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RESUMO 

 

A crescente importância da indústria de captura, utilização e armazenamento de carbono (CCUS) 

devido ao aquecimento global tem demandado novas tecnologias de equipamentos. Entre os mais 

relevantes, nota-se o ciclo de potência de Brayton que reporta aumento na eficiência térmica de 

seu sistema ao utilizar o CO2 em estado supercrítico devido ao menor trabalho de compressão 

quando comparado ao ar. Além desse, sistemas de armazenamento de energia que utilizavam ar 

comprimido também demonstraram melhora em seu desempenho ao trabalhar com CO2. Sendo 

assim, a tecnologia de CCUS com maior viabilidade econômica devido ao seu produto final de 

alto valor agregado é o processo conhecido como Enhanced Oil Recovery (EOR), que utiliza um 

trem de compressores centrífugos para realizar o armazenamento de CO2 supercrítico em poços 

de extração de petróleo, e que foi objeto de estudo do presente trabalho. Normalmente, a 

abordagem utilizada em um projeto de sistema de compressão é simplesmente investigada por 

aspectos termodinâmicos, sem considerar fenômenos fluidodinâmicos que podem inviabilizar o 

sistema como um todo. Portanto, a metodologia desenvolvida nesta tese é composta por um 

modelo de compressor centrífugo de CO2 supercrítico e difusor sem palhetas unidimensional 

(1D), capaz de prever alguns aspectos do escoamento do fluido que não são modelados por meio 

de análise termodinâmica direta, seguido por uma Análise de Sensibilidade (SA) e estratégia de 

otimização. Posteriormente, a modelagem individual de dois compressores utilizando 

Computational Fluid Dynamics (CFD) fez-se necessária para corroboração dos resultados 

anteriores e para entregar melhorias adicionais aos equipamentos a partir da meta-modelagem por 

superfície de resposta (RS) destes modelos computacionalmente custosos e realização de 

otimização indireta. Associada a estratégia de otimização, uma restrição chamada Gas Behaviour 

Margin (GBM) é proposta para evitar grandes variações das propriedades termodinâmicas no 

processo de compressão próximo à linha de Widom, o que pode dificultar a convergência do 

modelo numérico (por CFD) ou ainda causar danos ao equipamento durante seu processo de 

operação. Os principais resultados da obtidos a partir da metodologia descrita neste trabalho 

mostram que o trem de compressores centrífugos com quatro estágios considerado no processo de 

otimização teve sua potência total reduzida em 14,09% quando comparado à configuração inicial, 

e garantindo uma configuração de compressores viável, já que as restrições: Margem de 

Aceleração para Condensação (AMC), GBM e o número de Mach na garganta foram atendidas. 



Além disso, a solução do modelo CFD para o quarto compressor demonstrou boa concordância 

com a modelagem 1D e dados experimentais, corroborando a validade e robustez da metodologia 

aqui desenvolvida. Além disso, esta abordagem é considerada como uma maneira rápida e de 

baixo custo para obter uma geometria preliminar para sistemas de trem de compressores 

centrífugos. Finalmente, os modelos CFD do primeiro e quarto estágios de compressão foram 

submetidos a estratégia de SA e otimização, aumentando ainda mais a eficiência politrópica 

destes dois estágios, essa modelagem permitiu a análise fenomenológica baseada em variação 

entrópica que foi conduzida para o processo de avaliação fluidodinâmica do escoamento dentro 

dos compressores centrífugos A estratégia aqui adotada pode ser aplicada a outros modelos de 

CFD considerados grandes e altamente dimensionais para reduzir o custo computacional do 

procedimento de otimização e acelerar a análise fenomenológica do escoamento.  

 

Palavras-chave: sistema de compressão; otimização; margem de comportamento gasoso; captura 

e armazenamento de carbono; compressor centrífugo s-CO2; análise de sensibilidade. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ABSTRACT 

 

The rising importance of carbon capture, utilization and storage (CCUS) industry due to global 

warming has increased the development of new technologies. Among the most relevant, note the 

Brayton power cycle, which reported an increase in the thermal efficiency of its system when 

using CO2 in a supercritical state due to the lower compression work when compared to air. 

Furthermore, energy storage systems that utilized compressed air also improved their 

performance when working with CO2. Therefore, the CCUS technology with greater economic 

viability due to its final product with high added value is the process known as Enhanced Oil 

Recovery (EOR), which uses a train of centrifugal compressors to store supercritical CO2 in oil 

wells, which was the object of study of the present work. Normally, the approach used in a 

compression system design is the simple thermodynamic investigation, without considering fluid 

dynamic phenomena that can deliver an unfeasible system. Therefore, the methodology 

developed in this thesis is composed by an optimization methodology based on an one-

dimensional (1D) centrifugal compressor model, capable to predict a few fluid flow aspects that 

are not modeled through direct thermodynamic analysis, followed by a sensitivity analysis (SA) 

and optimization strategy. Subsequently, the individual modeling of two compressors using 

Computational Fluid Dynamics (CFD) was necessary to corroborate the previous results and to 

deliver additional improvements to the equipment from the metamodeling by response surface 

(RS) of these computationally expensive models and performing an indirect optimization. 

Associated to the optimization strategy, a constraint called Gas-like Behavior Margin (GBM) is 

presented to avoid high variations of thermodynamic properties on the compression process close 

to the Widom-line, which can difficult the numerical model convergence (By CFD) or also can 

cause damage to the equipment during its operation. The main results obtained throughout the 

described methodology shows that the train of centrifugal compressors with four stages 

considered in the optimization process had its total power reduced in 14.09% when compared to 

the initial configuration, and ensuring a feasible set of compressors, once the constraints: 

Acceleration Margin to Condensation (AMC), GBM and the Mach number at the throat were 

met. Moreover, a CFD model for the fourth stage demonstrated good agreement with 1D 

modeling and experimental data, proving the validity and robustness of the methodology 

developed herein. Besides, this approach is considered a fast and low-cost way to obtain a 



preliminary geometry for centrifugal compressors train systems. Finally, the first and fourth 

compression stages CFD models were submitted to the SA and optimization, further increasing 

the polytropic efficiency of both stages, this modeling allowed a phenomenological analysis 

based on entropic variation to perform the fluid dynamic behavior assessment inside centrifugal 

compressors.  The strategy adopted herein could be applied to other CFD models considered 

large and high dimensional to reduce the computational cost of optimization procedure and 

speed-up the phenomenological analysis of fluid flow,  

 

Keywords: compression system optimization; gas-like behavior margin; carbon capture and 

storage; s-CO2 centrifugal compressor; sensitivity analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



THESIS OUTLINE 

 

Initially, a contextualization of Carbon, Capture Utilization and Storage (CCUS) 

technologies, including Enhanced Oil Recovery (EOR) strategy is provided, highlighting the 

advantages of using supercritical CO2 as working fluid in its compression system. A train of 

centrifugal compressors for that application is the object of study of this Thesis, that identified 

some literature gaps in the effort to develop a highly efficient design approach.  

In order to achieve highly efficient equipment, four main tools and their physical model 

and/or mathematical representation were implemented/used: 1) a one-dimensional model of 

centrifugal compressors was implemented and validated through experimental data, allowing the 

construction of preliminary geometries that were further investigated by more accurate physical 

models afterwards, 2) Sensitivity Analysis (SA) and surrogate model training strategy for large 

and high-dimensional computational models was developed to identify design variables that had 

low impact on system performance, which speeds up equipment design optimization, 3) Two 

CFD models for centrifugal compressors were set accordingly to their specific stage of 

compression, which permits both, thorough phenomenological analysis of the complex fluid flow 

present in the machine and additional optimization procedures using indirect methods and, 4) 

Different optimization strategies were applied on the 1D and CFD models, always aiming to 

improve the thermal performance of the compression system. 

The optimization of the compression system as a whole, using the 1D model, delivered a 

power consumption reduction of 14.08% and provided the preliminary geometries that were 

further investigated through CFD modeling. The application of screening SA on large CFD 

models for speed up the design of each centrifugal compressor allowed the surrogate model 

training that was used on further optimization procedure to additionally increase the performance 

of the equipment. Furthermore, the ’entropy-guided’ phenomenology assessment has identified 

regions in the computation domain where the sources of losses were prominent in the fluid flow, 

which explained the improvements on polytropic efficiency. The innovative contributions of this 

thesis were summarized as follows:  

 

• First to perform an optimization of a compression train that considers geometric and fluid 

flow phenomena as constraints, ensuring the resulting compression system is feasible; 



• Development of the Gas-like Behavior Margin (GBM), ensuring the compression does 

not reach the transcritical region; 

• Development of a low-cost Sensitivity Analysis (SA) strategy capable of properly 

screening the sample space using only a few model executions and providing both, 

insights on the model’s physical behavior and good data for surrogate model training of 

large and high-dimensional CFD models, such as turbomachinery; 

• Thorough phenomenology assessment of low-flow-coefficient s-CO2 centrifugal 

compressor through CFD model and SA, providing physical background for the reduction 

of power consumption and increase of machine’s efficiency found by the optimization 

procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



NOMENCLATURE 

Symbols Description Units 

𝜇𝑖
∗ Absolute sensitivity measures of Morris’ Method Depends 

AMC Acceleration Margin to Condensation Dimensionless 

ASHOA Adaptative Sampling Hybrid Optimization Algorithm - 

A-CAES Adiabatic Compressed Air Energy Storage - 

ΔZ Axial Height m 

t Blade thickness m 

CCUS Carbon Capture, Utilization and Storage - 

𝑆𝑐𝑓𝑔 Centrifugal forces on turbomachinery CFX equations - 

CFD Computational Fluid Dynamics - 

πk Contribution indices of SS-ANOVA method % 

𝐶𝑝 Constant-pressure specific heat J/kg.K 

𝑆𝑐𝑜𝑟 Coriolis acceleration on turbomachinery CFX equations - 

𝑓𝑐 Correction factor Dimensionless 

DoE Design of Experiment - 

𝑏3 Diffuser inlet height m 

𝑟3 Diffuser inlet radius m 

𝑃𝑡,3 Diffuser inlet total pressure Pa 

𝑏4 Diffuser outlet height m 

𝑟4 Diffuser outlet radius m 

𝑃4 Diffuser outlet static pressure  Pa 

𝑃𝑡,4 Diffuser outlet total pressure Pa 

𝐾𝑑𝑖𝑓 Diffuser total pressure loss coefficient Dimensionless 

λ Distortion factor Dimensionless 

EOR Enhanced Oil Recovery - 

EOS Equation of State - 

ℎ𝑖𝑛 Enthalpy at the compressor inlet J/kg 

𝜇 Enthalpy head coefficient Dimensionless 

ℎ𝑠𝑎𝑡  Enthalpy of the isentropic process at saturation J/kg 

𝑠𝑖𝑛 Entropy at the compressor inlet J/kg.K 

𝑠𝑠𝑎𝑡  Entropy of the isentropic process at saturation J/kg.K 

𝜑 Flow coefficient Dimensionless 

GBM Gas-like Behavior Margin Dimensionless 

GGI General Grid Interface - 

GHGs Greenhouse Gases - 



GCI Grid Convergence Index - 

𝐶1 Impeller inlet absolute velocity m/s 

𝑈1 Impeller inlet tangential velocity m/s 

𝛽1 Impeller leading-edge Blade Angle  ° 

𝐴1 Impeller leading-edge incidence area m2 

𝑟1ℎ Impeller leading-edge radius at hub m 

𝑟1𝑠 Impeller leading-edge radius at shroud m 

𝑃1 Impeller leading-edge static pressure Pa 

𝑈1,𝑠 Impeller leading-edge tangential velocity at shroud   m/s 

ℎ𝑡,1 Impeller leading-edge total enthalpy J/kg 

ℎ′𝑡,1 Impeller leading-edge total enthalpy - rotating frame  J/kg 

𝑃𝑡,1 Impeller leading-edge total pressure Pa 

𝑃′𝑡,1 Impeller leading-edge total pressure - rotating frame  Pa 

𝑑2/𝑟2 Impeller outlet diameter/radius m 

𝑈2 Impeller outlet tangential velocity m/s 

𝛽2 Impeller trailing-edge blade angle ° 

𝑏2 Impeller trailing-edge blade height m 

𝛽1,𝑚 Inlet blade angle at middle position ° 

θ1 Inlet polar angle ° 

Pin Inlet static pressure of the EOR system bar 

Tin Inlet temperature of the EOR system °C 

Pt,in Inlet total pressure of the EOR system Pa 

𝛥ℎ𝑠 Isentropic enthalpy raise J/kg 

𝜆𝑙 Lagrange Multiplier - 

𝑀𝑡ℎ Mach number at machine’s throat Dimensionless 

𝑚̇ Mass flow rate kg/s 

𝑣𝑠𝑎𝑡  Maximum allowed velocity before condensation m/s 

𝐸𝐸𝑖  Morris’ Elementary Effects Depends 

𝛥 Morris’ method step on discretized sample space Dimensionless 

MRF Multiple Frames of Reference - 

NSGA-II Non-sorted dominated genetic algorithm II - 

𝑍𝑓𝑏 Number of impeller’s full blades Dimensionless 

k Number of independent variables - 

r Number of sample space trajectories  - 

OAT One-at-a-time - 

1D One-dimensional - 



θ2 Outlet polar angle ° 

Pout Outlet static pressure of the EOR system bar 

Tout Outlet temperature of the EOR system °C 

𝑊̇𝑖 Power required of each compression stage W 

ΔP Pressure drop in the intercoolers bar 

PR Pressure Ratio Dimensionless 

T Pure torque loading N.m 

RBNN Radial basis neural network - 

RGP Real Gas Properties - 

RANS Reynolds Averaged Navier-Stokes - 

RS Response surface - 

𝑛 Rotational speed Rpm 

𝜔 Rotational speed Rad/s 

𝐼 Rothalpy on turbomachinery CFX equations - 

RFR Rotating frame of reference - 

SA Sensitivity Analysis - 

𝑆𝑃targ Sizing parameter target of Volute Dimensionless 

σ Slip coefficient  Dimensionless 

SS-ANOVA Smoothing Spline Analysis of Variance - 

𝑎𝑜𝑢𝑡 Sound velocity at EOR system’s outlet m/s 

𝑎𝑠𝑎𝑡  Sound velocity at saturation line m/s 

𝑎𝑤𝑖𝑑𝑜𝑚 Sound velocity of Widom line for the outlet temperature m/s 

𝐷𝑠 Specific diameter Dimensionless 

𝜌𝑖𝑛 Specific mass kg/m3 

𝑁𝑠 Specific speed Dimensionless 

Lsf Splitter length compared to the main blade % 

s-CO2 Supercritical CO2 - 

SC-CCES Supercritical compressed CO2 energy storage - 

s-CO2 EOR Supercritical CO2 Enhanced Oil Recovery  

𝐶𝑈,1 Tangential absolute velocity at impeller leading edge m/s 

𝐴𝑡ℎ Throat flow area m2 

𝑀𝑡ℎ,𝑠 Throat Mach number at shroud Dimensionless 

ℎ𝑡,𝑡ℎ Throat total enthalpy J/kg 

𝑃𝑡,𝑡ℎ Throat total pressure Pa 

T Torque transmitted kPa/rpm 

𝜔̅𝑖 Total pressure loss coefficient Dimensionless 

𝐾𝑑𝑖𝑓−𝑣𝑜𝑙  Total pressure loss coefficient of diffuser and volute Dimensionless 



𝜂𝑠,𝑡𝑡 Total-to-total isentropic efficiency % 

𝑏2 Trailing-edge blade height m 

𝑠𝑡,2 Trailing-edge entropy  J/kg.K 

𝑃′𝑡,2𝑠 Trailing-edge isentropic total pressure - rotating frame  Pa 

ℎ𝑡,2 Trailing-edge total enthalpy  J/kg 

ℎ′𝑡,2 Trailing-edge total enthalpy - rotating frame of reference J/kg 

ℎ𝑡,2𝑆 Trailing-edge total enthalpy of isentropic process  J/kg 

𝑃′𝑡,2 Trailing-edge total pressure - rotating frame of reference Pa 

𝑊𝑝̇ Transmitting shaft power [kPa] 

ULHS Uniform Latin Hypercube Sampling - 

𝑉̇ Volumetric flow rate m3/s 

𝑟5 Volute inlet radius m 

𝐶𝑈,5 Volute inlet tangential absolute velocity  m/s 

𝑃𝑡,5 Volute inlet total pressure Pa 

𝑟6 Volute outlet radius m 

𝐶𝑈,6 Volute outlet tangential absolute velocity  m/s 

𝑃𝑡,6 Volute outlet total pressure Pa 

𝐾𝑣𝑜𝑙  Volute total pressure loss coefficient Dimensionless 

𝜏𝑦𝑖𝑒𝑙𝑑 Yield Strength N/m2 
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1 INTRODUCTION 

 

The impact of Greenhouse Gases (GHGs) on the world’s environment has driven the 

scientific community to pursue a reduction of emissions. Renewable energy sources, energy 

efficiency improvements and atmosphere mitigation of CO2 are promising alternatives to that 

purpose. Mitigation of CO2 can deliver important reductions in the world’s total emissions 

through Carbon Capture, Utilization and Storage (CCUS) technologies, which can reach negative 

emissions (KOOHESTANIAN et al., 2017). For instance, the Adiabatic Compressed Air Energy 

Storage Systems (A-CAES) strategy (LUO et al., 2016) can be applied to mitigate CO2. Several 

countries are engaged to assess their CO2 storage capacities as opportunities for storage and 

utilization arises. For example, China’s geological capacity of CO2 storage is estimated in 1841 

Gt (saline aquifers, coal beds and oil reservoirs), which represents 190 years of their country's 

emissions, considering 2015’s levels (SUN et al., 2018). Brazil is also considered an important 

player for CCUS industry as it has an estimated capacity of CO2 storage of around 2000 Gt 

(ROCKETT et al., 2013). Of course, not all capacity can be readily used due to available 

technology and cost limitations. 

Supercritical CO2 usage as a working fluid has increased in the last few years since several 

advantages are reported. For instance, the increased power generation of Brayton’s Cycle 

compared with an ideal gas, once its low compression work leads to higher thermal efficiency 

(AHN et al., 2015; LIU; WANG; HUANG, 2019). Recent development of ‘supercritical 

compressed CO2 energy storage’ (SC-CCES) system has provided a higher exergy efficiency 

when compared with a conventional air system, mostly due to higher performance of system 

components (including centrifugal compressors) (HE et al., 2018; XU et al., 2021), and the 

supercritical CO2 Enhanced Oil Recovery (s-CO2 EOR) strategy that increases oil extraction and 

the lifetime of the wells (GODOI; DOS SANTOS MATAI, 2021), which is the most 

economically viable type of geological storage of CO2 used by the oil and gas industry composed 

by centrifugal compressors (Figure 1). This last strategy presents a large capability to store CO2 

(140 to 320 billion metric tons) and it can be financially suitable with state incentives, although it 

is still underused (GODEC et al., 2011).  
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Figure 1 – Centrifugal compressor overview 

 

 

 

Source: Heinrich (2016). 

 

Compression systems used in EOR are often multi-staged with intercoolers between them to 

avoid high temperatures. As compressors require most of the energy in the chain, they must be 

highly efficient, consuming as low as possible power to deliver the desired outlet pressure. 

