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Model for asymptotic D-state parameters of light nuclei: Application to 4He
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A simple method for calculating the asymptotic D-state observables for light nuclei is suggested.
The method exploits the dominant clusters of the light nuclei. The method is applied to calculate
the He asymptotic D to S normalization ratio p and the closely related D-state parameter D2.
The study predicts a correlation between Dz and B, and between p and B, where B is the
binding energy of He. The present study yields p —0.14 and D —0.12 fm consistent with
the correct experimental g and the binding energies of the deuteron, triton, and the n particle,
where g is the deuteron D-state to S-state normalization ratio.
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I. INTRODUCTION

The role of the deuteron asymptotic D to S normaliza-
tion ratio q" has been emphasized recently in making a
theoretical estimate of the triton asymptotic D to S nor-
malization ratio g [1, 2]. There has been considerable
interest in theoretical and experimental determination of
the asymptotic D to S normalization ratio of light nu-
clei ever since Amado suggested that this ratio should be
given the "experimental" status of a single quantity to
measure the D state of light nuclei [3]. In this paper we
generalize certain ideas used successfully in the two- and
three-nucleon systems in order to formulate a model for
the asymptotic D to S normalization ratio of light nuclei.
We apply these ideas to the study of the asymptotic D
to S normalization ratio, p, and the D-state parameter,
D, , of 4He.

Though a realistic numerical study of the asymptotic
D to S normalization ratios of H, H, and He is com-
pletely under control [4—9], the same cannot be affirmed
in the case of other light nuclei. Even in the case of
He, such a task, employing the Faddeev-Yakubovskii

dynamical equations, is a formidable, but feasible, one.
This is why approximate methods are called for. As the
nucleon-nucleon tensor force plays a crucial and funda-
mental role in the formation of the D state of light nuclei
[1, 2, 7], it is interesting to ask what are the dominant
many-body mechanisms that originate the D state. The
present study is aimed at shedding light on the above
questions.

In the case of the D state of the deuteron, exploiting
the weak (perturbative) nature of the D state, Ericson
and Rosa Clot [7] have demonstrated that the essential

ingredients of the asymptotic D to S normalization ra-
tio g" are the long-range one-pion-exchange tail of the
nucleon-nucleon interaction, the binding energy Bd, and
the S-state asymptotic normalization parameter (ANP),
C&, of the deuteron. In the case of H we have seen that
the long-range one-nucleon-exchange tail of the nucleon-
deuteron interaction plays a crucial role in the formation
of the trinucleon D state [1, 2]. We have demonstrated
that all realistic nucleon-nucleon potentials will virtu-
ally yield the same value of g provided that they also
yield the same values for the S-state ANP and g" of the
deuteron and binding energies of 2H and sH [1,2].

The purpose of the present study is to identify the
dominant mechanisms for the formation of the D state
in more complex situations. We do not consider the full

dynamical problem for our purpose, but, rather, a clus-
ter model exploiting the relevant long-range part of the
cluster-cluster interaction supposed to be responsible for
the formation of the relevant D state. The o. particle
or He has a very important role in nuclear physics and
a study of its structure deserves special attention. One
important aspect of its bound state is its D-state admix-
ture for the He~ 2 H channel. There have been many
theoretical and experimental activities for measuring the
asymptotic D-state to S-state normalization ratio p for
this channel [10—20]. In this paper we study the D state
of He and make a model independent estimate of p and
the closely related parameter D2 .

All the observables directly sensitive to the tensor force
of the nucleon-nucleon interaction, such as the deuteron
quadrupole moment, Q~, g', etc. , have been found to be
correlated in numerical calculations with C& through the
relation [1,2, 7, 21]
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where 0 stands for Q", g~, or the usual D-state param-
eter, D2, for the triton. The function f depends on
the relevant binding energies, e.g. , the binding energy
of the deuteron in the case of Q~, and the binding en-
ergies of the deuteron and triton in the case of g' and
D2, while other low-energy on-shell nucleon-nucleon ob-
servables are held fixed. If correlation (1) were exact, no
new information about the nucleon-nucleon interaction
could be obtained &om the study of Q, rP, or D~z, which
is not implicit in the values of Bd, , Bt., Cs, and g [1].
However, this correlation is approximate and informa-
tion about the nucleon-nucleon tensor interaction might
be obtained &om a study of these parameters &om a
breakdown of these correlations. In order that such infor-
mation could be extracted, however, one should require
precise experimental measurements of these observables

