majority/minority logic
synthesis for post-cmos emerging technologies. IEEE Access, New York, v. 1, n. 1, p.
1–16, 2021.

NEUTZLING, A. et al. Maj-n logic synthesis for emerging technology. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, La Jolla, v. 39, n. 3, p.
747–751, 2020.

RIENER, H. et al. Logic optimization of majority-inverter graphs. In: MBMV
2019: 22ND WORKSHOP-METHODS AND DESCRIPTION LANGUAGES FOR
MODELLING AND VERIFICATION OF CIRCUITS AND SYSTEMS, 22., 2019,
Kaiserslautern. Proceedings... Kaiserslautern: VDE. 2019. p. 1–4.

SASAO, T. Switching theory for logic synthesis. Berlin: Springer Science & Business
Media, 2012. 93-106 p.

74

SHANNON, C. E. The synthesis of two-terminal switching circuits. Bell System
Technical Journal, Kansas, v. 28, n. 1, p. 59–98, 1949.

SHI, L.; CHU, Z. Inversions optimization in xor-majority graphs with an application
to qca. In: 2019 CHINA SEMICONDUCTOR TECHNOLOGY INTERNATIONAL
CONFERENCE (CSTIC), 12., 2019, Shangai. Proceedings... Shangai: IEEE. 2019.
p. 1–3.

SOEKEN, M. et al. Exact synthesis of majority-inverter graphs and its applications.
IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, La
Jolla, v. 36, n. 11, p. 1842–1855, 2017.

SOEKEN, M. et al. Practical exact synthesis. In: 2018 DESIGN, AUTOMATION AND
TEST IN EUROPE CONFERENCE AND EXHIBITION - DATE, 1., 2018, Dresden.
Proceedings... Dresden: IEEE. 2018. p. 309–314.

TOCCI, R. J.; WIDMER, N. S.; MOSS, G. L. Digital systems: principles and
applications. 12. ed. Dallas: Pearson Education, 2017. 57–58 p.

WANG, P. et al. Synthesis of majority/minority logic networks. IEEE Transactions on
Nanotechnology, Boston, v. 14, n. 3, p. 473–483, 2015.

WANG, Y.; YUAN, G.; SUN, J. Four-input multi-layer majority logic circuit based on
dna strand displacement computing. IEEE Access, Adelaide, v. 8, p. 3076–3086, 2020.

WILF, H. S. Algorithms and complexity. [S.l.]: AK Peters/CRC Press, 2019. 5–10 p.

ZHANG, T. et al. Design and analysis of majority logic based approximate radix-4 booth
encoders. In: 2019 IEEE/ACM INTERNATIONAL SYMPOSIUM ON NANOSCALE
ARCHITECTURES, 14., 2019, Qingdao. Proceedings... Qingdao: IEEE. 2019. p. 1–6.

75

APPENDIX A -- THE 3MS ALGORITHM CONDITIONAL
CONSTRAINTS

This appendix presents an study about the logic behind the conditional constraints

used to build the optimization models in this work. As conditional constraints we consider

constraints that will imply a certain condition based on another condition, being logically

equivalent to an “if” operation in programming languages.

When conditions are imposed on a linear programming model, binary auxiliary

variables (also called indicators) are included to indicate certain states. Suppose that

x represents the quantity of an ingredient to be included in a blend. We may wish to use

an indicator variable δ to distinguish between the state where x = 0 and the state where

x > 0. Logically, we have achieved the condition shown in Equation 43, where “→” stands

for “implies”.

x > 0→ δ = 1 (43)

However, this logic can be formulated as a linear programming constraint by adding

a new coefficient M to δ, where M is a fixed value that represents a known upper bound

for x. The constraint shown in Equation 44 is logically equivalent to Equation 43.

x−M · δ ≤ 0 (44)

In this work, conditional constraints are used to build the logic behind Ω.I’s application

along with the vector Wi, used to disregard repeated gates. Examples of this constraints

are listed as follows:

•
∑1+b r

mc
j=1 Xij ≥ 1→ Wi = 1, ∀ i ∈ c

•
∑1+b r

mc
j=1 Xij ≤ 0→ Wi = 0, ∀ i ∈ c

•
∑

i ∈ eXij = m→ S1j =
⌊
m
2

⌋
,∀ j > 1

76

Note that we are considering the more complex version of Ω.I’s application, utilized

in the 3-level optimization model. Equations 45 and 46 shows the non conditional form

of the first and second constraints listed, where Wi is the binary indicator and a new

coefficient M was added.

1+b r
mc∑

j=1

Xij ≥ 1−M · (1−Wi), ∀ i ∈ c (45)

1+b r
mc∑

j=1

Xij ≤M ·Wi, ∀ i ∈ c (46)

Note that for both Equations 45 and 46, the value of M must be at least equal to the

sum
∑1+b r

mc
j=1 Xij. Since the Ω.I’s constraint uses an equality verification (=), a pair of

constants is needed to rewrite it in linear programming format. The pair of constraints

is shown by Equations 47 and 48, where Sj is the indicator. Note that both constraints

only vary on the inequality (≤ or ≥). Additionally, even though Sj is an integer variable,

it can be used as an indicator since it can assume only 2 possible values: 0 or
⌊
m
2

⌋
.

∑
i ∈ e

Xij ≥ m−M · (
⌊m

2

⌋
− S1j),∀ j > 1 (47)

∑
i ∈ e

Xij ≤ m−M · (
⌊m

2

⌋
− S1j),∀ j > 1 (48)