Besides the higher efficiency and more compact turbomachinery required for supercritical CO2, 

the global warming safety limits are quickly being surpassed; which demands more carbon 

capture, utilization and storage (CCUS) technologies (CALADO, 2012; GODEC et al., 2011). 

The EOR compression system design is a challenge for engineers, as it can be composed for 

numerical modeling under different approaches such as one-dimensional models, two-

dimensional boundary layer investigations, quasi-three-dimensional flow analysis, or three-

dimensional CFD models.  

This thesis proposes a methodology for the development of supercritical CO2 compression 

trains of EOR systems (Four stages of compression) that combines a one-dimensional model and 

CFD simulations associated to sensitivity analysis methods and indirect optimization approach, 

providing reliable results. Also, a new constraint called GBM (Gas Behavior Margin) has been 

proposed for optimization of the fourth stage of compression.  
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1.1.  Review of one-dimensional modeling for centrifugal compressor train systems 

 

The optimization of performance of the compression train system is essential for ensuring 

higher efficiencies of each compression stage, diminishing the overall power consumption whilst 

it turns the EOR system financially more viable. Compression system designs started to rely less 

on engineers’ intuition after optimization started to be performed to determine the number of 

compression stages in each application (ALLAHYARZADEH-BIDGOLI et al., 2019a, 2021; 

CALADO, 2012; CHEN et al., 2008; EKRADI; MADADI, 2020; MARTYNOV et al., 2016; 

MERONI et al., 2018), which was extended for a sort of thermodynamic design variables such as 

inlet temperature, thermal effectiveness of the intercooler and flow rate (AZIZIFAR; BANOONI, 

2016). Multi-staged compression systems optimization led to better thermodynamic performance 

for supercritical CO2 as well (AGRAWAL; BHATTACHARYYA; SARKAR, 2007). However, 

the conventional and direct thermodynamic analysis of compression train systems is perhaps 

inaccurate to predict the real power required by the system (MODEKURTI et al., 2017; 

OKEZUE; KUVSHINOV, 2017), since it uses only the isentropic or polytropic efficiencies of the 

inlet/outlet states to assess losses (NIMTZ et al., 2010), neglecting total pressure loss of internal 

equipment components. Moreover, compression system optimizations present in literature until 

now do not consider geometrical constraints and fluid flow phenomena in the equipment as shock 

waves, flow blockage and condensation. Thus, a well-established one-dimensional (1D) model 

was implemented in this work, using Python programming language, to assess several important 

fluid flow phenomena to design an adequate centrifugal compressor train. 

A 1D methodology based on loss models of Aungier (2000) and the set of Oh; Yoon; Chung 

(1997) and implementation based on Monje et al. (2014) is defined, which provides good 

equipment assessment and it is considered a well-developed methodology (KLAUSNER; 

GAMPE, 2014; XIA et al., 2021), ensuring a proper representation of the centrifugal compressor 

fluid flow aspects at the impeller, vaneless-diffuser and volute. This 1D model is utilized in 

several supercritical CO2 compressors modeled for a Brayton cycle optimization (DU et al., 

2021), which has improved its total efficiency. Most of the applications of s-CO2 compression are 

related to Brayton cycles, which have low-pressure ratios (AMELI et al., 2017; AMELI; 

TURUNEN-SAARESTI; BACKMAN, 2018; BALTADJIEV; LETTIERI; SPAKOVSZKY, 

2014; DU et al., 2020; LIU; WANG; HUANG, 2019; SHAO et al., 2016). The choice of a set of 
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losses of a 1D model is due to the internal and external losses that are responsible for assessing 

fluid flow phenomena that are inherent from operation of the machine, which is crucial for 

properly predicting flow restrictions and physical constraints of the equipment, regardless the 

working fluid (Air or CO2, each one with its own equation of state). Consequently, the set of 

losses of the widely used optimum set (OH; YOON; CHUNG, 1997) was established and can be 

used for other fluids as well. Even though Cho et al. (2021) evaluates Lee’s configuration to be 

slightly better specifically for s-CO2, it recognizes that their greater difference is on disk friction 

loss model, which depends on facility installation as well. Thus, the set of losses in a 1D model is 

as good as its experimental validation, which must be enough for ensuring validity for the 

presented designer application. 

In the compression train systems of EOR systems, the pressure ratios are higher in order to 

achieve the desired reinjection pressure. Actually, the last stage must be higher than 3, which 

implies a low-flow coefficient for these types of machines, indicating higher losses due to friction 

at the impeller exit channel and resulting in a significant reduction in the machine efficiency 

(AUNGIER, 2000). Such high-pressure ratios combined with low-flow coefficients have not been 

widely investigated yet. Furthermore, the centrifugal compressor for CO2 reinjection works in a 

supercritical state, near the critical point, which may difficult the Computational Fluid Dynamics 

(CFD) model convergence due to high variations of thermodynamic properties (LEE et al., 

2016). The phenomenon of the transcritical region is still not fully understood by the scientific 

community (LETTIERI; YANG; SPAKOVSZKY, 2015). For example, Bae et al. (2015) 

reported a noticeable difference between their model prediction and experimental data, at the 

compressor outlet, due to the uncertainties of CO2 properties variation near the critical point, 

some uncertainties on isentropic efficiency measurements presented in literature are as high as 

125% (LEE et al., 2016). The experimental data at this level of pressure led the researchers to 

circumvent that issue without well-defined criteria. The most accessible s-CO2 centrifugal 

compressor’s experiment is in SANDIA’s report (WRIGHT et al., 2010), but it has a much lower 

pressure ratio (1.5) than the used in this work. Others s-CO2 test data on literature have reported 

crucial information as compressor geometry/operational aspects which allows a validation 

process for the 1D model (CHA et al., 2021; PARK; CHA; LEE, 2022; ZHU et al., 2023). 

Therefore, a one-dimensional modelling is an essential tool for properly designing centrifugal 

compressors. Its usage provides a proper preliminary geometry for the impeller, respecting 
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physical and spatial constraints that are common on practical applications. Of course, this initial 

geometry is further investigated by more accurate models as in CFD methodology since three-

dimensional phenomena are highly relevant for ensuring adequate compressor operation near 

critical point.  

 

1.2.  Review Of Sensitivity Analysis (SA) And Optimization for CFD Models of 

Centrifugal Compressors 

 

Centrifugal compressors are rotating machines that operate at very high velocities and have 

their performance and fluid flow impacted by geometry variables such as blade angles and 

thicknesses, which leads to complex turbulent flows with swirl and shock waves, making the 

design of high-performance turbomachinery a great challenge for engineers. In general, as 

presented in section 1.1, a centrifugal compressor design starts with one-dimensional approach, 

such as the Meanline (BLANCHETTE et al., 2016), streamline curvature (CASEY; ROBINSON, 

2008a) or the aforementioned Aungier (2000) methods. More recently, these models have been 

complemented by modern three-dimensional CFD models that provide a better description of the 

physical phenomena, higher accuracy and robustness to the design.  

From CFD analysis, Marconcini et al. (2008) and Ibaraki et al. (2002) previously identified 

two main physical phenomena that cause severe losses in centrifugal compressors: shockwaves at 

the leading edge caused by high velocities of the blade and swirl throughout the passage volume. 

Kim et al. (2010) parameterized two intermediate meridional flow path points of an air 

centrifugal compressor impeller and performed an optimization based on a radial basis neural 

network (RBNN), improving the efficiency of the reference impeller (85.98%) by 1.0% at the 

design point. Javed et al. (2016) performed multi-objective optimization using impeller and 

diffuser design variables improving the efficiency (81.11%) by 0.68% to 2.03% at the design 

point. Li et al. (2019) introduce the Adaptative Sampling Hybrid Optimization Algorithm 

(ASHOA) to deal with the high costs of turbomachinery CFD models improving efficiency by 

1.61%. 

Although improvements in the efficiency of air compressors have been found by previous 

optimizations in turbomachinery, there is still a lack of Sensitivity Analysis (SA) tools usage in 

order to improve the design of such equipment. Overall, SA is a statistical tool that studies how 



21 

 

the model input variables affect the interest outputs, describing the importance of each input on 

the variability of the output. There are a large number of SA methods available from qualitative 

screening to quantitative variance-based methods (CAMPOLONGO; SALTELLI; CARIBONI, 

2011). The Elementary Effects (EE) method introduced by Morris (1991) and refined by 

Campolongo et al. (2007) is considered good practice in qualitative SA for CFD models with a 

high computational cost. This screening method seeks to identify non-influential input variables 

for high-dimensional and computationally expensive models using a relatively small number of 

original model evaluations. Moreover, it provides a good initial sense of the problem, which 

contributes to diminishing the number of input variables for an optimization procedure, 

decreasing computational cost before the analyst proceeds to a quantitative method 

(CAMPOLONGO; SALTELLI; CARIBONI, 2011). 

Otherwise, quantitative methods estimate a representative sensitivity index as the percentage 

of the output variance due each variable. However, these methods require numerous assessments 

in model evaluations, which becomes prohibitive for large CFD models. A promising approach to 

sensitivity analysis and the optimization of high dimensional and computationally expensive 

models is the combination of qualitative screening methods followed by Response Surface 

Methodology (RS) with a good fitness that can be used to approximate the model’s behavior at a 

determined sample space region. Most efforts are dedicated to developing and calibrating an RS 

that is dependent on the number of variables contained in the model (dimensionality). 

Furthermore, when the model itself is high-dimensional and the interactions among the variables 

are not negligible, it is difficult to achieve good fitness for the RS (GE; CIUFFO; MENENDEZ, 

2014). Once the RS is trained and tested, the estimations of quantitative sensitivity indices are 

very fast. For example, Dezan et al. (2018) used the smoothing spline ANOVA model (SS-

ANOVA) as a quantitative SA method to access the influence of the geometrical variables on two 

different physical outputs of a compact heat exchanger, corroborating the robustness of this 

quantitative method. Ciuffo et al. (2013), confirmed the reliability of sensitivity indices 

calculations using RS, showing variance-based indices practically identical to those estimated by 

the original model.  

Therefore, the development of a proper SA methodology that combines a low-cost of EE 

method with the reliability of SS-ANOVA method is a promising approach for the 

turbomachinery CFD model’s design since it can reduce the computational effort of an 
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optimization procedure using its data to train Response Surfaces (RS), provide phenomenology 

insights for the designer and reduce the number of geometric design variables through a factor 

fixing procedure. 

 

1.3.  S-CO2 compression system setup and constraints 

 

In order to detail the object of study of the present work, Table 1 shows inlet and outlet 

conditions of the sCO2-EOR compression system studied. The inlet pressure is above 

atmosphere’s due to the process in which CO2 is obtained in platform operation. Thus, the main 

goal is to increase the fluid pressure from 4 to 250 bar, which is a typical pressure range 

operation for CO2 on EOR compression systems (ALLAHYARZADEH-BIDGOLI et al., 2021) 

and cannot be done in a single compression stage due to machine limitations and high 

temperatures. For this, intercoolers have been considered between the compression stages (Figure 

2), based on space availability and performance discussed by Allahyarzadeh-Bidgoli et al. 

(2019). Moreover, a purely thermodynamic analysis conducted previously 

(ALLAHYARZADEH-BIDGOLI et al., 2021) has determined the number of stages (four) for the 

compression system studied herein, which has reduced the expected total power consumption in 

5.8%, in comparison to a three-staged system. 

 

Table 1 – CO2-EOR compression system inlet/outlet conditions. 

 

Operational Variable Inlet Conditions Outlet Conditions 

Static Pressure 4 bar 250 bar 

Temperature 40°C 40°C 

Mass flow 55.56 kg/s 55.56 kg/s 

Source: Author. 

 
The intercoolers are responsible for decreasing the outlet temperature of each compression 

stage, delivering to the next compressor CO2 at 40°C. Moreover, a pressure drop is also 

considered and, for simplicity purposes, is equal to 0.5 bar for each intercooler device. The 

compression stages are independent, meaning that each equipment can have its rotational speed 
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(n) and pressure ratio (PR). Thus, several PR combinations can deliver the desired outlet 

pressure. However, some configurations of the train system could be unfeasible, since the 

machine restrictions and fluid flow phenomena cannot meet the 1D model constraints.  

 

Figure 2 - Compression system of CO2-EOR diagram. 

 

Source: Author. 

 

The several constraints can be divided into two groups: Single-stage restrictions for each 

stage compression, and system restrictions due to the whole system setup (Table 2).  

 

Table 2 – Constraint for the compression system. 

Group Restriction Limit 

Single Stage 

Throat Mach number < 1 (IBARAKI et al., 2007) 

Outlet Temperature < 200 °C 

Rotational Speed 
< 30000 RPM (FULLER; 

PREUSS; NOALL, 2012) 

System 

Acceleration Margin to 

Condensation (𝑀𝑡ℎ,4/AMC) 
< 1 (MONJE et al., 2014) 

Gas-like Behavior Margin (𝐺𝐵𝑀) < 1 

Source: Author. 

 

The most significant single-stage machine restriction is the maximum Mach number at the 

impeller leading-edge. If shock waves are generated at that point, there is an increase in 

efficiency loss and a decrease in the stable operational range (IBARAKI et al., 2007). To avoid 

that issue, the Mach number at the impeller throat must be under unity. Moreover, a limit of 200 
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°C was set at the outlet temperature for each stage since there is not much space available in oil-

gas platforms and heat exchanger sizes and weights are quite limited. Another important 

constraint is the rotational speed since high shaft speeds (over 30000 rpm) can reduce the life of 

the seals and gears of the system (FULLER; PREUSS; NOALL, 2012). Two system restrictions 

have been related to the fluid flow phenomena at the last stage of compression. The Acceleration 

Margin to Condensation (AMC) (MONJE et al., 2014) was considered to avoid condensation at 

the inlet and a novel Gas-like Behavior Margin (GBM) is firstly proposed herein to ensure the s-

CO2 operates in the gas-like region to avoid CFD convergence issues in the near-critical point 

region. If GBM is not considered as a constraint, the compressor inlet or parts of the compression 

process would be allowed to happen at a high variation of properties region, in which transcritical 

practical problems would occur. Therefore, the GBM constraint is not only preventing the outlet 

to enter the transcritical region but the entire compression process of the last stage, which is 

extremely necessary for a feasible compression system design. The temperature/entropy diagram 

shown in Figure 3 illustrates both restriction margins.  

 

Figure 3 – AMC and GBM represented in the T-s diagram for supercritical CO2. 

 

Source: Author. 
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The AMC is referred to as the maximum allowed Mach number at the impeller throat to 

ensure that condensation would not take place (MONJE et al., 2014). For better elucidation, the 

energy conservation (definition of total enthalpy: ℎ𝑖𝑛 = ℎ𝑠𝑎𝑡 + 𝑣𝑠𝑎𝑡²) between the thermodynamic 

state of the compressor inlet and the saturation line of an isentropic expansion gives:  

 

𝑣𝑠𝑎𝑡 = √2(ℎ𝑖𝑛 − ℎ𝑠𝑎𝑡) (1) 

  

𝑠𝑠𝑎𝑡 = 𝑠𝑖𝑛 (2) 

  

in which 𝑣𝑠𝑎𝑡 is the maximum allowed velocity before condensation occurs, ℎ𝑖𝑛 and 𝑠𝑖𝑛 are the 

enthalpy and entropy at the compressor inlet, respectively. The ℎ𝑠𝑎𝑡 and 𝑠𝑠𝑎𝑡 are the enthalpy and 

entropy at the saturation line of the isentropic process, respectively.  

 

Using a proper Equation of State (EOS) it is possible to calculate the sound velocity (𝑎𝑠𝑎𝑡) at 

the saturation state, since 𝑎𝑠𝑎𝑡 = 𝑓(ℎ𝑠𝑎𝑡 , 𝑠𝑠𝑎𝑡). Thus, AMC can be defined as:  

 

𝐴𝑀𝐶 =
𝑣𝑠𝑎𝑡
𝑎𝑠𝑎𝑡

  (3) 

 

Therefore, the restriction to avoid condensation due to fluid acceleration at the compressor 

inlet is that the real absolute Mach number at the impeller throat (𝑀𝑡ℎ) cannot be higher than the 

AMC (AMC > 𝑀𝑡ℎ), which means the velocity achieved at the equipment throat is not high 

enough to take the static thermodynamic state to enter the saturation dome. Direct 

thermodynamic analysis of the compression system would not predict this kind of restriction as it 

does not have geometry and operational data of the centrifugal compressor to calculate the real 

flow velocities, which is only possible after 1D modeling estimates the preliminary 1D fluid 

flow. 

Similarly, the present study has proposed a new criterion called GBM (Gas-like Behavior 

Margin) to ensure a gas-like behavior for supercritical fluids. The points of the maximum value 

of constant-pressure specific heat (𝐶𝑝) above the critical point define the Widom Line (SIMEONI 
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et al., 2010), which is due to experimental observation of thermodynamic properties behavior 

above the critical point. It was noticed two distinct regions, the gas-like region (low values of 

density) and the liquid-like region (high values of density) and a transitional region (where high 

properties variation are present) often called as transcritical region that starts on the vicinity of 

the Widom line. This line was used herein as a limit for high property variations. 

 Furthermore, gas-like behavior is essential for the adequate operation of centrifugal 

compressors since several issues are reported at the near-critical point as non-linear properties 

changes causing very high uncertainties (LEE et al., 2016) and CFD simulations instabilities even 

for low-pressure ratio (AMELI et al., 2017). The compression process is designed to not cross the 

Widom Line, ensuring better accuracy in thermophysical properties and CFD convergence. Thus, 

the compressor outlet state needs to be at the gas-like behavior region as shown in Figure 3. For 

it, the (GBM) is proposed as an isothermal ratio of the sound velocities between the compressor 

outlet and the Widom line: 

 

𝐺𝐵𝑀 = 
𝑎𝑜𝑢𝑡(𝑇𝑜𝑢𝑡)

𝑎𝑤𝑖𝑑𝑜𝑚(𝑇𝑜𝑢𝑡)
 

(4) 

 

in which 𝑇𝑜𝑢𝑡 and 𝑎𝑜𝑢𝑡 are the temperature and sound velocity at the compressor outlet, 

respectively. The 𝑎𝑤𝑖𝑑𝑜𝑚 is the sound velocity at the Widom line evaluated at the same 

temperature.  

Sound velocity was chosen as the thermodynamic property to perform the GBM since its 

value at the Widom line is always higher than the gas-like region, meaning that the GBM value 

must be always less than unity (GBM < 1) to guarantee gas-like behavior and avoid undesirable 

transcritical flow phenomena, ensuring that the s-CO2 compressor operates at the gas-like region. 

Also, the total power consumption of the multi-staged compression system will be minimized, 

taking the whole train into account. For that, the one-dimensional model of the impeller, 

vaneless-diffuser and volute will be considered for each compression stage and submitted to a 

constrained-optimization procedure taking into account thermodynamic, geometry and fluid flow 

aspects of all four compression stages. 