[1,2].
In this paper we shall be interested to see if correlation

(1) extrapolates to the case of other light nuclei, specif-
ically, to the case of 4He. We provide a perturbative
solution of the problem, which presents a good descrip-
tion of the D state. We find that in order to reproduce
the correct D-state paraxneters of 4He, the minixnum in-
gredients required of a model are the correct low-energy
deuteron properties, including C&~ and g" and the triton
and He binding energies, Bq and B .

The model also provides the essential behavior of D2
and p as function of the binding energy B of the n
particle for fixed B~, Bt,, and g". Consistent with the
experimental Bg, Bt,, B, and q" we find p = —0.14,
and D2 = —0.12 fin2. The model also predicts an ap-
proximatelinearcorrelationbetween Dz (p ) and B for
fixed Bg, B~, and g to be verified in realistic dynamical
four-nucleon calculations.

The model for the formation of the D state is given in
Sec. II. In Sec. III we present relevant notations for our
future developxnent of the D state. In Sec. IV the ana-
lytic model for the D state of 4He is presented. Section
V deals with the numerical investigation of our model.
Finally, in Sec. VI a brief summary and discussion are
presented.

II. THE MODEL

As the exact dynamical studies of the D state for
the light nuclear systems employing the connected kernel
Faddeev-Yakubovskii equations are usually perforxned in
the momentum space, we present our model in the xno-

mentum space in terms of the Green functions or propa-
gators.

Figures 1 and 2 represent a coupled set of dynamical
equations between clusters valid for H and H, respec-
tively. In the case of the deuteron the dashed line denotes
the exchanged xneson. In the case of the triton the ex-
changed particle is a nucleon and the double line denotes
a deuteron. In both cases a single line denotes a nucleon.
In the case of the deuteron these equations are essen-
tially the homogeneous version of the momentum space
Lippmann-Schwinger equations for the nucleon-nucleon

(b)

FIG. 1. The coupled Schrodinger equation for the forma-
tion of the D state in H.

system, which couples the S and D states of the deuteron.
Explicitly, these equations are written as

go —VQOGogo + V02Gog2)

g2 = V2oGogo+ V22Gog2)

(2)

g2 ——V2P Gogo. (4)

Given a reasonable gp and the tensor interaction V2p, Eq.
(4) could be utilized for studying various properties of the
D state. This equation should determine the asymptotic
D to S ratio of deuteron g provided that the model
has the correct deuteron binding Bg and the one-pion-
exchange tail of the tensor nucleon-nucleon interaction.

FIG. 2. The coupled Schrodinger equation for the forma-
tion of the D state in H.

where g~ = V[/~) (l = 0, 2) represent the relevant form
factors for the two states denoted by the two-body bound
state wave function P~, Go is the free Green function for
propagation, and V's are the relevant potential elements
between the S and D states. Figure 1(b) gives the two

ways of forming the D state at infinity: (a) in the first
term on the right-hand side (rhs), the deuteron breaks up
first into two nucleons in the S state which gets changed
to two nucleons in the D state via the one-pion-exchange
nucleon-nucleon tensor force, (b) in the second term on
the rhs, the deuteron breaks up first into two nucleons in
the D state which continues the same under the action
of the central one-pion-exchange nucleon-nucleon interac-
tion. As the D state of the deuteron could be considered
to be a perturbative correction on the S state, in Fig.
1(b) the first term on the rhs is supposed to dominate,
with the second term providing small correction. Hence,
the essential mechanism for the formation of the D state
in this case is given by the following equation:
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In the momentum space representation of Eq. (4), at
the bound state energy, g's have the following structure:

(i~lgi) - ci',

with p = /2m~B~, m~ being the reduced mass, and Ct"
the deuteron ANP's for the state of angular momentum
l. The ofF-diagonal tensor potential V20 is proportional
to g N, where g N is the pion-nucleon coupling constant.
From Eqs. (4) and (5), at the bound state energy one has

g NxInt,d 2

where Int represents a definite integral determined by the
deuteron binding Bd. Hence g" is mainly determined by
the deuteron binding energy and the pion-nucleon cou-
pling constant [7].