Afterwards, a CFD analysis of the last stage of compression was performed to ensure model 

accuracy and also to check the GBM constraint. Thus, the next step to design a s-CO2 

compression system is the optimization of each stage using the more accurate CFD model, which 
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is a computationally expensive procedure. Thus, this work aims to develop a high-dimensional 

design optimization strategy for very low-flow coefficient centrifugal compressors that are 

required on EOR compression systems, combining the SA methods and RS training with a CFD 

model phenomenology evaluation. 

 

1.4.  Objective of the Thesis  

Summing up, the main objective of this thesis can be highlighted as: 

  

• Develop a design methodology for a higher efficient centrifugal compressor train of s-

CO2 for EOR systems (as presented in the flowchart of Figure 4).  

 

Each step of the flowchart of Figure 1.4 is further addressed in the appropriated section. In 

short, a one-dimensional optimization is performed to reduce total power consumption and 

provides the preliminary geometry for the four stages of the compression train. Two CFD models 

were constructed, one for the first and other for the last stage, to be further improved by 3D 

analysis.  he first stage was optimized to gain model ‘knowhow’ and evaluate the SA 

methodology. The last stage optimization assessed the influence of high number of interacting 

variables and fluid flow phenomena in low-flow-coefficient compressors operating with 

supercritical CO2.  

 

Figure 4 – Overall Design Strategy for Sensitivity Analysis and Optimization. 

 

 

 

Source: Author. 
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Also, the relevant scientific contributions presented by this thesis can be listed as: 

• First to perform an optimization of a compression train that considers geometric and fluid 

flow phenomena as constraints, ensuring the resulting compression system is feasible; 

• Development of the Gas-like Behavior Margin (GBM), ensuring the compression does 

not reach the transcritical region; 

• Development of a low-cost Sensitivity Analysis (SA) strategy capable of properly 

screening the sample space using only a few model executions and providing both, 

insights on the model’s physical behavior and good data for surrogate model training of 

large and high-dimensional CFD models, such as turbomachinery; 

• Thorough phenomenology assessment of low-flow-coefficient s-CO2 centrifugal 

compressor through CFD model and SA, providing physical background for the reduction 

of power consumption and increase of machine’s efficiency found by the optimization 

procedure. 
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2 METHODOLOGY 

 

This section presents the four tools utilized to develop this thesis:  

 

• The implementation of the one-dimensional model of centrifugal compressors in 

Python programming language, which turned possible to include geometric and fluid 

flow constraints in the optimization procedure; 

•  he SA strategy defined to decrease the computational cost of large CFD model’s 

optimization, which includes the Elementary Effects method that was implemented in 

R programming language (Quasi-optimal sampling procedure to generate de Design 

of Experiment (DoE) and the sensitivity measures computation) and the SS-ANOVA 

method that was already implemented in ModeFrontier software. 

• The appropriate setup of s-CO2 CFD models for centrifugal compressors in CFX 

software, including the Real Gas Properties (RGP) table study required for proper 

representation of thermodynamic properties at supercritical condition. 

• The development of an optimization strategy for the EOR train of compression using 

the Non-Sorted-Dominated Genetic Algorithm (NSGA-II) already implemented in 

ModeFrontier software. 

 

As already mentioned, the Enhanced Oil Recovery (EOR) process requires a multi-staged 

compression system to operate using s-CO2. The commercially available 1D models responsible 

for providing preliminary geometry for designers do not comprehend supercritical conditions due 

to the limitations of its Equation of State (EoS). Therefore, a 1D model is developed herein to 

provide preliminary geometries of a multi-staged compression system working with s-CO2. 

 

2.1 D model for compression train design  

 

The one-dimensional (1D) design method implemented in this study is based on Aungier 

(2000) and Monje et al. (2014). Centrifugal compressors are divided into three main parts: 
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Impeller, diffuser and volute (Figure 5). Each of these components have been evaluated as 

described below for the four stages of the compression chain.  

 

Figure 5 – Meridional representation of the centrifugal compressor for 1D methodology. 

 

 

Source: Author. 

 

The total thermodynamic conditions at the inlet of each compressor (Figure 2) are determined 

due to system inlet conditions and to previous stage calculation, which allows the designer to 

define relevant compressor features such as pressure ratio and the number of blades. Of course, 

inlet conditions of subsequent stages depend on the PR combination for the four stages of the 

compression system. Moreover, the rotational speed and trailing edge diameter are based on 

specific speed (𝑁𝑠) and specific diameter (𝐷𝑠), according to Balje (1981):  

 



31 

 

𝑁𝑠 =
𝜔𝑉̇

1
2

𝛥ℎ𝑠
3
4

 (5) 

  

𝐷𝑠 =
𝑑2𝛥ℎ𝑠

1
4

𝑉̇
1
2

 (6) 

 

in which 𝜔 is the rotational speed in radians per second, 𝑉̇ is the volumetric flow rate, 𝑑2 is the 

impeller outlet diameter and 𝛥ℎ𝑠 is the isentropic enthalpy raise.  

 

Their choice depends on the flow coefficient (𝜑) and enthalpy head coefficient (𝜇) 

(RODGERS, 1997), presented in equations (7) and (8), and on rotational speed and throat Mach 

number restrictions (AUNGIER, 2000).  

 

𝜑 =
𝑚̇

𝜌𝑖𝑛𝜋𝑟2
2𝑈2

 (7) 

 

 
 

𝜇 =
𝛥ℎ𝑠

𝑈2
2  (8) 

 

 

in which 𝑚̇ is the mass flow rate, 𝜌𝑖𝑛 is the specific mass at the inlet total conditions, 𝑟2 is the 

impeller outlet radius and 𝑈2 is the impeller outlet tangential velocity.  

Thus, each stage of compression was chosen to satisfy the constraints resulting in Table 3 

values. To avoid high rotational speed and condensation at the impeller throat, low-flow 

coefficient compressors are often employed for the last stage of compression of EOR systems, 

resulting in narrower flow channels than usual, which leads to higher friction losses (LETTIERI 

et al., 2014). 
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Table 3 – Specific speed, specific diameter, flow coefficient, enthalpy head, rotational speed and 

trailing edge diameter of each compression stage. 

Compression stage First stage Second stage Third stage Fourth stage 

Specific speed (𝑁𝑠)  0.52 0.52 0.52 0.3 

Specific diameter (𝐷𝑠) 5 5 5 9 

Flow coefficient (𝜑) 0.039 0.039 0.039 0.012 

Enthalpy head (𝜇) 0.592 0.592 0.592 0.549 

Source: Author. 

 

2.1.1  Impeller 

 

The impeller is the rotating part of the equipment where the fluid is accelerated. The majority 

of the machine losses are in this section and its design is divided into two parts: leading and 

trailing edges. First, a structural evaluation of the minimum inlet hub radius is performed to 

ensure shaft mechanical integrity using the typical values of yield strength (𝜏𝑦𝑖𝑒𝑙𝑑) and pure 

torque loading (LOEWENTHAL, 1984):  

 

𝑟1ℎ,𝑚𝑖𝑛 = (
2𝑇

𝜋(0.7𝜏𝑦𝑖𝑒𝑙𝑑)
)

1/3

 (9) 

 

in which: 𝜏𝑦𝑖𝑒𝑙𝑑 = 1050, 𝑟1ℎ,𝑚𝑖𝑛 is the minimum allowed hub radius and 𝑇 is the torque 

transmitted: 

 

𝑇 = 9550
𝑊𝑝̇[𝑘𝑃𝑎]

𝑛 [𝑟𝑝𝑚]
 (10) 

 

where 𝑊𝑝̇ is the transmitting shaft power and 𝑛 is the rotational speed. The inlet hub radius (𝑟1ℎ) 

is selected using a chosen safety factor of 1.2 (𝑟1ℎ = 1.2𝑟1ℎ,𝑚𝑖𝑛). Moreover, the inlet shroud 

radius (𝑟1𝑠) requires a complete evaluation of the leading-edge design since its choice has a great 

impact on throat Mach number. Values between 30 and 50% of the impeller outlet radius (𝑟2) 

usually results in an acceptable throat Mach number (AUNGIER, 2000). 
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The leading-edge evaluation is to perform the incidence and throat velocity triangles (Figure 

6) and, consequently, the inlet blade angles at different leading-edge spam positions.  

 

Figure 6 – Leading-edge and throat velocity triangles. 

 

 

Source: Author. 

 

Blade thickness is considered constant (𝑡1,𝑠 = 𝑡1,ℎ = 𝑡2) and values between 2% and 3% of 

impeller diameter were chosen. The null incidence assumption (𝐶1,𝑈 = 0) implies that the 

leading-edge velocity triangle shown in Figure 6, in which the leading-edge incidence flow area 

(𝐴1) is: 

 

𝐴1 = 𝜋(𝑟1𝑠
2 − 𝑟1ℎ

2) − (𝑟1𝑠 − 𝑟1ℎ)𝑡1𝑍𝑓𝑏 (11) 

 

and the tangential velocity has to be evaluated at the radius section where the analysis is taking 

place (hub, mid or shroud spam position):  

 

𝑈1,𝑠 = 𝜔 𝑟1𝑠  (12) 
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Evidently, the maximum tangential velocity value is verified at the highest value of radius 

(𝑟1𝑠) since 𝜔 is constant, which results in the highest throat Mach (𝑀𝑡ℎ,𝑠) number of the leading 

edge. The leading-edge definition requires an iterative procedure at the hub, mid and shroud 

positions, as indicated by the flowchart shown in Figure 7, which summarizes the whole leading-

edge iterative solution explained next. 

 

Figure 7 – Flowchart of the leading-edge iterative solution. 

 

 

Source: Author. 
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Thermodynamic properties at the leading edge are assumed to be equal to the compressor 

inlet as an initial guess. Thus, a looping between continuity (Equation 13), energy conservation 

(Equation 14), velocity triangle (Equation 15) and EoS (R.SPAN; W.WAGNER, 1994) is 

performed until the absolute velocity is converged. The leading-edge incidence geometry is 

completely determined once hub, mid and shroud incidence angles are calculated. However, the 

Mach number can reach higher values at the throat causing shockwaves and/or condensation 

(MONJE et al., 2014). Therefore, the Mach number at the throat needs to be considered before 

the impeller outlet design.  

 

𝐶1 = 𝑚̇/(𝜌1𝐴1)                                                                                                                           (13) 

 

𝐻1 = 𝐻𝑖𝑛 −
𝐶1
2

2
                                                                                                                                      (14) 

 

𝛽1 = 𝑡𝑎𝑛
−1(𝑈1 𝐶1)⁄                                                                                                                   (15) 

 

The initial guess for the thermodynamic state at the throat is previously calculated for the 

leading-edge incidence state and the throat flow area is estimated as 𝐴𝑡ℎ = 𝐴1cos (𝛽1) 

(AUNGIER, 2000). Then, the same loop of equations is applied to the throat, using correlations 

shown in Figure 6. Once the Mach number at the throat is computed at the hub, mid and shroud 

radius, the leading-edge analysis is completed. If one finds prohibitive Mach numbers at the 

throat, the design must be restarted: changes in shroud radius, flow coefficient, specific speed or 

any other impacting design variables should be performed.  

After the leading-edge definition, its losses can be assessed (AUNGIER, 2000; MONJE et al., 

2014). The leading-edge losses are summed and an iterative thermodynamic state correction is 

initiated since there is a dependency between flow velocity triangles and the thermodynamic 

state. The throat-corrected state is defined by energy conservation and total pressure loss 

estimative (𝜔̅𝑖): 

 

ℎ𝑡,1 = ℎ𝑡,𝑡ℎ   
(16) 

𝑃𝑡,𝑡ℎ = 𝑃𝑡,1 − (𝑃𝑡,1 − 𝑃1)∑ 𝜔̅𝑖
𝑡ℎ
1    
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After the throat state is updated, the velocity triangles and leading-edge losses are computed 

iteratively until those losses’ values are converged. A sudden contraction area loss was proposed: 

 

𝜔̅𝑐𝑜𝑛𝑡 =
𝑟1ℎ

4

𝑟1𝑠4
                                                                                                                            (17) 

 

Moreover, three other losses are estimated on the leading edge (Aungier 2000). Incidence 

loss, due to differences between flow and blade angles and the reduction of flow area: 

 

𝜔̅𝑖𝑛𝑐 = 0.8 (1 −
𝐶1,𝑚

𝑤1 cos(𝛽1)
)
2

+ (
𝑍𝑓𝑏𝑡1

2𝜋𝑟1 cos(𝛽1)
)
2

                                                                        (18) 

 

in which the effective loss is the weighted average computed in hub, mid-span and shroud in 

proportion of 1, 10 and 1, respectively. Diffusion loss term is estimated for impellers that the 

diffusion of flow between the leading edge and the throat is more significant than the incidence 

loss, 

 

𝜔̅𝐷𝐼𝐹 = 0.8 (1 −
𝑤𝑡ℎ

𝑤1
)
2

− 𝜔̅𝑖𝑛𝑐                                                                                        (19) 

 

in which a stall criterion is suggested as 
𝑤1,𝑠

𝑤𝑡ℎ
≥ 1.75. If stall is predicted, a limit for diffusion loss 

is 𝜔̅𝐷𝐼𝐹 = ((𝑤1,𝑠 − 1.75𝑤𝑡ℎ)/𝑤1)
2
− 𝜔̅𝑖𝑛𝑐. If sonic conditions are found in impeller throat, an 

additional loss has to be estimated, the choking loss: 

 

𝜔̅𝐶𝐻 = 0.5(0.05𝑋 + 𝑋
7), 𝑖𝑓 𝑋 > 0                                                                                          (20) 

𝜔̅𝐶𝐻 = 0, 𝑖𝑓 𝑋 ≤ 0    

 

in which 𝑋 = 11 − 10𝐶𝑟𝐴𝑡ℎ/𝐴
∗, the contraction ratio correlation is 𝐶𝑟 = √𝐴1cos (𝛽1)/𝐴𝑡ℎ) and 

the sonic throat area is 𝐴∗ =
𝑚̇

𝜌𝑡ℎ𝑎𝑡ℎ
.  

The impeller trailing-edge design is based on a velocity triangle (Figure 8), which provides 

the impeller trailing-edge angle (𝛽2) and blade height (𝑏2). Of course, as the velocity field 
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impacts the thermodynamic state an iterative procedure is required as well. The impeller trailing 

edge needs to achieve a total pressure that compensates for the losses on the diffuser and volute 

(𝐾𝑑𝑖𝑓−𝑣𝑜𝑙), as well as the total-to-total isentropic efficiency (𝜂𝑠,𝑡𝑡) on the impeller itself. 

Therefore, an initial guess is required for both terms (𝐾𝑑𝑖𝑓−𝑣𝑜𝑙 = 10% and 𝜂𝑠,𝑡𝑡 = 80%). 

 

Figure 8 – Trailing-edge velocity triangle considering slip (σ) and distortion factor (λ). 

 

 

Source: Author. 

 

Moreover, an ideal performance is also guessed initially (𝜎 = 1;  𝜆 = 1 and ∑ 𝜔̅𝑖
2
1 = 0) and a 

three-level impeller trailing-edge loop (Figure 9) is initiated as proposed by (MONJE et al., 

2014). The impeller losses are assessed by the models of (AUNGIER, 2000; OH; YOON; 

CHUNG, 1997), recalculating the values of 𝜎, 𝜆 and ∑ 𝜔̅𝑖
2
1 .  

Friction losses were assessed with the friction coefficient (𝐶𝑓) of the Boundary Layer Theory 

in (SCHLICHTING, 1979) and its pressure loss coefficient is defined as 

 

𝜔̅𝑓𝑟 = 4𝐶𝑓
𝐿𝐵

𝑑̅𝐻
(
𝑤̅

𝑤1
)
2

                                                                                                                  (21) 

 

in which 𝐿𝐵 is the impeller channel length (AMELI et al., 2019), 𝐿𝐵 =
𝜋

8
(2𝑟2 − 2𝑟1 − 𝑏2 +

2𝛥𝑍) (
4

𝑐𝑜𝑠𝛽1𝑠+𝑐𝑜𝑠𝛽1ℎ+2𝑐𝑜𝑠𝛽2
); 𝑑̅𝐻 is the mean hydraulic diameter between throat and trailing edge; 
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𝑤̅ is the mean relative velocity at the impeller, 𝑤̅ = √(𝑤1
2+𝑤2

2)

2
; and 𝑍 = 𝑟2 ∗ (0.014 + 0.023 ∗

(
𝑟2

𝑟1ℎ
) + 1.58𝜑), is the axial length. 

Pressure gradient on the impeller causes blade loading losses and are estimated in two 

directions: blade-to-blade and hub-to-shroud.  

• Blade-to-blade coefficient: 

 

𝜔̅𝐵𝑙 =
1

24
(
𝛥𝑤

𝑤1
)
2

                                                                                                                (22) 

 

in which 𝛥𝑤 =
2𝜋𝑑2𝑈2𝐼𝐵

𝑍𝑒𝑓𝑓𝐿𝐵
 is the maximum velocity difference, 𝑍𝑒𝑓𝑓 = 𝑍𝐹𝐵 + 𝑍𝑆𝐵 (

𝐿𝑆𝐵

𝐿𝐹𝐵
) is the 

effective number of blades due to splitters; and 𝐼𝐵 = 𝜎 (1 −
𝑚̇ 𝜆 tan𝛽2

𝜌2𝐴2𝑈2
) −

𝑈1𝐶𝑈1

𝑈2
2  is the work input 

coefficient, where the slip factor (σ) is estimated as in Wiesner (1967). 

• Hub-to-shroud coefficient:  

 

𝜔̅𝐻𝑆 =
1

6
(
𝑘̅𝑚 𝑏̅ 𝑤̅

𝑤1
)
2

                                                                                                                    (23) 

 

in which 𝑘̅𝑚 =
𝛼𝐶1−𝛼𝐶2

𝐿𝐵
  is the stream line curvature, 𝑏̅ =

(𝑟1𝑠−𝑟1ℎ)+𝑏2

2
 is the mean channel width 

and 𝑤̅ =
𝑤1+𝑤2

2
 is the mean relative velocity at the impeller.  

The complex mixing of flow zones at the impeller channel requires the modeling of mixing 

losses due to the abrupt expansion (BENEDICT; CARLUCCI; SWETZ, 1966) of the distorted 

main flow encountering the impeller outlet blockage and the flow wakening after impeller trailing 

edge. The abrupt expansion and the wake mixing loss coefficients are defined as:  

 

𝜔̅𝜆 = (
(𝜆−1)𝐶𝑚2 

𝑤1
)
2

                                                                                                                   (24) 

𝜔̅𝑤𝑎𝑘𝑒 = (
𝐶𝑚2,𝑤𝑎𝑘𝑒−𝐶𝑚2,𝑚𝑖𝑥

𝑤1
)
2

                                                                                           (25) 
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in which the well-known distortion factor is 𝜆 =
1

1−𝐵2
 and the blockage estimative is defined as 

𝐵2 = 𝜔̅𝑓𝑟
𝑃𝑡,1−𝑃1

𝑃𝑡,2−𝑃2
√
𝑤1𝑑̅𝐻

𝑤2𝑏2
+ (0.3 +

𝑏2
2

𝐿𝐵
2 )

𝐴𝑅
2𝜌2𝑏2

𝜌1𝐿𝐵
+
𝛿𝐶𝐿

2𝑏2
; where 𝐴𝑅 =

𝐴2𝑐𝑜𝑠𝛽2

𝐴1𝑐𝑜𝑠𝛽𝑡ℎ
 and 𝛿𝐶𝐿 is the clearance 

gap size. Also, 𝐶𝑚2,𝑤𝑎𝑘𝑒 = √𝑤2
2 − 𝑤𝑈,2

2  and 𝐶𝑚2,𝑚𝑖𝑥 =
𝐶𝑚2𝐴2

𝜋𝑑2𝑏2
. 

 The clearance gap on blade tip implies pressure differences and mass flow between blade 

sides near the shroud. Thus, a clearance loss coefficient has to be considered:  

 

𝜔̅𝐶𝐿 =
2 𝑚̇𝐶𝐿𝛥𝑃𝐶𝐿 

𝑚̇ 𝜌1𝑤1
2                                                                                                                     (26) 

 

in which the clearance gap mass flow is 𝑚̇𝐶𝐿 = 𝜌2 𝑍𝑒𝑓𝑓 𝑠  𝐿𝐵  𝐶𝐶𝐿, the pressure difference 

between blade sides is 𝛥𝑃𝐶𝐿 =
𝑚̇ (𝑟2𝐶𝑈,2−𝑟1𝐶𝑈,1)

𝑍𝑒𝑓𝑓 𝑟̅ 𝑏̅𝐿𝐵 
 and the clearance absolute velocity is 𝐶𝐶𝐿 =

0.816√2𝛥𝑃𝐶𝐿/𝜌2. 

Total pressure loss assessment at the impeller is conducted at the reference rotating frame, in 

which inlet and outlet states depend on its total states and absolute velocities: 

 

ℎ′𝑡,1 = ℎ𝑡,1 − 𝑈1𝐶𝑈,1 +
𝑈1
2

2
   

(27) ℎ′𝑡,2 = ℎ′𝑡,1 +
(𝑈2

2−𝑈1
2)

2
   

𝑃′𝑡,2 = 𝑃
′
𝑡,2𝑠 − 𝑓𝑐(𝑃

′
𝑡,1 − 𝑃1) ∑ 𝜔̅𝑖

2
1    

 

in which 𝑃′𝑡,2𝑠 = 𝑓(ℎ′𝑡,2, 𝑠1) and 𝑃′𝑡,1 = 𝑓(ℎ
′
𝑡,1, 𝑠1) are obtained through the EoS (R.SPAN; 

W.WAGNER, 1994), assuming an isentropic compression process; and 𝑓𝑐 =
𝑃′𝑡,2

𝑃′𝑡,1
 is the correction 

factor since the loss coefficients are based on the inlet conditions. 𝑓𝑐 and 𝑃′𝑡,2 are iteratively 

evaluated until 𝑓𝑐 is converged.   

After the rotational frame of the reference states is performed, the absolute total states are 

corrected using the appropriated EoS, i.e., 𝑠𝑡,2 = 𝑓(ℎ′𝑡,2, 𝑃
′
𝑡,2) and ℎ𝑡,2 = 𝑓(𝑠𝑡,2, 𝑃𝑡,2). The total-

to-total isentropic efficiency is updated until convergence, finalizing the outer loop of the trailing 

edge iterative solution. 
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𝜂𝑡−𝑡 =
ℎ𝑡,2𝑠−ℎ𝑡,1

ℎ𝑡,2−ℎ𝑡,1
    (28) 

 

in which ℎ𝑡,2𝑠 = 𝑓(𝑠1, 𝑃𝑡,𝑜𝑢𝑡) is the compressor outlet enthalpy due to an isentropic compression 

process. The impeller one-dimensional geometry is defined since all necessary inputs for the 

three-dimensional geometry construction tool (Ansys BladeGen) are estimated.  

 

Figure 9 – Three-level impeller trailing-edge iterative solution. 

 

 

 

Fonte: Monje et al. (2014). 
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2.1.2 Vaneless Diffuser 

 

In order to provide a suitable estimative of the losses due to vaneless diffuser (𝐾𝑑𝑖𝑓), this one-

dimensional model uses the correlations presented by (OH; YOON; CHUNG, 1997). The 

impeller trailing-edge blade height is maintained along with the diffuser (𝑏4 = 𝑏3 = 𝑏2), as 

shown in Figure 10, and the thermodynamic state at the diffuser inlet is assumed equal to the 

impeller trailing edge.   

 

Figure 10 – Impeller/Diffuser interface at the meridional view. 

 

Source: Author. 

 

An iterative solution is also required (Figure 11), and the diffuser exit radius (𝑟4) is initiated 

as equal to 𝑟2 and incremented until the exit static pressure (𝑃4) is unchanged, meaning that the 

maximum possible pressure recovery is achieved by the vaneless diffuser. 

 

𝛥ℎ𝑑𝑖𝑓𝑓 = 𝐶𝑝𝑇𝑡,3 ((
𝑃4

𝑃𝑡,4
)

𝛾−1

𝛾
 

− (
𝑃4

𝑃𝑡,3
)

𝛾−1

𝛾
 

)                                                                                 (29) 

 

The vaneless-diffuser enthalpy loss calculation (STANITZ, 1952) is reevaluated until static 

pressure convergence and then 𝐾𝑑𝑖𝑓 is computed: 

 

𝐾𝑑𝑖𝑓 = 1 −
𝑃𝑡,4

𝑃𝑡,3
        (30) 
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Figure 11 – Diffuser iterative solution flowchart. 

 

 

Source: Author. 
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2.1.3 Volute 

 

The one-dimensional model for the volute is also based on Aungier (2000) and Monje et al. 

(2014). This modeling allows for calculating the total pressure loss coefficient (𝐾𝑣𝑜𝑙) needed for 

the solution of the whole compressor. The volute thermodynamic state and triangle velocity at the 

inlet is defined as equal to the diffuser outlet state. The iterative solution (Figure 12) is based on a 

sizing parameter (𝑆𝑃) target, defined between 1 and 1.2 (AUNGIER, 2000).  

 

Figure 12 – Volute iterative solution flowchart. 

 

 

Source: Author. 
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𝑆𝑃 =
𝑟5𝐶𝑈,5

𝑟6𝐶𝑈,6
  (31) 

 

This procedure is repeated until the 𝑆𝑃 target is converged and, therefore, the total pressure 

coefficient (𝐾𝑣𝑜𝑙) of the volute can be performed:  

 

 

𝑃𝑡,6 = 𝑃𝑡,5 − (𝑃𝑡,5 − 𝑃5)∑ 𝜔̅𝑖
6
5    

(32)  

𝐾𝑣𝑜𝑙 = 1 −
𝑃𝑡,6

𝑃𝑡,5
    

 

Finally, the new estimative of total pressure losses (𝐾𝑑𝑖𝑓−𝑣𝑜𝑙) is taken to the impeller and the 

whole one-dimensional model is updated iteratively until losses and isentropic efficiency are 

converged.  

 

2.1.4 1D model validation and calibration procedure 

 

The available data on open literature related to CO2 compressors under supercritical 

conditions for performing a proper validation of the code predictions was done by the assessment 

of the volute exit total pressure (𝑃𝑡,6) using the experimental results from Wright et al. (2010). 

 he code validation is conducted through comparison with ‘Spin test 22’ and 

‘CBC_081202_1003 test’ data presented in  able 4. 

 

Evidently, the errors on total pressure were less than 2% at the volute outlet, which validates 

that the predicted values of the 1D code, implemented in the present work, is similar to those 

reported by Wright et al. (2010). Moreover, four test points were reported in s-CO2 power 

generation system of KAERI (CHA et al., 2021; PARK; CHA; LEE, 2022) and also were used 

for the assessment of the 1D model through total-to-total efficiency, as shown in Table 5. 
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Table 4 – One-dimensional code validation using total pressure. 

 

Rotational 

Speed (𝑛) 

[rpm] 

Mass 

Flow 

(𝑚̇) 

[kg/s] 

Inlet 

Pressure 

(𝑃𝑡,𝑖𝑛) 

[MPa] 

Outlet Pressure (𝑃𝑡,𝑜𝑢𝑡) [MPa] 

Error 

[%] 

Experimental 

(WRIGHT et 

al., 2010) 

1D Code  

(Present Work) 

29000 1.09 7.38 8.24 8.26 0.29 

39000 1.50 7.51 8.96 9.00 0.46 

49000 1.81 7.69 10.20 10.26 0.54 

56000 2.04 7.76 11.24 11.31 0.64 

60000 2.22 7.86 11.79 11.87 0.65 

65000 2.40 7.96 12.55 12.64 0.69 

55000 3.969 7.722 9.101 9.273 1.89 

55000 3.719 8.067 10.135 10.283 1.46 

55000 3.402 8.136 10.687 10.794 1.00 

55000 2.540 8.170 11.583 11.683 0.86 

55000 1.670 8.205 12.066 12.104 0.31 

Source: Author. 

 

Table 5 – One-dimensional code validation using compressor performance. 

 

Rotational 

Speed (𝑛) 

[rpm] 

Mass 

Flow 

(𝑚̇) 

[kg/s] 

Pressure 

Ratio 

(𝑃𝑅) 

ηt-t [%] 

Diff. [%] 

Experimental 

(PARK; CHA; 

LEE, 2022) 

1D Code 

(Present Work) 

34200 12.61 1.75 83.5 85.1 1.6 

33000 12.13 1.68 83 84.7 1.7 

33500 12.24 1.71 84.5 85.2 0.7 

33000 12.76 1.73 84 85.2 1.2 

Source: Author. 
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Considering the low differences reported on the validation tables presented herein, the 1D 

code could be considered validated for our purposes. Also, as will be seen, the CFD results 

corroborate the results of 1D model.  

Figure 13 shows that the outputs of 1D model are inserted into Ansys BladeGen software to 

build a radial impeller and vaneless diffuser, in which the meridional profile and blade angle 

distribution along the compressor are set according to 1D Code outputs.  

 

Figure 13 – Geometry construction and calibration procedure flowchart. 

 

 

Source: Author. 
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The polar angle is defined by assessing which outlet angle would provide the 3D meridional 

blade length (𝐿𝑓𝑏) derived from the 1D Code. However, there are some differences between 1D 

and 3D models that are adjusted for the final geometry definition, which is known as ‘Calibration 

 rocedure’ (YANG et al., 2021) and shown in Figure 2.9. A preliminary CFD model is updated 

(small changes in r2 and b2) until the outlet total pressure meets the criteria |Pt2,1D – Pt2,3D| < 1%. 

Finally, the 3D preliminary geometry obtained by the presented strategy can be taken to an SA 

and indirect optimization for further performance improvements in the equipment as will be 

discussed later. 

 

2.2  Sensitivity analysis and response surface training for high-dimensional models 

 

Associated with CFD optimization, the sensitivity analysis of engineering projects has 

become a popular tool to evaluate the variation of outputs by modifying the input variables 

(KLEIJNEN, 2009; XU et al., 2019). In the design of a centrifugal compressor, outputs can 

change significantly depending on geometrical and operational design variables (BILAL, 2014). 

In this context, several sensitivity analysis methods and techniques have emerged to reduce the 

number of input variables reliably, allowing a faster and more assertive optimization procedure. 

To ensure the reliability of SA, this work uses an approach (Figure 14) composed of two 

well-known methods: Morris’ screening method (also known as the elementary effects (EE) 

method), which is computationally cheap and provides robust results for factor fixing purposes 

and SS-ANOVA method that provides representative sensitivity measures, allowing proper 

ranking of input design variables to better understand the physics of the dynamic flow. In order to 

save computational effort, the same DoE used in Morris’ method can be used for RS training. 

After testing the RS reliability, a Uniform Latin Hypercube Sampling (ULHS)(MCKAY; 

BECKMAN; CONOVER, 1979) DoE could be generated to proceed with the SS-ANOVA 

method. 

This strategy can reduce the computational cost of optimization procedures using Genetic 

Algorithms, which are known for providing suitable optimized cases for several engineering 

applications. On the other hand, gradient-based methods could be used for providing an 

optimized geometry using less model executions. Of course, these methods have much less 

potential for finding proper optimized geometries and were not considered herein. 
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Figure 14. Flowchart of the CFD, Sequential Sensitivity Analysis and Optimization methodology. 

 

 
Source: Author. 

 

 
Three different approaches were applied to analyze the problem (Figure 14): First, the CFD 

model was built based on a one-dimensional (1D) model that provided a preliminary impeller 

geometry to be imported by ANSYS Design Modeler software for the parameterization of 

geometrical variables. ANSYS Turbogrid software is used to build a periodical mesh domain. A 

grid independence study is performed following the grid convergence index (GCI) method 

(CELIK et al., 2008), which is a robust method to ensure mesh density analysis. The 3D CFD 
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results are then validated by comparison with the results provided by 1D predictions based on 

experimental values.  

At the sequential SA step, the validated CFD model undergoes through the sequential 

sensitivity analysis starting by defining the input variability ranges. A quasi-optimal sampling 

(GE; CIUFFO; MENENDEZ, 2014) Design of Experiment (DoE) is built to provide adequate 

screening of the sample space for the Elementary Effect (EE) method (MORRIS, 1991) and also 

for RS training. Additional cases are created by uniform Latin Hypercube Sampling (LHS) 

method (MCKAY; BECKMAN; CONOVER, 1979) for RS testing. Morris’ sensitivity measures 

were taken for factor fixing, which can eliminate non-influential input variables. Thus, a 

quantitative sensitivity analysis method (SS-ANOVA (GU, 2002)) and a convergence study 

(VANROLLEGHEM et al., 2015) can be fulfilled through response surfaces. The results of SA 

are used to identify physical phenomena responsible for diminish the machine’s efficiency and 

the impact of geometrical design variables on those phenomena, which can improve the 

performance of the equipment. 

Finally, at the optimization step, the response surfaces trained with the input variables 

classified as important were used to perform a single objective optimization using the Non-

dominated Sorting Genetic Algorithm (NSGA-II) (DEB et al., 2002), aiming to maximize 

objective functions under several constraints. To verify the quality of the factor fixing procedure, 

the RS trained with all input variables are submitted to the same optimization procedure. The 

different optimized geometries were verified by the CFD model and the improvements in 

compressor phenomenology were discussed in detail. 

 

2.2.1 The elementary effects method 

 

Morris (1991) developed a sensitivity analysis method to determine which input variables 

would have important effects on the output variables. This method is known as the elementary 

effects (EE) method and is recognized as a simple but effective method of screening a few input 

variables among the many that can be contained in a model. If a model has 𝑘 independent inputs 

𝑋𝑖, (𝑖 = 1, . . , 𝑘), for a given value of 𝑋, the elementary effect is defined by Eq. (33). 

 

𝐸𝐸𝑖 =
𝑌(𝑋1,𝑋2,...,𝑋𝑖+𝛥,...,𝑋𝑘)−𝑌(𝑋1,𝑋2,...,𝑋𝑘)

𝛥
                                                                  (33) 
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where: 𝛥 is the step for the discretized input space of value 2/3 (which is a normalized step for 

the range of variation for each design variable).  

Morris (1991) suggests sampling 𝑟 elementary effects for each input variable by constructing 

𝑟 trajectories of (𝑘 + 1) points in the input sample space. Thus, the total cost of the method is 

𝑟(𝑘 + 1), which is relatively cheap compared to quantitative methods. The purpose of using the 

EE method is to determine which input variables may be considered negligible, linear and 

additive, or non-linear and involved in interactions with other factors. To obtain this information, 

two sensitivity measures were proposed, the average of each input EE distribution (𝜇), which 

assesses the overall influence of the variable, and the deviation of each input EE distribution (𝜎), 

which estimates the interactions with other factors. These two design variables are calculated 

according to Eq. (34) and Eq. (35), respectively. 

 

𝜇𝑖 =
1

𝑟
∑ 𝐸𝐸𝑖

𝑗𝑟
𝑗=1                                                                                                      (34) 

 

𝜎𝑖 =
1

𝑟−1
∑ (𝐸𝐸𝑖

𝑗
− 𝜇𝑖)

2𝑟
𝑗=1                                                                              (35) 

 

Campolongo et al. (2007) proposed a revised version of the measure 𝜇, called 𝜇∗, that can 

provide a reliable ranking of variables. The parameter 𝜇∗ (Eq. (36)) is the average of the EE 

distribution in absolute values, solving the problem of effects having opposite signs, which 

occurs when the model is non-monotonic. 

 

𝜇𝑖
∗ =

1

𝑟
∑ |𝐸𝐸𝑖

𝑗
|𝑟

𝑗=1                                                                                                      (36) 

 

The use of 𝜇∗ is convenient as it solves the problem of failing to identify a variable with 

considerable influence on the model, this can occur due to positive and negative effects canceling 

each other out when computing 𝜇 (SALTELLI et al., 2008). Campolongo et al. (2007) also 

proposed an improvement to the sampling strategy that aims for better scanning of the input 

domain without increasing the needed number of model executions. The 𝑟 trajectories were 

selected in such a way as to maximize their dispersion in the sample space. First, it generates a 
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high number of Morris’ trajectories (𝑀 = 500 𝑡𝑜 1000) and then it selects 𝑟 trajectories with the 

highest ‘spread’, based on the following definition of ‘distance’ (𝑑𝑚𝑙) between a couple of 

trajectories 𝑚 and 𝑙: 

 

𝑑𝑚𝑙 = {∑ ∑ √∑ [𝑋𝑖
𝑚(𝑧) − 𝑋𝑗

𝑙(𝑧)]
2𝑘+1

𝑧=1
𝑘+1
𝑗=1

𝑘+1
𝑖=1 , 𝑚 ≠ 𝑙

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                            (37) 

 

where: 𝑘 is the number of input variables and 𝑋𝑖
𝑚(𝑧) indicates the 𝑧𝑡ℎ coordinate of the 𝑖𝑡ℎ point 

of the 𝑚𝑡ℎ Morris’ trajectory. Thus, it considers the quantity 𝐷 for each possible combination of 

𝑟 trajectories, which is the quadratic sum of all the distances between couples of trajectories 

belonging to that combination. In other words, it selects the combination of 𝑟 trajectories with the 

highest value of 𝐷. This sampling method is called optimal sampling as it checks all possible 

combinations of trajectories.  

However, as the total number of combinations considered for an optimal approach is 𝑀!/

[𝑟! (𝑀 − 𝑟)!], for high dimensional and large models, the combinatorial optimization problem 

makes the sampling process unfeasible for current computers. To overcome this problem, Ge et 

al. (2014) propose that instead of picking 𝑟 optimal trajectories (OT) directly from the original 

set of 𝑀, the set of (𝑀 − 1) trajectories with the highest total distance is picked first; in the 

second step, the set of (𝑀 − 2) trajectories with maximum dispersion is chosen. The process is 

repeated until a set with only 𝑟 trajectories is left. These 𝑟 trajectories are called quasi-optimal 

trajectories (quasi-OT). The total number of combinations considered in this approach is (𝑀 +

𝑛)(𝑀 − 𝑛 + 1)/2. Validation tests indicate that quasi-OT are very close to OT sampling and 

ensures that the quasi-OT approach can identify influential design variables from a complex 

simulation model with accuracy (GE; CIUFFO; MENENDEZ, 2014). 