This idea could be readily generalized to more complex
situations. In the case of the triton D state, Fig. 2 and
Eqs. (2) and (3) are valid. The form factors g~ are to be
interpreted as the triton-nucleon-deuteron form factors,
the Green function Go represents the &ee propagation
of the nucleon-deuteron system, and the potentials V02
and V20 are the Born approximation to the rearrange-
ment nucleon-deuteron elastic scattering amplitudes rep-
resenting the transition between the relative S and D
angular momentum states of the nucleon-deuteron sys-
tem. For example, for nucleon-nucleon separable tensor
potential, V02 corresponds to the inhomogeneous term
of the Amado model [21] for nucleon-deuteron scattering
for the transition between S and D states of the nucleon-
deuteron system. The essential mechanism for the forma-
tion of the D state is again given by Eq. (4). Now in the
momentum space representation of Eq. (4), at the bound
state energy, g's have essentially the structure given by

('elm) (7)

where C&' is the ANP of the triton for the angular mo-
mentum state l. In Eq. (4), Vp2 connects a relative
nucleon-deuteron S state to a nucleon-deuteron D state
in diferent subclusters via a nucleon exchange. Hence
the amplitude V02 involves two form factors, one for the
deuteron S state and the other for the deuteron D state.
Consequently, at the triton pole the momentum space
version of Eq. (4) has the following form:

where Int~ and Int2 are two definite integrals. The He

asymptotic D-state to S-state ratio p is defined by

Ccr ~dd
a D

Cawdd
S

(1O)

It is clear that, unlike in the case of triton, p is deter-
mined by two independent terms. Physically, it means
that there are two mechanisms that construct the D-
state ANP of He. Now recalling the empirical relation
iIi—:C&~/C&~ (C&)2iI, we obtain from Eq. (9)

(s x Int,p
gd

If we include these two possibilities of breakup of He,
then the principal mechanisms for the formation of the
asymptotic deuteron-deuteron states are given in Fig. 3.
We have two equations of the type shown in Fig. 3,
one for the S state and the other for the D state. In
Fig. 3 the contribution of the last term on the rhs is
expected to be small. The virtual breakup of He first to
two deuterons and their eventual breakup to four nucle-
ons to form the four-nucleon-exchange deuteron-deuteron
amplitude as in this term is much less probable at neg-
ative energies than the virtual breakup of He to a nu-

cleon and a trinucleon and its eventual transformation
to the deuteron-deuteron cluster as in the first term on
the right-hand side of this equation. For this reason we

shall neglect the last term of Fig. 3 in the present treat-
ment. As in the three-nucleon case the amplitudes in
Fig. 3 are the Born approximations to rearrangement
amplitudes between different subclusters, which connect
different angular momentum states, e.g. , S and D.

We notice that in the first term of Fig. 3 either of the
vertices has to be a D state so that the passage from S
to D state is allowed in this diagram. Consequently, at
the pole of the He bound state the momentum space
version of Fig. 3 has two contributions corresponding to
the deuteron (triton) vertex on the right-hand side being
the 8 state and the triton (deuteron) vertex being the D
state so that we may write

Cn~dd Cn~Nt Cd Ct x Int + Ccx~Nt Cd Ctn1 S D S n2

(9)

CD Cs CD Cs x Int, (8)

where Int represents the remaining definite integral
now expected to be determined essentially by the
deuteron and triton binding energies and other low-

energy nucleon-nucleon observables. Recalling that g
C&/C&, with q" defined similarly, Eq. (8) reduces to Eq.
(1). Hence, this simple consideration shows that the ra-
tio i1~/q" is a universal one satisfying Eq. (1) determined
essentially by the deuteron and triton binding energies
and the deuteron S wave ANP Cs.

Next let us consider the example of He, where the
two deuterons could appear asymptotically either in a
relative S or a D state. However, asymptotically the nu-
cleon and the trinucleon could exist only in the relative
S state. In this case the lowest scattering thresholds are
the nucleon-trinucleon and the deuteron-deuteron ones.

S, D

FIG. 3. The present model for the formation of the S and
D states in He. In numerical calculation only the first term
on the right-hand side of this diagram is retained.
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where (g is determined by the S-state asymptotic nor-
malizations Cg, Cs. ', C&, C&, and Int represents
integrals which are essentially determined by the binding
energies Bp, Bz, and B . Hence, in the case of He Eq.
(1) gets modified to the form of Eq. (11).

study we set g(q2) = 1 so that we have

/t ~q\
vrNm~z ~i p, )

(18)

III. DEFINITIONS AND NOTATIONS

In this section we present notations and de6nitions
which we shall use for future development. The asymp-
totic wave function for a two-body bound state, «(bind-
ing energy B), in a potential V is given by

lim (r/j l«) = — lim (q/jlV l«),
/27r mR e

(12)

where / is the relative orbital angular momentum, j is
the total final spin of the system (the intrinsic spin of the
system is not shown), and lq/j) is the momentum space
wave function. The asymptotic normalization parameter
C~~ for this state is de6ned by

(13)

Here N represents the number of ways a particular
asymptotic con6guration can be constructed &om its
constituents in the same channel. For example, in the
channel, sH -+ n+ H, as we can combine the proton
with either of the two neutrons to form H, N = 2. Sim-
ilarly in the 4He ~ 22H channel, the deuteron can be
formed in two different ways and N = 2. But in the
channels He ~ H + H and He ~ n+ 3He, neglecting
Coulomb interaction, there are four different possibili-
ties for constructing the outgoing channel components,
so that N = 4.

From Eqs. (12) and (13), we obtain

In Eq. (18) apart &om a kinematical factor that takes
into account the centrifugal barrier, the form factor is
assumed to be independent of the relative momentum of
the two components forming the bound state, consistent
with the minimal three-body model [1].In particular, the
form factors for the formation of 4He &om nucleon(N)-
triton(t) channel and &om two deuterons(dd) are, respec-
tively,

and

with

Nt~ x V / &t ~a +Nt-
3

dd( )
Q/ dd Camdd (
~2~ ( tPdd )

(20)

3(B.—B,)
PNt =

2
Pdd = /2(B —2Bd),

(21)

where B and Bd are the binding energies of He and.

H, respectively and we assume h = m~„Q]eQ„1.
For the case where angular momentum states S and D

states are mixed, the probability amplitude for a given
l value is proportional to the corresponding spherical
harmonic Yt, (q). Defining the spin-angular momentum
functions P, t~ (q) as

&t'-(q) =(Yt(q)& ), = ). C",' . Yt-, (q)4-.

As the partial wave t matrix may be expressed as

(q/jltlq/j) = lim l(q/jlvl«) I'

quis E+ B

(14) (22)

where Q, is the spin state of the system, denotes an-
gular momentum coupling, the vertex functions in the
minimal model for t -+ Nd and d -+ NN vertices take
the form

the parameter C~~ is related to the residue at the t-matrix
pole by

(q/jltlq/j) R- =—»m 1«/jlVI«) I' =
quips srNm~2

/ 7].
(&i) (23)

With this definition, in the limit of y, ~ 0, C~t ~ 1 [1].
For the two-particle bound state, the vertex function

g(q) for a definite angular momentum / (and j) can be
written as

p (plg-t(q') = — N, C, i —. g(q'),s.Nm2~ (i p, )
where the kinematical factor which takes into account
the centrifugal barrier has been explicitly shown. The
function g(q ) essentially provides the momenti~~ depen-
dence of the vertex function. In the present qualitative

g,=, , (~.)=- „C.~-. (p.)NN ~ 4PNN d

qdp2—,'X»i (J.) .
~NN

(24)

Here C& and C& are the asymptotic normalization pa-
rameters for the 8 state of the deuteron and triton, re-
spectively, whereas g" and g are the ratios of correspond-
ing D-state ANP's with the S-state ANP's. The relative
moment»m of the nucleon with respect to the deuteron
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is pq, whereas the relative momentum of the two nucleon
system is pq.