To fix non-important factors, model input variables need to be classified. Vanrolleghem et al. 

(2015) proposed terminology for the classification of variables as important/non-important and 

influential/non-influential using the EE method. A cut-off threshold could be determined, 

distinguishing three different types of variables concerning the absolute mean (𝜇∗) and the 

standard deviation (𝜎) of the sensitivity measure. In Figure 15, the line corresponding to 𝜇𝑖
∗ =

2𝑆𝐸𝑀𝑖, where 𝑆𝐸𝑀𝑖 represents the standard error of the mean which is used to establish the types 



52 

 

of variables (MORRIS, 1991). 𝑆𝐸𝑀𝑖 is equal to 𝜎𝑖
 𝑟−1/2, where 𝑟 is the number of repetitions. 

Variables that lie outside the wedge formed by the line corresponding to the established 𝐶𝑇𝑀𝑜𝑟𝑟𝑖𝑠 

and the line 𝜇𝑖
∗ = 2𝑆𝐸𝑀𝑖 , have a linear effect on the model outputs. Otherwise, the variables that 

lie inside this area have a non-linear effect.  

 

Figure 15 - Differentiation of variables of the Morris screening method. 

 

 

 
 

Source: Vanrolleghem et al. (2015). 

 

To classify the model input variables in this work, the cut-off threshold for the Morris 

screening method (𝐶𝑇𝑀𝑜𝑟𝑟𝑖𝑠) was defined as the value of 𝜇∗ that takes into account more than 

80% of the variations of the output. Thus, the important factors are those that have 𝜇𝑖
∗ >

𝐶𝑇𝑀𝑜𝑟𝑟𝑖𝑠, the interacting factors have 𝜇𝑖
∗ > 𝐶𝑇𝑀𝑜𝑟𝑟𝑖𝑠 and 𝜎𝑖

 > 𝜇𝑖
∗√𝑟/2 while the non-influential 

factors have 𝜇𝑖
∗ < 𝐶𝑇𝑀𝑜𝑟𝑟𝑖𝑠. Finally, to ensure the reliability and robustness of the EE method, a 

convergence study was performed. The methodology of convergence analysis proposed by 

Vanrolleghem et al. (2015) was performed by increasing the number of model executions until 

there was no significant change in the sensitivity measure. However, for large CFD models, this 

may be too time-consuming or prohibitive. Thus, the RS trained for the SS-ANOVA method has 

also been used to evaluate the EE convergence study. 
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2.2.2 Smoothing spline ANOVA (SS-ANOVA) 

 

After screening and selecting the most influential variables, a quantitative sensitivity analysis 

was conducted with less computational costs, which relies mainly on how many variables remain 

from screening and how computationally expensive the numerical model is. If it is determined 

that a direct quantitative SA may become unfeasible, a surrogate model is used. 

After training and testing a surrogate model, SS-ANOVA implemented in ModeFRONTIER 

software (GU, 2002) was chosen as a quantitative SA tool. Usually, the computation cost for 

smoothing splines analysis is 𝑘3, where 𝑘 is the number of input variables. This statistical 

modeling algorithm, based on classical analysis of variance (ANOVA), works with the 

decomposition of main effects and two-variable interactions, measuring the percentage of its 

contribution to the global variance (RIGONI; RICCO, 2011), defined by Ratto and Pagano 

(2010) as: 

 

𝑓(𝑋) =  𝑓0 + ∑ 𝑓𝑗(𝑥𝑗)
 𝑛

𝑗=1 + ∑ 𝑓𝑗,𝑖(𝑥𝑗 , 𝑥𝑖)
 𝑛

𝑗<𝑖                                                      (38) 

 

where the procedure developed by Kim and Gu (2004) is adopted, in which a more scalable 

computation of smoothing spline regression is used. SS-ANOVA decomposition can be built as a 

minimization of the usual least square functional (estimates the fitness of the model 𝑓) subjected 

to the constraint 𝐽 (controlling the smoothness of the model and avoiding overfitting). The 

contribution indices (πk) of each variable is defined as:  

 

𝜋𝑘 =
𝑓𝑘

𝑇∙∑ 𝑓𝑗
 𝑛

𝑗=1

(√∑ 𝑓𝑗
 𝑛

𝑗=1 ∙∑ 𝑓𝑗
 𝑛

𝑗=1 )
2                                                                                                             (39) 

 

in which fk
T
 is the column vector with lines representing variables individual decompositions and 

∑ fj
 n

j=1  is the summation of all sampling points decompositions. As πk can be interpreted as the 

percentage decomposition of model’s variance, the difference between the individual contribution 

summation and the unity represents the summation of all interaction effects (RIGONI; RICCO, 

2011). 
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2.3  Three-dimensional CFD models for CO2 centrifugal compressors 

 

Two different centrifugal compressor’s CFD models were constructed. Initially, the first stage 

of compression was considered to gain experience on centrifugal compressor modeling and to 

evaluate the developed low-cost SA methodology for large CFD models. Then, in order to attend 

one of this work goals and operate at the supercritical region of CO2, the last compression stage 

model was developed working with s-CO2 and a high number of variables (25 on total). Benini et 

al. (2006) suggest the use of a steady-state flow model for impellers since fluctuations in the flow 

of a centrifugal compressor are important only at the impeller vanned-diffuser gap, which is not 

verified for the impeller vaneless-diffuser evaluated herein. Furthermore, flow has high three-

dimensional fluctuations, using CO2 as a working fluid modeled by Redlich-Kwong for a real gas 

Equation of State (EoS) modified by (AUNGIER, 1995) in the first stage model and the 

(R.SPAN; W.WAGNER, 1994) in the last stage, since each EoS is better indicated for each 

region of compression considered. Hence, for a rotating domain, continuity, momentum and 

energy equations are given by: 

 

𝛻 ⋅ (𝜌𝑈) = 0                                                                                                                         (40) 

 

𝛻 ⋅ (𝜌𝑈 ⊗ 𝑈) = −𝛻𝑝 + 𝛻 ⋅ 𝜏 + 𝑆𝑀                                                                                      (41) 

 

𝛻 ⋅ (𝜌𝑈𝐼) = 𝛻 ⋅ (𝜆𝛻𝑇) + 𝛻 ⋅ (𝑈 ⋅ 𝜏) + 𝑈 ⋅ 𝑆𝑀 + 𝑆𝐸                                                              (42) 

 

which are solved by the finite volume-based commercial software ANSYS CFX 19.0, where τ is 

the stress tensor and the turbomachinery rotation terms such as centrifugal forces (𝑆𝑐𝑓𝑔), Coriolis 

acceleration (𝑆𝑐𝑜𝑟), relative velocities and rothalpy (𝐼) are taken into account by the rotating 

frame of reference (RFR) equations of ANSYS CFX®, as: 

 

𝑆𝑀 = 𝑆𝑀,𝑟𝑜𝑡 = 𝑆𝑐𝑜𝑟 + 𝑆𝑐𝑓𝑔                                                                             (43) 

 

𝑆𝑐𝑜𝑟 = −2𝜌 (𝜔 × 𝑈)                                                                                         (44) 
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𝑆𝑐𝑓𝑔 = −𝜌 𝜔 × ( 𝜔 × 𝑟)                                                                                         (45) 

 

𝐼 =  ℎ𝑠𝑡𝑎𝑡 + 1/2 𝑈
2 − 𝜔2𝑅2                                                                                        (46) 

 

The turbulence model used was k-ω shear-stress transport (k-ω SS ), which switches from 

the classical k-ω model for the inner part of the boundary layer to standard k-ε for the outer part 

of the boundary layer and the free flow, accounting for the effect of turbulent shear stress 

(MENTER, 1994). These characteristics make this model more robust and accurate for 

applications with high adverse pressure gradients such as those in centrifugal compressors 

(ROBINSON et al., 2012), and therefore is widely used in centrifugal compressor’s CFD models 

(AMELI et al., 2019; BOURGEOIS et al., 2011; KIM et al., 2010). 

 

2.3.1 CFD setup for the first-stage compressor 

 

In order to assess the sequential SA proposed, the first stage of the CO2 centrifugal 

compressor geometry is built in ANSYS Vista CCD, since its EoS can attend thermodynamic 

state of the fluid passage through the entire impeller-vaneless diffuser which is used as starting 

point for three-dimensional geometry (Figure 16a). Due to the periodic characteristics and 

geometrical symmetry, only one periodical part of the impeller-vaneless diffuser was computed 

(Figure 16b) and the results were extrapolated to the remainder of the turbomachinery, decreasing 

the number of elements on the total grid and, consequently, the computational cost. 

The impeller part of the periodic domain was treated by the rotating frame of reference 

implemented in the ANSYS CFX solver as detailed in equations (40) to (46) and the diffuser was 

treated as a stationary frame of reference, which requires a domain interface modeling known as 

Multiple Frames of Reference (MRF) to couple both parts of the solution. This method is based 

on the General Grid Interface (GGI) connection, present in the stage mixing plane model that 

uses a circumferential average of fluxes on the interface and then obtains steady state solutions 

for each frame of reference. This interface model is successfully used on centrifugal compressors 

steady state solutions (ROMEI; GAETANI; PERSICO, 2022). 
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Figure 16 - Three-dimensional shape of CO2 centrifugal compressor impeller and diffuser (a) and 

the periodic computational domain (b). 

 
Source: Author. 

 

A steady-state, three-dimensional, and turbulent flow of CO2 was assumed and the walls were 

considered smooth and adiabatic with no-slip conditions. Table 6 summarizes the main boundary 

conditions applied to the pre-processing setup and some geometrical features of the rotor. 

 

Table 6 - Boundary conditions and geometrical features. 

 

Rotation speed 12500 rpm 

Mass flow rate 55.56 kg/s 

Machine’s Mach number 1.26 

Inlet pressure 400 kPa 

Inlet temperature 320 K 

Inlet turbulence 5% 

Clearance gap 1 mm 

Wall condition No-slip 

Roughness Smooth 

Number of blades 10 

Impeller exit diameter 529.3mm 

Source: Author. 

 

There are operational conditions defined by design requirements, as the mass flow rate and 

thermodynamic inlet conditions. On the other hand, some of them are consequence of the 1D 

 

 

(a) (b )
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optimization performed, allowing fluid flow constraints to be attended, such as the rotational 

speed, Mach number, number of blades and rotor exit diameter. The clearance gap is the 

spanwise distance between the blade and the shroud wall, highlighted in green on the top of the 

blade in Figure 17, which is present along the streamwise length. Rotational periodic surfaces 

were determined for the extrapolation of the symmetric part. The inlet is provided with static 

pressure and the outlet with mass flow rate, ensuring the compression ratio calculated is a 

consequence of simulation. 

 

Figure 17 - Boundaries of the impeller-vaneless diffuser for a CFD periodic domain 

 
 

Source: Author. 

 

 

2.3.1.1 Geometry Parameterization 

 

The geometry of the impeller-vaneless diffuser was parameterized through ANSYS Blade 

Editor software, which is a free-hand tool that facilitates the generation of different blade models 

for turbomachinery through design variables such as blade streamline angles, thicknesses, and 

meridional shape. To proceed with the sensitivity analysis, the geometrical parameterization of 

the input variables was implemented, which allows the geometry to automatically change along 

the DoE. The meridional view of the blade presented in Figure 18a, has a purple and green line 

representing the leading edge and the trailing edge of the blade, respectively, while the other lines 

represent the fluid passage domain. The hub and shroud polar angles are a function of their 
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streamwise position (leading edge to trailing edge). Therefore, four points equally spaced in each 

layer referencing the variables in the stream direction were parameterized, as shown in Figure 

18b. 

 

Figure 18 - Meridional view of the fluid-flow domain (a) and angles along the stream (b). 

 

 
Source: Author. 

 

The angles for each of these points vary only in the y-axis (angle value) of Figure 18b, 

allowing an independent change of the polar angles at the hub and shroud layers. Overall, eight 

variables were parameterized to be changed during sensitivity analysis and optimization 

procedures. They were denominated in the format LxAy, in which x is the spanwise layer of the 

variable, 1 for the hub and 2 for the shroud; and y is the angle streamwise position, 1 for the inlet, 

2 and 3 for the middle positions, and 4 for the outlet. 

 

The one-dimensional analysis takes into account the leading-edge blade angles of the hub and 

shroud, as well as the back sweep and rake angles but does not consider polar angles at 

intermediate positions of the blade (A2 and A3). Therefore, the 3D CFD model in the present 
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work could not be assessed by one-dimensional analysis, providing flexibility for the analyst to 

explore additional optimization options. 

 

2.3.1.2 Mesh quality criteria 

 

The computational domain discretization may impair convergence and accuracy. The 

commercial software, ANSYS Turbogrid, was chosen for this task as it has been successfully 

used for turbomachinery design, proving to be robust and fast (KULKARNI; BEACH; SKOCH, 

2013; MONJE et al., 2014). Four criteria to ensure the mesh quality were analyzed: orthogonal 

angle, expansion factor, aspect ratio, and y+. Figure 19a shows the entire mesh domain with near-

wall refinements. Only 4.7% of the elements have an aspect ratio above the suggested level 

(lower than 1000) as highlighted in red in Figure 19b. The expansion factor and orthogonal angle 

met specifications. An automatic near-wall treatment applied in regions where the value of y+ 

was greater than one was implemented by Knopp et al. (2006) and Menter (2009). The 

researchers claim that these equations help the turbulence model find accurate results, even with 

the condition of low near-wall distance not being fulfilled. Their approach suggests the results are 

reliable for values of y+ up to about 10 for the k-ω SS  turbulence model.  

 

Figure 19 - Meshed domain with high aspect ratio elements for the medium grid 

 

 
 

Source: Author. 

 

 

(a) (b)
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Figure 20 shows the y+ values of the elements, where only 0.34% of the mesh elements of the 

impeller-vaneless diffuser present y+ higher than 10, which is considered satisfactory for the 

present work. 

Figure 20 - y+ quality criteria for k-ω SS  – turbulence model

 

Source: Author. 

 

 

2.3.1.3 Grid independence study 

 

Grid convergence index (GCI) is an acceptable and recommended method that compares 

three mesh densities. Three grids based on this approach were created and their features are 

shown in Table 7. Notice that the refinement factors, 𝑟, are greater than or equal to 1.3 as 

recommended by Celik et al. (2008). Thus, the procedure to determine the GCI for polytropic 

efficiency, pressure ratio, the power required and temperature ratio could be applied. The results 

presented in Table 7 demonstrate that numerical uncertainties were very small which indicates 

that the grid independence is reached, and the medium grid can be used for this research. 
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Table 7 - Main results for the GCI method 

 Coarse grid Medium grid Fine grid 

Cells number, 𝑛 1.337×106 2.967×106 6.538×106 

Refinement factor, 𝑟 - 1.31 1.30 

 
Polytropic 

efficiency 
Pressure ratio 

Temperature 

ratio 

Power 

Required. 

GCI32 (%) 0.0017 0.2238 0.6291 0.9850 

Source: Author. 

 

2.3.1.4  Numerical validation 

 

Due to the lack of experimental data for CO2 centrifugal compressors working at the 

operating conditions specified in this study (Tables 4 and 5), the one-dimensional approach by 

(CASEY; ROBINSON, 2008b) was used for validation purposes. Their 1D streamline curvature 

method has demonstrated extremely good agreement with the 3D CFD method and their 

efficiency prediction equations (CASEY; ROBINSON, 2013) were consistent with more than 45 

different experimental compressor stages with typical efficiency errors in the range of ±2%. They 

argue that, as their method uses non-dimensional performance coefficients and specific 

experimental data, it can be adapted to several gases (including CO2) and applications. Table 8 

presents the results of Casey and Robinson’s equation predictions using ANSYS Vista CCD 

software compared to the CFD medium grid results of the present work. results are quite similar 

and the model is considered reliable. 

 

 

Table 8 - Numerical validation results 

Model 
Polytropic 

efficiency 
% 

Pressure 

ratio 
% 

Power 

required 

(MW) 

% 

VISTA CCD 

(Casey and Robinson 

1D) 

86.40% - 
2.85 

(input) 
- 4.71 - 

3D CFD medium grid 

(Present work) 
85.41% 1.14 2.89 1.4 4.77 1.27 

Source: Author. 
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2.3.2 CFD setup for the fourth-stage compressor  

 

A 3D numerical simulation is performed for the 4th compression stage to evaluate the 

optimized geometry found by optimization of the compression system through the implemented 

1D model and the geometry is adjusted by the calibration procedure. On this last stage 

compressor, the constraints AMC and GBM are critically close to the saturation and Widom-line 

(Figure 2). The preliminary geometry parameter values are presented in Table 9.  

The CFD model can characterize the main dynamic flow phenomena such as turbulence, 

backflow and vortical structures (SUNDS RÖM; SEMLI SCH; MIHĂESCU, 2018). Similarly, 

as presented in section 2.3.1, the commercial software ANSYS Turbogrid and CFX were used for 

mesh construction, boundary conditions and solver setup through the Finite-Volume Method 

(FVM) Methodology.  

 

Table 9 – Preliminary geometry design variables values of fourth stage compressor 

Geometrical design variables Values 

Inlet Hub Radius (𝑟1,ℎ) 17 mm 

Inlet Shroud Radius (𝑟1,𝑠) 46.3 mm 

Inlet Blade Angle at Hub (𝛽1,ℎ) 31.58° 

Inlet Blade Angle at Midspan (𝛽1,𝑚) 48.93° 

Inlet Blade Angle at Shroud (𝛽1,𝑠) 59.24° 

Inlet Polar Angle (θ1) 0° 

Outlet Radius (𝑟2) 132.2 mm 

Outlet Height (𝑏2) 3.5 mm 

Outlet Blade Angle (𝛽2) -1.61° 

Outlet Polar Angle (θ2) 45° 

Axial Height (𝛥𝑍 ) 46.3 mm 

Blade Thickness 2.5 mm 

Full Blade Length 146.1 mm 

Number of Blades 12 

Source: Author. 
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The 3D numerical approach used herein is similar to our previous work (SALVIANO et al., 

2021). A steady-state and compressible flow is modeled with a linear-linear interpolation for 

diffusion terms, central differences for the pressure gradient term and the high-resolution second-

order scheme discretization for advection terms of the coupled solver of CFX for the Reynolds-

Averaged Navier-Stokes (RANS), using the 𝑘 − 𝜔 SST turbulence model for closure. The Span 

and Wagner Equation of State (S&W EOS) of the 𝑠𝐶𝑂2 through Real Gas Properties (RGP) 

table. 

A periodical computational domain has been modeled as part of the whole compressor to save 

computational resources (Figure 21). The inlet boundary was set with constant static pressure and 

the outlet a constant mass flow rate, leaving the total-to-total pressure ratio and isentropic 

efficiency as a consequence of the converged solution. 

 

Figure 21 – Compressor periodical domain and boundaries. 

 

 

 

Source: Author. 
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Boundary and operational conditions are summarized in Table 10. Again, the walls were 

assumed as no-slip and smooth conditions since proper numerical validation was already 

performed using this setup (ALLISON et al., 2019; AMELI et al., 2018; HOSANGADI et al., 

2018). The convergence criteria adopted are based on the Root Mean Squared (RMS) residuals of 

all equations and the average of the standard deviation of isentropic efficiency. The solver stops 

if RMS residuals reach 10−6 or if the standard deviation of the last 20 accumulated iterations 

reaches 10−4.  

 

Table 10 – Boundary and operational conditions for the fourth stage 

Boundary/Operational Conditions Values 

Rotational speed*  19540 rpm 

Mass flow rate  55.56 kg/s 

Inlet Pressure* 7.42 MPa 

Inlet Temperature 313.2 K 

Turbulence Intensity (Inlet) 5 % 

Clearance Gap 3% of blade height  

Walls Condition No-slip and smooth 

Note: * Defined from 1D optimization procedure. 

Source: Author. 

 

 

Moreover, a CFD optimization was performed on the fourth-stage compressor. The 

parameterization was conducted in the software Ansys Design Modeler. A total of 25 geometric 

design variables were chosen as inputs for the SA and optimization process. They can be divided 

into three major groups: polar angles, meridional profile and diffuser. The polar angles are 

assessed in three different layers in the hub-to-shroud direction. Each layer has four angles 

equally spaced on the streamwise position as in Figure 22. The angles at the leading edge are set 

equal on the three layers (L1A1 = L2A1 = L3A1) due to the geometry construction through 1D 

model that fixed the polar angles at the leading edge and modified the trailing edge polar angles 

until the blade length is satisfied. Therefore, the trailing edge angles are also equal (L1A4 = 

L2A4 = L3A4). Thus, considering the intermediate angles (L1A2, L1A3, L2A2, L2A3, L3A2 

and L3A3), 8 polar angles are set as variables. 



65 

 

Figure 22 – Blade polar angles. 

 

Source: Author. 

 

The meridional profile shown in Figure 23 presents 4 points for controlling the meridional 

profile through splines (P1, P2, P3 and P4). Each of these points has two degrees of freedom (X 

and Z), which results in 8 variables (P1x, P1z, P2x, P2z, P3x, P3z, P4x, P4z). Moreover, SP1 and 

S 2 are the streamwise positions of the splitter’s leading-edge, completing 10 meridional 

variables. 

Figure 23 – Meridional profile control points.  

 

 
 

Source: Author. 
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The last group of variables is related to the vaneless diffuser profile shown in Figure 24. 

Three points at shroud (S1, S2 and S3) and hub (H1, H2 and H3) are taken into only the Z-axis as 

the degree of freedom, resulting in 6 diffuser variables. At last, the blade-to-blade distance 

between the main blade and the splitter (POS) was taken for the analysis, completing the total 

amount of 25 geometry variables. 

 

Figure 24 – Diffuser profile control points. 

 

 

Source: Author. 

 

The range of each variable is defined after a broad convergence study in which the CFD 

model was tested inside the sample space to identify the feasible range, as shown in Table 11. 

 

Table 11 – Feasible range for each input variable 

 

Polar Angles Meridional Profile Diffuser 

Bounds Lower Upper Bounds Lower Upper Bounds Lower Upper 

A1 [°] -2 2 P1x [mm] 56.61 59.01 S1 [mm] 0.001  0.2 

L1A2 [°] -23.6 -21.6 P1z [mm] 12.27  14.67  S2 [mm] 2.68  4.73  

L1A3 [°] -43.3 -41.3 P2x [mm] 93.83  94.83  S3 [mm] 2.68  4.73 

L2A2 [°] -26.3 -24.3 P2z [mm] 4.05  5.05  H1 [mm] 0.001  0.2  

L2A3 [°] -45 -43 P3x [mm] 37.08  39.48  H2 [mm] 8.75  10.8  

L3A2 [°] -48.6 -46.6 P3z [mm] 6.79  9.19  H3 [mm] 8.75  10.8  

L3A3 [°] -45.3 -43.3 P4x [mm] 84.34  85.34  POS [%] 45 55 

A4 [°] -45 -42 P4z [mm] 0.12 1.12    

   SP1 [mm] 20.05  27.16    

   SP2 [mm] 23.42  25.63     

Source: Author. 
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The investigation of these groups of variables simultaneously, aims to understand their 

impact on one another (through SA) and on polytropic efficiency (through optimization). These 

variables are not present in the 1D model used to generate the original geometry. Therefore, there 

is an opportunity for improvement in these variables, the evaluation of Morris’ SA methodology 

for a high number (25) of interacting variables, considering a CFD model of a centrifugal 

compressor of 3.4 pressure-ratio, low-flow coefficient, operating with s-CO2. The original CFD 

geometry is the last compression stage of an EOR system, a consequence of a 1D model that 

provided this preliminary geometry. The high-dimensional sequential SA combined with the 

‘entropy guided’ phenomenology assessment can deliver important operational cost reductions to 

the EOR compression system, turning this CCUS technology even more advantageous. 

 

 

2.3.2.1 Real Gas Properties (RGP) table resolution study and grid convergence index  

 

The S&W EOS implemented from CoolProp library (BELL et al., 2014) was used to properly 

write a 𝑠𝐶𝑂2 RGP file that could be read by Ansys CFX solver. Furthermore, a RGP Table 

resolution study was conducted to verify its influence on CFD results. Three different table 

resolutions were generated: 2K/0.2MPa; 1K/0.1Mpa; 0.5K/0.05MPa, within the same ranges 

(pressure from 1MPa to 101MPa and temperature from 240K to 1040K). No significant impacts 

on CFD results or processing time were noticed due to RGP Table resolution and, therefore, table 

resolution of 1K and 0.1 MPa was defined in further simulations. 

 

Furthermore, the mesh of Figure 25 was submitted to an independent study using the Grid 

Convergence Index (GCI) methodology (CELIK et al., 2008) with wall functions to properly 

treat the near-wall fluid flow. As can be seen, the mesh refinement was focused mainly on walls 

(blade, splitter, hub, shroud and clearance gap). 
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Figure 25 – Finest mesh used for GCI and phenomenology assessment. 

 

Source: Author. 

 

Table 12 shows that the uncertainty due to grid density for the main output variables for the 

finest grid (GCI21) is small enough for the present work. Of course, the meshes were refined 

through the global size factor of Ansys Turbogrid, ensuring well-distributed refinement.  

 

Table 12 – Grid information and GCI results 

Grid 

(Number of cells) 

Coarse 

(702k) 

Medium 

(1640k) 

Fine 

(3709k) 

GCI32 

(%) 

GCI21 

(%) 

Polytropic Efficiency (%) 82.73 82.80 82.84 0.263 0.093 

Pressure Ratio 3.86 3.92 3.91 0.514 0.161 

Power Required (MW) 3.83 3.80 3.84 0.369 0.216 

Source: Author. 
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After ensuring CFD model quality for both centrifugal compression stages, different 

optimization goals were set. The first stage geometry was used to validate the strategy of using 

SA coupled with RS optimization while the fourth stage geometry was used to validate the design 

strategy of using the 1D model followed by the CFD analysis. 

Finally, due to the lack of experimental results for s-CO2 centrifugal compressors with the 

same operational conditions as the present work, the 1D code predictions are used for proper 

validation of the CFD model, as presented in Table 13. The 1D model used herein has already 

been validated using experimental measurements (WRIGHT et al., 2010). This approach was 

used since not enough geometrical information was available for direct CFD assessment of 

experimental compressors. The polytropic efficiency has shown a difference of only 0.3% and the 

model is considered validated, which is also valid for the 2% difference in PR since in absolute 

values it’s a low difference (  to 3.92). The almost 5% difference in required power is attributed 

to the better loss assessment of the CFD model since three-dimensional phenomena take into 

account a more complete physical model and also is considered suitable for the present work.  

 

Table 13 – Validation of CFD model using 1D code 

Variables 
Polytropic Efficiency 

(Impeller) 
% 

Pressure Ratio 

(Impeller) 
% 

Power 

Required 
% 

1D Predictions 82.53 % - 4.0 - 3.62 MW - 

CFD Results 82.80 % 0.3 3.92 2.0 3.80 MW 4.97 

Source: Author. 

 

2.4  Optimization strategy for one-dimensional s-CO2 EOR compression systems 

 

The one-dimensional model implementation allowed a high number of variables to be 

inserted in the design procedure, which after a study of the whole compression system resulted in 

the 28 variables described in Table 14 with its respective ranges of variation. Overall, they can be 

divided in 4 operational variables (PRi) and 24 geometrical variables. Of course, pressure ratios 

are essential for an optimization that aims to diminish the power required in the system. On the 

other hand, some geometrical variables may impact system performance through their influence 
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on fluid flow features that could turn the system unfeasible due to high Mach numbers, 

condensation or transcritical fluid behavior.  

As matter of fact, the impeller variables as number of blades, splitter length, shroud radius 

and axial length should be investigated for their capacity to change fluid flow in the equipment’s 

inlet and throat. Moreover, diffuser height was selected due to the possible flow recirculation on 

the impeller-diffuser interface. Finally, the volute sizing parameter was considered to complete 

the analysis since it’s the most important variable for the last part of the machine that changes the 

flow direction.  

 

Table 14 – Sensitivity analysis/optimization variables’ ranges 

Variables (i = 1—4) 
First Stage Second Stage Third Stage Fourth Stage 

Lower Upper Lower Upper Lower Upper Lower Upper 

PRi (Pressure Ratio) 1.8 3.7 1.8 3.7 1.8 3.5 1.8 4.4 

Zfb,I (Number of Blades) 10 16 11 14 10 16 10 18 

Lsf,I (Splitter Length) 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 

r1s,i [mm] (Shroud Radius) 160 192 96 120 66 72 43 48 

ΔZ,i [mm] (Axial Length) 90 310 86 110 38 66 28 44 

b4,i [mm] (Diffuser Height) 12 45 6 40 4 20 1.2 6 

SPtarg,I (Volute Sizing) 1.01 1.5 1.01 1.5 1.01 1.5 1.01 1.5 

Source: Author. 

 
Evidently, these ranges are different for each variable due to 1D model feasibility, i.e., for a 

fixed specific diameter (Ds) and rotation (Ns), all variables were modified to obtain their 

minimum and maximum suitable values, which are defined by model convergence (PR, Zfb, r1s, 

ΔZ, b4) or geometrical restrictions (Lsf and SPtarg). Therefore, the limits were set to respect 

physical instabilities predicted by the 1D model or space availability expected on the operational 

site. The shroud radius ranges for the third and fourth stages are much shorter than the first and 

second stages, which is due to the high impact of these variables on throat Mach number.  

In order to decrease the optimization computational effort, the screening sensitivity analysis is 

conducted with factor fixing purposes to find non-important variables before the optimization 

procedure, which is detailed in Section 3. The SA methods were used to support the decision-

making of factor fixing since the combination of several SA methods increases the robustness of 
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the factor-fixing task (GARCIA; AROSTEGUI; PRELLEZO, 2019). Therefore, only pressure 

ratios and shroud radius were considered in the optimization procedure. 

The one-dimensional code for each compression stage was implemented in Python 

programming language, which allowed its scripts to be integrated with modeFRONTIER (mFR) 

software. mFR is a robust and powerful commercial software with several optimization methods. 

 

2.4.1 Optimization statement for the whole compression train 

 

Figure 26 shows the optimization workflow with those eight remaining variables defined by 

Sensitivity Analysis, its connections among stages, as well as the fluid flow constraints: Throat 

Mach number (Mth), Condensation (AMC) and Gas-like Behavior (GBM). The direct 

thermodynamic analysis of the compression system could lead to an unfeasible design since the 

condensation and significant changes in the fluid properties close to the Widom-line could not be 

modeled from the direct thermodynamic analysis. Thus, the inlet throat shockwaves and 

condensation gas-like behavior could be addressed by the optimization procedure which provides 

a completely feasible and reliable compression system. 

 

Figure 26 – Optimization workflow applied to the compression train system. 

 

 

Source: Author. 
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The Non-Sorted Dominated Genetic Algorithm (NSGA-II)(DEB et al., 2002) optimization 

method with a variable population size algorithm was used to minimize the total power 

consumption of the compression train. The crossover probability parameter is set by 0.9, which 

implicates that 90% of the new generation of design vectors are a result of the crossover process, 

that combines the old generation best fitted designs to create the offspring. Therefore, 9% of the 

new generation is result of the reproduction procedure, using the simple ‘survival-of-the-fittest’ 

principle. Moreover, the mutation probability is 0.01 which is responsible for ensuring random 

exploration of design vectors to accomplish a local search around the current solution using 1% 

of the offspring (RAO, 2009). Thus, the optimization statement of a single-objective function is 

defined as:  

Find 𝑋 =

{
 
 
 

 
 
 
𝑃𝑅1
𝑃𝑅2
𝑃𝑅3
𝑃𝑅4
𝑟1𝑠,1
𝑟1𝑠,2
𝑟1𝑠,3
𝑟1𝑠,4}

 
 
 

 
 
 

 which minimizes ∑ 𝑊̇𝑖
4
1 (𝑋)  

subjected to the constraints:  

𝑀𝑡ℎ,1 < 1; 𝑀𝑡ℎ,2 < 1; 𝑀𝑡ℎ,3 < 1; 
𝑀𝑡ℎ,4

𝐴𝑀𝐶
< 1; 𝐺𝐵𝑀 < 1. 

 

2.4.2 Optimization strategy of the CFD first-stage model through surrogate models 

 

Two different approaches to CFD optimizations were utilized to evaluate the impact of factor 

fixing on the first stage of optimized design. First, an optimization procedure using eight blade 

polar angles as initial variables was performed, providing a comparison between the optimization 

considering only the blade polar angles identified as important. To be considered important, the 

input variable must be influential in at least one of the four interest outputs (polytropic efficiency, 

pressure ratio, outlet temperature, and power required). For instance, if a variable was identified 

as non-influential for pressure ratio calculations but important for polytropic efficiency, that 

variable was not excluded from the optimization procedure.  

Despite the increase in computer capacities in the past few years, the optimization of large 

models could be prohibited due to high processing times and the number of input variables. To 
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overcome this problem, an approximation of the original model can be made with response 

surfaces (JENSEN; MAYORGA; PAPADIMITRIOU, 2015). This is achieved by performing 

only a few executions of the model and training a function that represents the original model. 

Optimization through RS has some advantages: faster realization of the model, less computer 

storage needed, and easier applicability to sensitivity analysis methodologies. However, some 

drawbacks reported are the inherent error from the original model and its incapacity to predict 

results outside its training/testing sets (VILLA-VIALANEIX et al., 2012). The validity and 

accuracy of a response surface should be assessed by the original model, evaluating the error of 

the training and test data.  

 

2.4.2.1 Response surface methods (RSM) and Sequential sensitivity analysis for large models 

 

For high-dimensional models, most efforts are spent on RS training. These efforts are 

generally dependent on the number of variables contained in the model. Besides, when the model 

itself is high-dimensional and the interactions among design variables are not negligible, the 

difficulty in achieving a well-fitted RS increases (GE; CIUFFO; MENENDEZ, 2014). The 

approach used for RS training is to take the simulations already performed to the quasi-optimal 

sampling DoE for screening analysis used in Morris’ method, decreasing additional numerical 

simulation. The DoE size is dependent on the number of variables (k) and trajectories (r) in the 

sample space (k+1) × r. This work has evaluated eight input variables (k = 8) and ten trajectories 

(r = 10) (SALTELLI et al., 2008), resulting in a total of 90 CFD simulations. 

 

RS training was performed with the same DoE used for Morris’ SA method, while the RS test 

was evaluated by 9 different CFD simulations (10% of the training cases) generated through 

ULHS (MCKAY; BECKMAN; CONOVER, 1979). The best-fitted RS for polytropic efficiency 

was achieved using the Stepwise Regression method, as shown in Table 15, in comparison with 

other well-fitted methods. 
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Table 15. Quality criteria of the response surface trained for polytropic efficiency 

RS Method R2 Max. abs. error Max. rel. error 

Stepwise regression (RIGONI, 2014) 0.978 0.068 0.080 

Radial basis function (RIGONI, 2007) 0.977 0.059 0.069 

Smooth spline ANOVA (GU, 2002) 0.974 0.076 0.089 

Kriging (RASMUSSEN; WILLIAMS, 2006) 0.959 0.069 0.081 

Neural network (17 levels) (HAYKIN, 1999) 0.952 0.083 0.097 

Source: Author. 

 

Therefore, quasi-optimal sampling was responsible for the great accuracy of RS. The high-

dimensional (more than 20 input variables) CFD model optimization of turbomachinery could 

become feasible if this sampling methodology was applied. Furthermore, Morris’ method 

convergence study and SS-ANOVA method are only possible due to RS's great accuracy. 

Table 16 shows the nominal, lower and upper values of the input variables. Several CFD 

model tests were conducted in order to determine the ranges of input variables. Many changes in 

polar angles were performed to assess the geometry/mesh generation and CFD model 

convergence. Thus, lower and upper limits were selected to ensure the geometry and mesh 

without errors as well as the CFD model convergence was properly achieved inside these limits. 

 

Table 16 - Input variables range 

Variable 
Lower 

(degrees) 

Original 

(degrees) 

Upper 

(degrees) 

L1A1 -1.25 0 1.25 

L1A2 17.62 17.98 18.34 

L1A3 32.71 33.37 34.04 

L1A4 61.38 61.69 62.92 

L2A1 -1.25 0 1.25 

L2A2 25.23 25.74 26.26 

L2A3 39.41 40.21 41.02 

L2A4 54.60 55.72 56.83 

Source: Author. 
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2.4.2.2 Optimization statement 

 

After training the RS, an optimization approach was executed using the improved version of 

the non-dominated sorting genetic algorithm (NSGA-II) implemented in modeFRONTIER 

software, which is a computationally fast and elitist evolutionary algorithm that can maintain a 

good spread and convergence of solutions (DEB et al., 2002; WANG et al., 2011). The 

optimization statement is: 

 

Find 𝑋 =

{
 
 
 

 
 
 
𝐿1𝐴1
𝐿1𝐴2
𝐿1𝐴3
𝐿1𝐴4
𝐿2𝐴1
𝐿2𝐴2
𝐿2𝐴3
𝐿2𝐴4}

 
 
 

 
 
 

  which maximizes polytropic efficiency (𝑋) 

subject to the constraints: 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑝𝑜𝑤𝑒𝑟(𝑋) ≤ 𝑃𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 4.76𝑀𝑊 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒(𝑋) ≤ 𝑇𝑀𝑎𝑥 = 200°𝐶 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑟𝑎𝑡𝑖𝑜(𝑋) ≥ 𝑃𝑅𝑀𝑖𝑛 = 2.85 

 

where 𝐿1𝐴1 is the inlet polar angle at first layer (hub leading edge) and 𝐿2𝐴4 is the trailing edge 

polar angle at shroud. 𝑃𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is the total power required by the original impeller, 𝑇𝑀𝑎𝑥 is the 

temperature limit so the intercooler between compression stages remains functional, and 𝑃𝑅𝑀𝑖𝑛 is 

the pressure ratio, which is a requirement of the project. 