IV. D-STATE PARAMETERS OF He

Having defined the relevant vertex functions, we can
write the equation for constructing the S and D states

I

of He in the He + 2 H channel. The first line of Fig.
3 represents diagrammatically the present model for the
formation of the asymptotic S and D states of He. Using
the notation of previous section, we see that the explicit
partial wave form of the present model could be written
as

gD~i (ti3) = f ~a'ii ff ~oql~i)q3 ) ( SIL, (P3) '@Xl 4 'I +l, (ti3))
Li,L3

1 Nd ~ N
g L„(pi) X" o(qi) B B , , goo'(qi)Bd B q$ 4q3 qi q3 2 0

(25)

-AN(
)

4PNN d 3 L 11 (p3) (26)

where pi ———(sqi + qs) is the relative momentum be-
tween the exchanged nucleon 2 and the structureless
deuteron 3, g7s ——(qi + qs/2) is the relative momentum
between the spectator nucleon 1 and nucleon 2, qq is the
momentum carried by nucleon 1 and q3 is the momen-
tum carried by the structureless deuteron of momentum
q3. The indices 1 and 2 refer to the spectator nucleon and
the exchanged nucleon; and 3 refers to the structureless
deuteron. Here l3 is the angular momentum state of He;
ls ——0 (2) corresponds to the 8 (D) states of He. L3
is the relative angular momentum of the two nucleons
forming the deuteron of momentum —qq, Lq is the rela-
tive angular momentum of the structureless deuteron of
momentum qs and the nucleon 2 forming the triton of mo-
mentum —q~, y, is the spin state of nucleon 1 with mo-

2

mentum qz, and yz is the spin state of the structureless
deuteron with momentum q3. We dropped the index m
of the form factors at NN, Nd, and Nt vertices, because
of the angular momentum coupling notation employed.
Here g~L, is the L component of the vertex defined in
Eqs. (23) and (24). For example,

wh~~~ CL,.= Cs ( Csrl ps/p~w) for Ls ——0 (2).
The rhs of Eq. (25) is the first term on the rhs

of Fig. 3. The term goo is the ¹ form factor,
(Bi —B —sqi) represents the propagation of the
two-particle triton-nucleon state at a four-particle en-

ergy E = —B, the energy for propagation of the two-
particle triton-nucleon state being B~ —B . The term
(Bd —B —qi —3qs/4 —qi qs) represents the prop-
agation of the three-particle nucleon-nucleon-deuteron
state at a four-particle energy E = —B, the energy
for propagation of the three-particle nucleon-nucleon-
deuteron state being Bd —B . There are two angular
momentum-spin coupling coeKcients. The one involving

gz&&L gives the angular momentum coupling to form the1/2Lg
triton and its coupling to nucleon 1 to give the final zero
total angular momentum of He. The one involving g I
gives the spin-angular momentum coupling of nucleons 1
and 2 to form the deuteron of momentum —q3 and its
coupling to the structureless deuteron 3 to give the final
zero total angular momentum of He. Finally, there is
summation over the internal angular momenta Ii and
L3, and integrations over the internal loop momentum

qq and angles of q3.
Substituting the values of vertex functions and rear-

ranging Eq. (25), we obtain the properly normalized
function A&d(qs) given by

Pdd

2CSCSCS ljmiV PiVdpiVi ~ ~&. (qs, qi)
7r pdd o Bg —B —

3 qy

such that at the He pole it gives the asymptotic normalization parameters of He:
Pdd

( ) Cn +dd-
In Eq. (27)

+4 (Vs tii) =f ~ii..'iii., ((ill. (is) @x(lt. »i.'(t)~))00

([I I, (pi) X"lo Yo(qi))oo- (28)
Bd —B —q,

' —-', q,' —
q~ q3 2

The values of l3 ——0, 2 yield the S and D state of He, respectively. For evaluating the integral X, we expand the
energy propagator in terms of spherical harmonics as below,