 

2.4.3 Optimization strategy of the CFD fourth-stage model through surrogate models 

 

The second approach of CFD optimization used the same SA strategy of the first-stage 

compressor but considering 25 variables to evaluate if interactions would impact the ability of SA 

to screen the sample space in such conditions. Furthermore, we seek to find an optimized solution 

at the gas-like side of the T-s diagram. 
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2.4.3.1 Response surface methods (RSM) and Sequential sensitivity analysis for large and 

high-dimensional models 

 

The interesting output considered by the analysis was the polytropic efficiency of the 

equipment, which better represents the quality of the fluid flow inside the turbomachinery 

(AUNGIER, 2000). Table 17 presents the sampling strategy used to train the polytropic 

efficiency RS used for this high-dimensional problem, among the number of model realizations 

required and the RS method utilized with its quality measures. This work opted for combining a 

methodology of sequential screening SA (Salviano et al., 2021) with Incremental Space Filler 

(ISF) sampling to provide well-fitted surrogate models for a set of 25 input variables, considering 

the impeller and vaneless diffuser, in which it became clear the Morris’ method limitation in 

identifying interactions between variables properly. 

 

Initially, 10 Quasi-Optimal Trajectories (Quasi-OT) were selected as it is common practice 

for Morris’ method (SALTELLI et al., 2008), which required 286 CFD simulations, including the 

test cases. Both, Morris’ SA and RS training were performed with this initial assessment of the 

sample space. A sort of different RS methods was investigated without success in achieving good 

quality RS for proper model representation (the best fit was the Radial Basis Functions (RBF) 

presented in Table 17). In the attempt to improve RS quality, 6 extra Quasi-OT were added to the 

analysis, which required 172 extra CFD simulations. The SA and RS training procedure were 

repeated and no improvement in RS fitness was verified, as presented in Table 17, which 

demonstrates that increasing the Quasi-OT number does not improve the RS quality measures. 

This indicates an inability of Quasi-OT sampling to properly represent the sample space when a 

high number of interacting variables are present in the model, due to its one-at-a-time design of 

experiment nature (SALTELLI et al., 2019).  
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Table 17 – Polytropic Efficiency RS training strategy and quality measures. 

 

 

Sampling 

Strategy 
CFD Model Runs 

RS 

Methodology 

(Best fitted) 

Regression 

Coefficient 

(R²) 

Max. 

Abs. 

Error 

Mean 

Rel. 

Error 

(%) 

Quasi-OT 

Sampling 

(10) 

260 + 26 ULHS 

(MCKAY; 

BECKMAN; 

CONOVER, 

1979) for testing 

Radial Basis 

Function 
0.775 0.873 0.371 

Quasi-OT 

Sampling (6) 

156 + 16 

ULHS(MCKAY; 

BECKMAN; 

CONOVER, 

1979).  for testing 

Radial Basis 

Function 
0.761 0.773 0.384 

Incremental 

Space Filler 

120 + 12 

ULHS(MCKAY; 

BECKMAN; 

CONOVER, 

1979) for testing 

Evolutionary 

Algorithm 
0.950 0.386 0.167 

Total 590 
Evolutionary 

Algorithm 
0.950 0.386 0.167 

 

Source: Author. 

 

Therefore, an different sampling methodology was considered: the Incremental Space Filler 

(ISF), which added 132 additional CFD simulations and improved the RS training quality 

measures to acceptable values (MONTRONE et al., 2019), as evidenced in Table 2.15. Many 

efforts to develop and calibrate RS are dependent on the number of variables present in the 

model. High-dimensional models generally have interactions between variables, interfering with 

the achievement of a well-fitted RS (GE; CIUFFO; MENENDEZ, 2014). Therefore, the 

described approach that proposes to combine Quasi-OT and ISF can be a promising alternative to 

reduce significantly the number of cases required for good RS fitness, since only 24 model runs 

per parameter were necessary. Finally, the best-fitted method used for training the polytropic 

efficiency RS is known as Evolutionary Design (ED) (FILLON, 2008) was used and its quality 

criteria are also presented in Table 17.  
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Only a few executions of the model, with good sample space representation, could provide a 

function that represents the original model, grating faster realization, less computer storage 

needed and easier applicability to other sensitivity analyses. However, there is an inherent error 

in the original model and its incapacity to predict results outside its training/testing sample space 

(VILLA-VIALANEIX et al., 2012). Once this well-fitted RS is properly trained, a variance-

based SA method, the SS-ANOVA (GU, 2002) can be performed for interactions evaluation. 

This algorithm, based on classical analysis of variance, decomposes the main effects and the two-

variable interactions, measuring the percentage of its contribution to the global variance 

(RIGONI; RICCO, 2011). The commonly estimated cost for this method is 𝑘3, resulting in 15625 

runs through the RS, which would be prohibitive to perform through the original CFD model. 

Moreover, the RS also permits to proceed with an optimization procedure. The validity and 

accuracy of the RS are assessed by the original model afterward.  

 

2.4.3.2 Optimization statement 

 

The optimization of large CFD models could be prohibited due to high processing time, 

which increases with a high number of input variables (k > 10). To surpass this issue, RS training 

was performed (JENSEN; MAYORGA; PAPADIMITRIOU, 2015). The optimization approach 

was executed using the improved version of the Non-dominated Sorting Genetic Algorithm 

(NSGA-II) implemented in software modeFRONTIER (DEB et al., 2002), which is a 

computationally fast and elitist evolutionary algorithm that can maintain a good spread and 

convergence of solutions. The procedure used the variable population algorithm with crossover 

probability and mutation probability set in 0.9 and 0.01, respectively. 

 

An unconstrained optimization procedure was considered since no prohibitive fluid flow 

phenomena were verified within the sample space, which is due to the 1D preliminary design 

predictions. Thus, the optimization statement was:  
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Find 𝑋 =  

{
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
𝐴1
𝐿1𝐴2
𝐿1𝐴3
𝐿2𝐴2
𝐿2𝐴3
𝐿3𝐴2
𝐿3𝐴3
𝐴4
𝑃1𝑥
𝑃1𝑧
𝑃2𝑥
𝑃2𝑧
𝑃3𝑥
𝑃3𝑧
𝑃4𝑥
𝑃4𝑧
𝑆𝑃1
𝑆𝑃2
𝑆1
𝑆2
𝑆3
𝐻1
𝐻2
𝐻3
𝑃𝑂𝑆 }

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 which maximizes the polytropic efficiency, 𝜂𝑝(𝑋) 

 

An initial DoE size test was performed to assess the influence on optimization final results, in 

which three sets of the initial population were generated through Uniform Latin Hypercube 

Sampling (ULHS) (MCKAY; BECKMAN; CONOVER, 1979): 60, 120 and 240 cases. Despite 

the differences in convergence speed, the maximum polytropic efficiency was the same for all.  
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3 RESULTS  

 

The main results obtained by the presented methodology were discussed in three sections as 

described:  

 

• One-dimensional optimization of the whole compression train subjected to the 

constraint herein elaborated ‘Gas-like Behavior Margin’ (GBM), which minimized 

the total drive power and ensured the feasibility of each centrifugal compressor. 

• Implications of the adopted SA methodology for large CFD models applied to the 

first stage compressor, providing low-cost sample space screening and CFD modeling 

‘know-how’ for centrifugal compressors.  

• Results of low-cost RS training strategy for a high number of interacting variables on 

large CFD models and s-CO2 phenomenology analysis approach for low-flow-

coefficient centrifugal compressors. 

 

3.1 Optimized One-Dimensional Compression Train and Fourth Stage S-Co2 Centrifugal 

Compressor Evaluation 

 

The factor fixing performed using the 1D sensitivity analysis was based on the discussion of 

this chapter, which has decreased the optimization complexity and computational cost. Moreover, 

the optimized fourth stage of compression CFD model was built to assess the validity of 1D 

model predictions on the machine’s performance.  articularly, the novel GBM constraint was 

investigated herein to evaluate its capacity to be a robust criterion to avoid transcritical regions in 

the compressor thermodynamic region. 

 The remaining variables choice of the optimization flowchart presented in Section 2.4.1 was 

due to the SA of this chapter. Figure 27 shows the main effects of Morris’ method using only 290 

simulations, while Figure 28 shows the results for the SS-ANOVA method considering main and 

interaction effects which required 25000 simulations (only possible due to the low computational 

cost of the 1D model – a few seconds each case) .  
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Figure 27 – Morris’ screening method ranking of variables. 

 

Source: Author. 

 

Figure 28 – SS-ANOVA method ranking of variables

 

Source: Author. 

 

The comparison between Figure 27 and Figure 28 shows that both methods found the same 

important variables, meaning that Morris’ method is reliable for factor fixing purposes for models 

that interaction effects are negligible, considering also that Morris’ method required only 1.2% of 

the computational effort required by SS-ANOVA. Overall, the pressure ratios for all four stages 

are maintained as important variables for the next optimization procedure.   
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Furthermore, Morris’ SA was also performed for the constraints defined for the optimization 

procedure, presented in Figure 29. In addition to the pressure ratios, already identified as 

important variables, the inlet shroud radius for all stages (r1s,i) is included in the group of 

important design variables. Despite the low sensitivity measure values on the last two 

compressors, which is due to their narrower ranges, we have chosen to maintain these variables 

due to their potential to improve throat Mach number during the optimization procedure without 

changing the geometry of the centrifugal compressor significantly. Moreover, SS-ANOVA was 

also performed for the constraints and does not find interactions between variables, similar to the 

total power analysis.  

Figure 29 – Morris’ sensitivity measures of optimization constraints

 

Source: Author. 
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The number of blades for each stage (Zfb,i) demonstrated a small influence on constraints 

involving Mach number. Their sensitivity measures were similar to the inlet shroud radius in the 

third and fourth stages. Therefore, because of their low sensitivity measure values at the two first 

stages, we decide to fix them. Moreover, the remaining variables were not expected to have 

effects on the Mach number, as confirmed by the analysis. Splitter length (Lsf,i) and Axial Height 

(ΔZ,i) are geometric variables of the impeller but are not related to the throat sizing. The diffuser 

height (b4,I) and volute sizing parameter (SPtarg,i) are too downstream and did not show any 

influence on the Mach number of the machine. As GBM is greatly influenced only by the fourth 

pressure ratio, the important variables group was set with the 8 already described variables 

(Pressure Ratios, PRi, and Inlet Shroud Radius, r1s,i). 

 

3.1.1  Optimized Compression Train 

 

The insertion of the constraints on the optimization procedure through 1D model was able to 

avoid several issues related to 𝑠 − 𝐶𝑂2 centrifugal compressor train system such as shockwaves, 

condensation and also due to the crossing of the Widom-line during the last compression stage. 

Moreover, the initial population for genetic algorithms is usually from 2 to 4 times the number of 

variables and constraints in the model. However, to make sure the initial population is not 

influencing the optimization performance, an initial population study was performed using 78, 

187 and 384 cases defined by the Uniform Latin Hypercube Sampling (ULHS)(MCKAY; 

BECKMAN; CONOVER, 1979), as presented in Table 18.  

 

Table 18 – Initial population used for NSGA-II 

Initial Population Number of Generations Minimum Power Achieved 

78 cases 40 15.093 MW 

187 cases 35 15.063 MW 

384 cases 85 15.068 MW 

Source: Author. 

 

It is clear that the increase on initial population has low influence on the minimum power of 

the system, and if it is too large the number of generations for convergence can increase 
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significantly. Therefore, 187 cases were considered enough for the purpose of this work. For all 

optimization procedures, the crossover probability parameter is set by 0.9 and the mutation 

probability is 0.01, as it is common practice for genetic algorithms. 

A baseline centrifugal compressor train system was arbitrarily defined based on fluid flow 

constraints and the desired outlet pressure, according to Table 19.  

 

Table 19 – Baseline, optimized and constant compression systems power consumption 

Variable Baseline Optimized Constant 

PR1 2.65 2.95 2.72 

PR2 2.65 2.90 2.72 

PR3 2.65 2.30 2.72 

PR4 3.65 3.40 3.40 

r1s,1 190 mm 188.9 mm 190 mm 

r1s,2 118 mm 115.2 mm 118 mm 

r1s,3 70 mm 71.2 mm 70 mm 

r1s,4 48 mm 46.6 mm 48 mm 

∑𝑊𝑖̇

4

1

 17.53 MW 
15.06 MW 

(-14.09%) 

15.14 MW 

(-13.63%) 

Source: Author. 

 

Moreover, an extra compression system is added for the comparison (‘constant column’) 

which means that the last compressor is fixed with the same pressure ratio as the optimized case 

and would shift the first three stages to a constant pressure ratio. This approach intends to 

demonstrate the impact of different pressure ratios, as suggested by the optimization procedure at 

the early compression stages on total power consumption. 

 Figure 30 shows the T-s diagram for the baseline and optimized configurations. The 

optimization procedure finds the optimized configuration of the compression system close to 

Widom-line (left side on the T-s diagram), consuming less power to increase the pressure to the 

desired level at the outlet of the 4ª stage compression.  
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Figure 30 – T-s diagram of baseline and optimized compression train system 

 

Source: Author. 

 

The GBM constraint (GBM > 1) blocks the optimization procedure to crossing the Widom-

line toward a liquid-like region which is undesired due to high 𝑠𝐶𝑂2 thermodynamic properties 

variations. Table 19 shows that the optimized configuration of the compression train system 

reduced the required power by 14.09%.  

The pressure ratio for the last stage is reduced as much as possible (PR = 3.40) since the 

Widom-line limits further decrease on the fourth stage pressure ratio to ensure feasible 

equipment. The same behavior is demonstrated in the third stage, which is reduced to the minimal 

pressure ratio that would still provide a feasible compressor to deliver the desired outlet pressure 

at the system exit (> 25MPa). On the other hand, the two early stages' pressure ratios are 

increased, which is necessary to ensure that the total pressure at the system exit is achieved. 

Moreover, the comparison with constant early stages configuration shows an advantage in 

diminishing the third stage pressure ratio to lower levels, as found by the optimizer, spending 

about 0.5% less energy to attend the same compression level. 

The total power consumption for the optimized model is 14.09% lower than that of the 

baseline model. Of course, the baseline configuration was an arbitrary choice at the right side of 
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the Widom-line. However, the reduction of the fourth stage pressure ratio is responsible for most 

of the power consumption reduction at the compression train, since constant pressure ratios is 

only 0.5% higher than the optimized train.  

 

3.1.2  Analysis of the dynamic flow 

 

Finally, a CFD analysis was performed at the fourth stage of compression to verify the 

effectiveness of the one-dimensional design. First, no condensation was found since the 

comparison of the Mach number at the machine’s throat with the AMC limit (Figure 31) provided 

mean values much lower than the AMC level. Evidently, condensation would not occur 

downstream in the impeller since the saturation dome is further away as the compression occurs.  

 

Figure 31 – Absolute Mach number from CFD simulation for the 4st stage. 

 

Source: Author. 

 

The CFD phenomenology analysis of the compressor throat (Figure 32) also illustrates how 

the 1D code avoids condensation. The maximum Mach number at the throat estimated through 
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the 1D code is 0.69, which is corroborated by the CFD results that estimated a maximum value of 

0.68 at the shroud. Since AMC value for this machine’s inlet condition is 0.71, condensation is 

not expected to occur. 

 

Figure 32 – Mach number distribution at the machine’s throat. 

 

Source: Author. 

 

The preliminary geometry simulated from CFD approach is considered to verify the 

compressor configuration by 1D code. Therefore, the main interest outputs are compared in Table 

20, i.e., isentropic efficiency, pressure ratio at impeller exit and total power consumption. These 

global output variables were evaluated since they are a consequence of the whole compressor 

simulation, being better to represent models’ accuracy. 

 

Table 20 – 1D model outputs verification. 

Variables 1D CFD Diff. (%) 

Isentropic Efficiency (%) 82.13* 83.6** 1.75 

Power Consumed 3.46 MW 3.64 MW 4.94 

Impeller Pressure Ratio 3.86 3.90 1.02 

Note: * At exit of the Volute. 

** At the exit of the Impeller. 

Source: Author. 

 

 

The low differences between 1D and 3D approaches indicate that the methodology presented 

for the present work is able to design robust centrifugal compressors operating at the supercritical 
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state of the 𝐶𝑂2 while maintaining the gas-like behavior. Moreover, CFD models are able to 

better predict total power consumption than the 1D loss models since turbulence, recirculation 

and swirl are better addressed due to their tridimensional phenomena. The total power 

consumption found by CFD model is 4.94% higher than 1D model. Nevertheless, the 1D 

methodology remains an excellent tool to provide a start point for centrifugal compressors’ 

design. Moreover, gas-like behavior is verified through the speed of sound values at the outlet of 

the CFD analysis, which is lower than the limit value at the Widom-line showing that the CO2 

state remains at the gas-like side. The maximum values for meridional velocity are presented at 

the axial to radial direction change region in the impeller, being reduced afterward at the end of 

the impeller channel and diffuser (Figure 33). A backflow recirculation is observed at the 

impeller/diffuser interface, which perhaps can be mitigated by a CFD model optimization 

procedure. 

Figure 33 – Meridional velocity by CFD modeling for the 4st stage 

 
Source: Author. 

 

The total pressure chart for the 1D model predictions and CFD model results is shown in 

Figure 34, indicating a good agreement between 1D and 3D approaches. In fact, the total pressure 
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difference between approaches is 1.03% at the impeller outlet and 3.97% at the diffuser outlet. 

Although the 3D modeling of the volute is not the main goal of the present work, this study can 

corroborate one-dimensional prediction for total pressure, ensuring that the total pressure goal is 

achieved by the equipment. Moreover, the CFD allows better understanding related to energy 

losses in the vaneless-diffuser due to friction, which becomes evident when compared to the 

losses predicted by the 1D, indicating a need for improvements in vaneless diffusers loss 

assessment. 

 

Figure 34 – Total pressure comparison between 3D CFD and 1D model approaches. 

 

Source: Author. 

 

Summing up, a thorough optimization methodology for the supercritical centrifugal 

compressor train was developed considering fluid flow phenomena and thermodynamic 

conditions. A direct thermodynamic analysis is not enough for a complete design of supercritical 

centrifugal compressors train since they do not take into account fluid flow phenomena such as 

the high change in the fluid properties close to Widom-line. Therefore, the Gas-like Behavior 

Margin (GBM) developed is able to circumvent the uncertainties of operating on the transcritical 

region, ensuring suitable CFD convergence and physical analysis. Moreover, the calibration 
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procedure developed to adjust the preliminary geometry provided by the 1D method to the CFD 

outputs proved to be an effective strategy after numerical verification. 

Furthermore, Morris’ sensitivity analysis method has found the same important variables as 

the SS-ANOVA method, using only 1.2% of the clock time. Additionally, the optimizer reduced 

the total power consumed by 14.09%, with good agreement between CFD and 1D numerical 

approaches, ensuring that the 1D code is robust for preliminary geometries. Overall, the training 

of a function that represents de CFD model for the calibration procedure could complete the 1D 

methodology presented herein, turning it into a more suitable centrifugal compressor tool and a 

CFD sensitivity analysis and optimization of the fourth stage geometry would complete the 

thermal design of the equipment. 

 

3.2  Sequential Sensitivity Analysis and Optimization Applied to the First Compression 

Stage Centrifugal Compressor 

 

The first step of the proposed sequential SA was Morris’ screening method, which aimed to 

fix non-important variables and find interaction effects, followed by a convergence analysis of its 

sensitivity measures to ensure robustness. The second step was the SS-ANOVA quantitative 

method, which was applied to verify the reliability of the Morris method. Afterward, a single-

objective optimization using the input variables identified as important was performed. 