= 2n ) (—I) Kl, (qi, qs)/2L+ I [Yl, (qi) (I Yl. (q&)]oo,&d —&- —
q&

—4q3 —m . q3
(29)
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where

KL(qg, q3) = PL(Z) dx
(3o)—

q~
—-q3 —R q3 &

By using the angular momentum algebra techniques [22], the intrinsic spin dependence of the integrand and the part
containing the spherical harmonics in Eq. (27) are easily separated out and evaluated independent of each other.
Next the same procedure is adopted to separate the qz- and q3-dependent parts of the integrand. After integrating
over angles we get the following result for A&".

1

p~~ o & —& —-,'q,' 2

OO ( )L /2 ( )L /2 yP I +La P—
2 +P L+—1

) ) KL(q3 a) I

P L 0 kP'NN ) kP't )

x C000 C00'0 C00'0 " U(1L31l3j 1Lq)U — Lql; 1—Sq U(aL3 aLgl3) L3&) U(ap/3L& —p; LzL)
(2 2

(2P+ 1)(2ls+ 1) (2L3 + 1)!2L~!
(2L + 1)(2p + 1) (2a + 1)!(2L3 —2a)!(2p + 1)!(2I g

—2p)!

1
2

(31)

Here

U(j&j3jsj4, JK) —= (2J+ 1)(2K+ 1)W(j,j&jsj4, JK)

are renormalized 6j symbols.
As Lq ——0 or 2 and I3 ——0 or 2, the left-hand side of the above equation contains four terms. We retain the

three terms linear in D state and neglect the term containing a product of rid and rl~. [In the limit q3 ~ ip, , analytic
expressions are easily obtained for KL(qz, q3) (relevant L values in the present context being L = 0, 1,2).] The
asymptotic D-state to S-state ratio for He is defined by

2 (I&&)
(32)

A0d" (i Pdd)

After substituting numerical values of various angular momentum coupling coefficients for allowed values of angular
momenta in Eq. (31), we evaluate p as

Z, t' gd 4 g' ) Z, /' ~d 4 q' l
V'NN pNd ) 0 (pNN 3 pNd ) +~ k pNN pNd )

where

I+2
p~— KL(n, ~udd).

0 B& —8 ——',q'

Similarly, the D2 parameter of He is defined as

~o."(q3) . A".'(q3)
D2 ——hm 2 ~~

——lcm" 'q3g00(q. ) " 'A0 (q.)q.
The integrals appearing in Eq. (34) are performed analytically for q3 ~ 0 and the result for D3 is

( g g' ) 121JNg+ v/B —Bd /' rl 4 q' &

( pNN pNd) 6 pN|'+ QB~ —Bd E&NN pNd)
2 p4+ sIN~&B- Bd+3(B----Bd) & n" 4 n' &

(PNg + QB~ —Bd) E&NN PNd )

(34)

Equations (33) and (35) are the principal results of the
present study.

V. NUMERICAL RESULTS

The numerical results for the D-state parameters of
4He based on Eqs. (33) and (35) are expected to be more

I

reasonable than that for 3H of Ref. [1] because of three
reasons. Firstly, the approximate analytical treatment of
Ref. [1] employing the diagrammatic equation of Fig. 2
for H is more approximate than the present treatment
employing Fig. 3 for He. This is because in the former
case the neglect of the spin singlet two-nucleon state as
an intermediate state is too drastic; whereas in the latter
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case there are no other competing channels if we permit
only exchange of one nucleon as shown in Fig. 2. The ex-
change of two nucleons is possible but is much less likely
and is usually neglected in the treatment of four nucleon
dynamics [23]. Secondly, the minimal cluster model we
are using is expected to work better when the nucleus
is strongly bound and the constituents ( H and H) are
loosely bound. As He is strongly bound this approxi-
mation is more true in He than in H. Finally and most
importantly, in the present model we are taking the dif-
ferent vertices to be essentially constants as in Eqs. (24)
and (25) which corresponds to taking the vertex form
factors unity. This reduces the dynamical equations es-
sentially to algebraic relations between the asymptotic
normalization parameters. In so doing systematic errors
are introduced. The calculation of the triton asymptotic
D to S ratio g' in Ref. [1] will have the above error.
But the 4He asymptotic D to S ratio p of Eq. (33) and
D2 of Eq. (35) are obtained by dividing two equations
of type (28), one for ls ——0 and the other for ls ——2,
where exactly identical approximations are made. This
division is expected to reduce the above-mentioned sys-
tematic error and Eqs. (33) and (35) are likely to lead to
a more reliable estimate of He D state compared to the
estimate of sH D state obtained in Ref. [1].

Equation (33) or (35) yields that for fixed Bt, , Bg, g,
and g', p and D2 are correlated with B . Specification
of B alone is not enough to determine the He D-state
parameters. We have established in Refs. [1, 2, ll] that
in a dynamical calculation g' is proportional to g" for
fixed Bg and Bt, from which the theoretical estimate of
g~/g" was made. This was relevant because of the un-
certainty in the experimental value of g . If this result is
used in Eqs. (33) or (35), it follows that p and D2 are
proportional to g" for fixed Bg, B~, and B .

Next the results of the present calculation using Eqs.
(33) and (35) are presented. In Eqs. (33) and (35), in
actual numerical calculation both g" and g' are taken to
be positive. The positive sign of rl~ is consistent with
the order of angular momentum coupling we use in the
present study [ll]. In Fig. 4 we plot p versus B cal-
culated using Eq. (33) for different values of Bq and for
g" = 0.027 and B" = 2.225 MeV. The value g" = 0.027
is the average experimental value reported in Ref. [7].
There is a recent experimental finding: g" = 0.0256 in
Ref. [9]. For the present illustration we shall, however,
use g" = 0.027. Though the final estimate of the asymp-
totic D-state parameters of He will depend on the value
of q employed, the general conclusions of this paper will
not depend on the choice of this experimental value of
g". The five lines in this figure correspond to B& ——7.0,
7.5, 8.0, 8.5, and 9.0 MeV. The numerical value of g for
a particular Bt is taken from the correlation in Ref. [1].
We find that the magnitude of p increases with the in-
crease of B for a fixed Bq and with the decrease of Bq
for a fixed B . This should be compared with the corre-
lation of q' with Bt in Ref. [1]. We also calculated D2
using Eq. (35) for different values of Bt, and B

More results of our calculation using Eqs. (33) and
(35) are exhibited in Table I. We employed different val-
ues of Bq and B . The values B = 28.3 MeV and Bq

—0.14

—0. 'I 8
26 28 30

B (MeV)

FIG. 4. The p versus B correlation for fixed B~ ——7,
7.5, 8, 8.5, and 9 MeV and with g = 0.027 using Eq. {33).
The curves are labeled by the Et, values. The g' values for
each line are taken from the g' versus Et, correlation of Ref.

p —0.14,

D2 —0.12 fm, (36)

p /p~~D2 = l.
In Ref. [24] it has been estimated that p /(p&&D2)
0.9 in agreement to the present finding.

Next we would like to compare the present result with
other ("experimental" ) evaluations of these asymptotic
parameters. Santos et al. [13] evaluated p Rom an
analysis of tensor analyzing powers for (d, n) reactions
on S and Ar. They employed a simple one-step transfer
mechanism, plane-wave scattering states, zero-range or
asymptotic bound states. Keeping only the dominant
angular momentum states for the transferred deuteron
they predicted p = —0.21.

In another study Santos et al [14] considere. d the ten-

sor analyzing power of reaction 2H(d, p)4He and con-

= 8.48 MeV are the experimental values. The other val-
ues of B and Bq are considered as they are identical
with results of theoretical calculation of Ref. [19]. As
the values of the binding energies are crucial [1, 2] for
a correct specification of the D-state parameters we de-
cided to consider these binding energies obtained in Ref.
[19]. For example, B, = 8.15 MeV is the mean of H
and He binding energies obtained in Ref. [19] with the
Urbana potential. For the same potential they obtained
B = 28.2 MeV and D2 ———0.24 fm, to be compared
with the present D2 ———0.15 fm . For the Argonne po-
tential they obtained mean B~ ——8.04 MeV, B = 27.8
MeV, and D2 ———0.16 fm, to be compared with the
present D2 ———0.12 fm . But the large change of D2 in
Ref. [19] from one case to the other is in contradiction
with the present study. The first row of Table I is the re-
sult of our calculation for p and D2 consistent with the
correct experimental Bq and B and using g" = 0.027,
rP/rI" = 1.68:
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TABLE I. Results for D-state parameters of He calculated using Eqs. (33) and (35).

B
(MeV)

Bg

(MeV)

Da

(fm')
P P

I ddDQ

28.3
28.2
27.8

8.48
8.15
8.04

0.027
0.025
0.0266

0.0454
0.0514
0.0430

—0.12
—0.15
—0.12

—0.14
—0.17
—0.14

1.07
0.98
1.05

eluded that agreement with experiment could be ob-
tained for —0.5 ( p ( —0.4.

Earp et al. [15] studied tensor analyzing powers for

(d, n) reactions on Y. They employed simple shell-
model configurations for the nuclei involved, performed a
finite-range DWBA calculation, and represented the 4He

~ 22H overlap by an effective two-body model. From an
analysis of the experimental data the authors concluded
D; = —0.3+ 0.1 fm'.

Tostevin et al. [16]studied tensor analyzing powers for

(d, a) reactions on Ca. They performed a DWBA cal-
culation with local energy approximation and concluded
D2 = —0.31 fm2 and p = —0.22. But Tostevin [17]
later warned that this value of D2 may have large error.

Merz et al. [18] has performed an analysis in order
to make a more reliable estimate of these parameters.
From a study of the 4oCa(d, n)ssK reaction at 20 MeV
bombarding energy employing a full finite-range DWBA
calculation they predicted D2~ ———0.19 6 0.04 fm .

Recently, Piekarewicz and Koonin [20] performed a
phenomenological fit to the experimental data of the
H(d, p) He reaction and predicted p = —0.4. From

a study of cross section of the same reaction, however,
Weller et aL [12] predicted p = —0.2 + 0.05.

Considering the qualitative nature of the present study
we find that there is reasonably good agreement between
the present and other studies. This assures that we have
correctly included the essential mechanisms of the forma-
tion of the D state.

Unlike in the case of H, there are two distinct ingre-
dients for the formation of the D state of He: g~ and

This is clear from expressions (33) and (35). This
possibility did not exist in the case of H where g is
determined uniquely by g" apart &om the binding ener-
gies. In the usual optical potential study of the D state of
4He as in Ref. [24] the dependence of p on rl~ is always
neglected. This dependence will be explicit in a micro-

scopic four-particle treatment of 4He. Such microscopic
calculations are welcome in the future for establishing the
conclusions of the present study.

VI. SUMMARY

We have calculated in a simple model the asymptotic
D state parameters for 4He. The present investigation
generalizes the consideration of universality as presented
in Refs. [1] and [2] for the trinucleon system. The univer-
sal trend of the theoretical calculations on the trinucleon
system and the consequent correlations are generalized
here to the case of the D-state observables of He. The
essential results of our calculation appear in Eq. (36).
We have used a minimal cluster model in our calculation
where essentially the bound state form factors are ne-

glected, thus transforming the dynamical equation into
an algebraic relation between the different asymptotic
parameters. Dividing two such equations, one for the
asymptotic S state of 4He and other for the asymptotic
D state of 4He, the estimates of Eq. (36) are arrived. As
we have pointed out in Sec. V, such a division should re-
duce the systematic error of the approximation scheme.
Dynamical calculation using a realistic four-body model
should be performed in order to see whether the present
estimate (36) is reasonable. At the same time accurate
experimental results are called for. We have predicted
correlations between p and B, and between D2 and
B to be found in actual dynamical calculations. Such
correlations, though appearing to be extremely plausible
in view of the calculation of rlt of [1],can only be verified
after performing actual dynamical calculations.
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