Polytropic efficiency was maximized under constraints defined by minimal pressure ratio, 

maximal temperature ratio, and required power. To ensure the quality of the factor-fixing 

methodology for the optimization procedure, the same single-objective optimization was 

conducted using the eight input variables of Table 16. 

 

3.2.1  Morris’ elementary effects 

 

To assess the overall performance of a centrifugal compressor, four important design 

variables were considered: polytropic efficiency, pressure ratio, required power, and temperature 

ratio. A suitable compressor design should aim for the highest possible efficiency and pressure 

ratio with the lowest required power and temperature ratio. The histograms of Figure 35 show the 
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main effects of Morris’ method for each interest output. Furthermore, a cumulative effect curve 

with points between the histogram bars is defined as 80% for the cut-off methodology.  

Ranking histograms were achieved by running only 90 CFD cases (average of 4 hours for 

each case). Overall, the trailing-edge polar angles (L1A4, L2A4 and L2A3) were the most 

important in compressor performance, leaving the angles at the leading-edge position (L1A1, 

L1A2 and L2A1) with a lower influence. The physical mechanisms responsible for that are 

discussed in the next section. Table 21 summarizes the non-influential variables for each interest 

output, considering as important variables those responsible for more than 80% of the output 

cumulative effects.  

 

Figure 35 - Main effects sensitivity measures of Morris screening method; (a) polytropic 

efficiency, (b) pressure ratio, (c) required power and (d) temperature ratio. 

 

 

 
(a)                                                                         (b) 

 
(c)                                                                          (d) 

Source: Author. 
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Table 21 - Non-influential variables according to Morris’ screening analysis. 

 
Output Non-influential variables 

Polytropic efficiency L1A1 L1A2 L1A3 L2A1 - L2A3 

Pressure ratio L1A1 L1A2 - L2A1 - - 

Required power L1A1 L1A2 - L2A1 L2A2 - 

Temperature ratio L1A1 L1A2 - L2A1 L2A2 - 

Source: Author. 

 

Variables 𝐿1𝐴1, 𝐿1𝐴2, and 𝐿2𝐴1 are non-influential for all outputs evaluated by Morris’ 

sensitivity analysis. Therefore, they can be fixed at their original value (Table 16) and excluded 

from the optimization procedure, with a slight impact on the overall results. Figure 36 shows that 

important angles are below the reference line 2SEMi, which means that their main effects are 

much greater than their interaction effects. In other words, interaction effects can be considered 

negligible. 

 

Figure 36 - Interaction effects analysis of Morris’ screening method; (a) polytropic efficiency, (b) 

pressure ratio, (c) required power, and (d) temperature ratio. 

 

 
(a)                                                                        (b) 
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(c)                                                                     (d) 

Source: Author. 

 

Figure 37 shows the impact of the number of DoE trajectories on output variables, starting 

with the original DoE containing ten trajectories assessed by the CFD model (suggested in 

Saltelli et al. (2008)) up to 500 trajectories evaluated by the RS models. 

 

Figure 37 - Morris’ sensitivity measures convergence analysis, (a) polytropic efficiency, (b) 

pressure ratio, (c) required power and (d) temperature ratio 

 
(a)                                                                             (b) 
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(c)                                                                              (d) 

Source: Author. 

 

As discussed, the number of trajectories is critical to ensure the Morris method’s robustness 

(GE; CIUFFO; MENENDEZ, 2014)(GE; CIUFFO; MENENDEZ, 2014). Too many trajectories 

would needlessly increase computational efforts and insufficient trajectories would provide 

misleading sensitivity measures. 

This extrapolation study corroborates the results found with ten trajectories of Figures 35 and 

36, although the ranking slightly changed for temperature ratio. In other words, if we applied the 

same methodology for factor fixing using the 500 trajectories ranking, we would classify the 

same input variables as non-influential (𝐿1𝐴1, 𝐿1𝐴2, and 𝐿2𝐴1). Therefore, the use of only ten 

trajectories has proved appropriate for the factor fixing of non-influential input variables. 

Moreover, as suitable response surfaces were used to perform this convergence study, the results 

presented herein are subjected to minor discrepancies from the original CFD model and are only 

valid inside the input range presented in Table 16. 

 

3.2.2  SS-ANOVA quantitative measures 

The trained RS turned feasible the SS-ANOVA method (GU, 2002). This quantitative method 

can provide a variance-representative ranking of input variables as well as corroborate Morris’ 

method for factor-fixing purposes. Using ModeFRONTIER software, ULHS (MCKAY; 
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BECKMAN; CONOVER, 1979) was built containing the total amount of 512 cases (k3) 

evaluated by RS functions. This number of CFD simulations would be computationally 

expensive, making the analysis a prohibitive task, especially for analysis with several input 

variables. A second-order evaluation of SS-ANOVA sensitivity analysis was performed to assess 

the main and interaction effects between input variables.  

Two quality design variables were used to ensure the method’s robustness: R2 and orthogonal 

quality (OQ), both were expected to be near unity (GU, 2002). The quality design variables of the 

four interest outputs had excellent regression results (R2 > 0.99) and the maximum OQ was 1.11 

for the required power output, which is acceptable. Figure 38 shows the rankings of the main 

effects through SS-ANOVA method and their summed interaction effects (INT).  

 

Figure 38 - SS-ANOVA sensitivity analysis ranking, (a) polytropic efficiency, (b) pressure 

ratio, (c) required power, and (d) temperature ratio 

 
(a)                                                                         (b) 

 

(c)                                                                        (d) 

Source: Author. 
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The Morris’ convergence study and SS-ANOVA analysis (Figures 37 and 38) provided the 

same variable ranking, corroborating the factor fixing reliability proposed by Morris’ method 

(Figures 35 and 36), since each method uses different DoE to assess their effects on the outputs. 

These two SA methodologies can only be compared due to the good fitness achieved by the 

response surfaces shown in Table 15 since the deviations from CFD model can be expected due 

to RS inherent errors. However, such a small difference does not nullify the present results. 

  

One could argue that more reliable factor fixing could be achieved by using the final 

converged Morris sensitivity measures. However, for factor fixing, it is already shown that non-

influential variables would be the same. Moreover, Morris’ method is more conservative than SS-

ANOVA, i.e., using the same threshold of 80% of outputs variability cumulative effects, it would 

find fewer non-influential variables (SS-ANOVA added L2A2 as non-influential). Even though 

the methods have different types of normalized measures, they are both used for factor-fixing 

purposes in practice and the threshold of 80% of its cumulative effects would be used for that. 

Therefore, the objective here is not to compare the measures of each method but to identify the 

factors that should be fixed if we used different methods to analyze the same variables. 

Additionally, slight changes in the ranking between methods were verified only for variables 

considered unimportant. According to both SA methods, the interaction effects of input variables 

were negligible and the main effects were responsible for almost the entire outputs variability, 

meaning that the impeller polar angles of centrifugal compressors have an additive impact on 

machine performance. Figure 39 shows the effect of the polar angles on the outputs considering 

the summed effects of variables close to the leading edge and trailing edge. 

 

Leading-edge polar angles are those identified as A1 and A2 whilst trailing-edge are 

identified as A3 and A4, for both layers (hub and shroud). According to SS-ANOVA analysis, 

more than 90% of all output variability was due to changes in trailing-edge polar angles, meaning 

that the polar angles of the leading-edge had a small influence on shockwaves present in Figure 

40. 
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Figure 39 - Leading/trailing edge polar angles summed effects. 

 

Source: Author. 

 

Figure 40 - Spanwise view of relative Mach number on the original impeller 

 

 

Source: Author. 
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Moreover, the polar angles were found very important in flow blockage caused by the reverse 

flow near the clearance gap at the trailing-edge (Figures 41 and 42).  

 

Figure 41 - Streamwise view of streamlines on the original impeller 

 

 
 

Source: Author. 

 

Figure 42 - Spanwise view of velocity direction for the original impeller 

 

 
Source: Author. 
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The SA indicated that polar angles at the impeller/diffuser interface region (trailing-edge) had 

a greater impact than those angles at the leading-edge. In fact, the reverse flow found at the 

clearance gap (Figure 42) was a significant source of loss, which can be verified by analysis of 

the entropy chart shown in Figure 43.  

 

Figure 43 - Static entropy chart in spanwise view with velocity streamlines 

 

 

 

 

Source: Author. 

 

The impeller/diffuser interface region (streamwise position 0.5 to 0.75) represented 48% of 

entropy increase, due to flow blockage. This physical phenomenon assessment is in agreement 

with SA predictions, reinforcing that Morris’ screening method is a robust and reliable 

methodology for turbomachinery CFD model analysis.  
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3.2.3  Optimization results and phenomenology analysis  

 

An indirect and constrained single-objective optimization procedure is performed as the 

statement optimization shown in section 2.4.2, using the RS (section 2.4.2.1) and NSGA-II 

algorithms. In order to assess if the factor fixing found by Morris’ method can be reliably used 

for diminishing variables on a direct optimization, two approaches were performed using the 

same constraints. The first approach considered only the important variables found by Morris’ 

method for factor fixing (five input variables) and the second took all input variables into account 

to assess the impact of factor fixing on final optimization results. Original and optimized polar 

angles are summarized in Table 22. In addition, for classification as non-important by Morris’ 

method regarding all output variables, these fixed inputs are not involved in any significant 

interactions with other variables, as shown in Figures 36 and 38, which demonstrates that the 

polar angles RS is additive towards the output variability.  

 

Table 22 - Comparison between original and optimized input values 

 

Input angles (º) Original 
Optimized 

(5 inputs) 

Optimized 

(8 inputs) 

L1A1 0 0 (fixed) -1.25 

L1A2 17.98 17.98 (fixed) 17.62 

L1A3 33.37 32.71 32.71 

L1A4 61.69 62.92 62.92 

L2A1 0 0 (fixed) -1.25 

L2A2 25.74 25.23 25.23 

L2A3  40.21 39.41 39.41 

L2A4 55.71 56.83 56.83 

Source: Author. 

 

Both optimization approaches found similar optimized design variables, except for those 

input variables fixed by Morris’ analysis.  able 23 shows the outputs for the original model and 

the two optimized cases. The four output design variables presented (polytropic efficiency, 
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pressure ratio, temperature ratio and power required) were about the same for both optimizations, 

indicating that the SA analysis methodology presented herein is robust for factor fixing.  

 

Table 23 - Comparison between original and optimized case outputs 

Case Model 
Polytropic 

efficiency (%) 

Pressure 

ratio 

Temperature 

ratio 

Power Required 

(MW) 

Original* CFD 85.41 2.89 1.30 4.76 

Optimized  

(8 inputs) 

RS 86.14 2.89 1.30 4.72 

CFD 86.11 2.90 1.32 4.74 

Optimized  

(5 inputs) 

RS 86.07 2.89 1.30 4.72 

CFD 86.05 2.90 1.30 4.74 

Note: * Geometry defined based on Casey and Robinson One-dimensional approach (ANSYS VISTA CCD). 

Source: Author. 

 

Results of the CFD model agreed with the optimized RS results since the absolute difference 

for polytropic efficiency was 0.03% considering eight input variables and 0.02% for five input 

variables. For all other output variables, the difference between CFD simulations and the results 

performed by RS were similar, showing that the RS trained, using the same DoE to evaluate 

Morris’ sensitivity indices (quasi-optimal sampling), had an excellent fitting.  

Moreover, polytropic efficiency increased by 0.7% and 0.64% considering eight and five 

input variables for optimization, respectively. These results reinforce the previous discussion that 

indicated the reliability of Morris’ factor fixing of additive problems in the physical evaluation of 

centrifugal compressors. Moreover, Morris’ method proved to be robust for fixing factors for a 

direct (and computationally expensive) optimization, causing minor losses in optimized design 

performance.  

The literature review of parametric optimizations is in agreement with this order of magnitude 

for efficiency, which is considered relevant even though few input variables have been evaluated, 

indicating the potential of the present approach for high dimensional models. Furthermore, the 

original geometry presents an already high polytropic efficiency of 85.41%, considering that the 

streamline sizing method (CASEY; ROBINSON, 2008b) is a robust method to define initial 

geometry. As turbomachinery requires computationally expensive models, Morris’ method with 

quasi-optimal sampling could be recommended as a relatively cheap and robust SA approach for 
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screening. Therefore, the following benefits could be highlighted: previous physical phenomena 

knowledge before running an optimization procedure, cheap and excellent fitted RS, and reliable 

factor fixing for diminishing the cost of high-dimensional problems, allowing the insertion of 

several variables that would not be part of the analysis otherwise. Furthermore, the RS 

optimization using NSGA-II evaluated about 2700 cases to achieve optimized point, which is 

assessed in less than 5 minutes after the response surface was trained (costing about 20 days to 

run the 90 CFD models used for training the RS). A direct optimization using the CFD model 

would take much more time (unfeasible if using NSGA-II). To assess the improvement at the 

leading-edge related to shockwaves, the percentage number of elements with a Mach number 

greater than 1 was computed and shown in Figure 44.  

 

Figure 44 - Leading-edge elements with Mach number greater than one for original and 

optimized cases 

 

 

 

Source: Author. 

 

The original and optimized geometries have around 7.47% and 7.09%, respectively, of 

elements highlighted. As already found by SA analysis and discussed in detail, the polar angles 

near the leading-edge have a small influence on the shockwaves, which can be verified on the 

slightly cambered shape at the leading-edge. On the other hand, significant changes are noted in 

the trailing-edge blade shape, which is responsible for the reduction in flow blockage. 

The blockage caused by the reverse flow at the trailing edge is one of the main sources of loss 

in centrifugal compressor performance. Figures 45 and 46 show that the low-velocity region at 
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the trailing-edge is smoothed due to the new blade shape found by the optimized geometry, 

which reduces the flow blockage between the impeller and vaneless-diffuser.  

Figure 45 - Spanwise view of Mach number contours on the original (ANSYS VISTA CCD) and 

optimized impellers 

 

Source: Author. 

 

Figure 46 - Spanwise view of streamlines on the original (ANSYS VISTA CCD) and optimized 

impellers 

 

Source: Author. 

 

To evaluate the robustness of an optimized centrifugal compressor found from the numerical 

methodology proposed in this paper, a Speedline displacement study was conducted to 

investigate the impact of different mass flow rates on polytropic efficiency, pressure ratio, and 

required power around an operating point, as shown in Figure 47. Figure 47a shows that the 

polytropic efficiency of the optimized centrifugal compressor is higher than the original 

Original Optimized
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centrifugal compressor (from ANSYS VISTA CCD) for the whole mass flow rate investigated, 

showing that optimized geometry can be applied to a large mass flow rate range. Moreover, the 

pressure ratio (Figure 47b) and required power (Figure 47c) showed slight improvements, as they 

were only constraints in the optimization procedure. Thus, the optimized performance related to 

the optimized angles at the leading-edge and trailing-edge of the impeller is ensured not only at 

the operating point but also for different mass flows. 

Figure 47 - Speedline displacement study (a) polytropic efficiency, (b) pressure ratio, (c) required 

power 

   
(a)                                                            (b) 

 
(c) 

Source: Author. 
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For example, the cost savings regarding power consumption between optimized and original 

geometries in practical applications can be assessed by a simplified economic scenario. 

According to ANEEL (Agência Nacional de Energia Elétrica) (BRASIL, 2021), National Agency 

of Electrical Energy in Brazil, the country’s average price of 1MWh is about US$100.00 

(ANEEL, 2020). The optimized geometry has decreased the power required by 0.42% (0.02MW). 

Accounting for this saving in power consumption and considering that the compressor operates 

for a year (365 days), the cost savings potential is estimated by US$17,600.00 for each 

compressor. As well known, an oil exploration platform has many compressors which can make 

this saving even more relevant. 

 

In short, centrifugal compressors performance is dependent on the number of geometric 

variables taken into account for turbomachinery design. The considerable increase in input 

variables could make 3D CFD analysis prohibitive as the computational time for sensitivity 

analysis and optimizations is huge. This work considered the intermediate polar angles, which are 

not optimized in Casey and Robinson’s one-dimensional sizing method, have a significant impact 

on CO2 centrifugal compressor polytropic efficiency, especially the angles near the trailing-edge. 

The optimized shape of the impeller reduced the flow blockage caused by the reverse flow, 

increasing the polytropic efficiency of 0.7%.  

 

Moreover, Morris’ screening method was applied for the first time to turbomachinery devices 

and showed that it is very reliable for factor-fixing purposes, even though few trajectories were 

initially used. This relatively cheap SA method agreed with the SS-ANOVA quantitative method, 

which needs huge computational resources.  he use of Morris’ method in turbomachinery is a 

promising tool that can effectively increase the number of design variables of a design allowing 

the simultaneous study of their impact on the equipment performance. Of course, the quasi-

optimal sampling method used for generating Morris’ method DoE ensured the excellent 

spreading of the sample space, which was adequate in RS training, reducing the need for new 

CFD simulations. This sampling can be applied to high-dimensional 3D CFD models, such as 

turbomachinery, to fit response surfaces with reduced computational costs. 
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Finally, phenomenological analysis of the dynamic flow found a significant source of losses 

at the leading-edge due to shockwaves and at the trailing-edge due to flow blockage. Morris’ 

factor fixing predicted that polar angles had a greater influence on trailing-edge region 

phenomena, which was corroborated by the optimization results that eliminated leading-edge 

angles from the optimization procedure and increased polytropic efficiency of 0.64%. 

Considering all polar angles, the polytropic efficiency increased by 0.7%. The optimized 

centrifugal compressor was tested with different mass flow rates ensuring that the overall 

performance for the optimized angles of the trailing-edge and leading-edge of the impeller was 

higher than the original compressor for the whole operating speed line evaluated. 

 

3.3  Sequential Sensitivity Analysis and Optimization Applied To the Fourth Compression 

Stage Centrifugal Compressor 

 

This section presents the SA ranking of importance of the 25 variables for both Morris and 

SS-ANOVA methods, the CFD verification of the optimization through RS and the 

phenomenology analysis performed between original and optimized cases of the fourth stage 

compressor.  

 

3.3.1 Sensitivity Analysis 

 

Both DoE generated through the Quasi-OT sampling for RS training (containing 10 and 6 

trajectories) were also used to assess the elementary effects of Morris’ method on polytropic 

efficiency as shown in Figures 48 and 49. The strategy of increasing the number of trajectories 

using the Quasi-OT sampling was not adequate for RS training purposes and caused minor 

changes in variables ranking. Therefore, despite the good initial sample space screening provided 

by the original set of 10 trajectories, the authors recommend the usage of another sampling 

strategy (as ISF) to increase RS training quality, since the additional 6 Quasi-OT did not improve 

the RS training or Morris’ variable ranking.  
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Figure 48 – Morris’ elementary effects on polytropic efficiency (10 trajectories). 

 
Source: Author. 

 

Figure 49 – Morris’ elementary effects on polytropic efficiency (16 trajectories). 

 

 
Source: Author. 

 

Overall, Morris’ method indicates that the variables positioned near the impeller trailing edge 

(P4z, P2z, A4) and at the diffuser (S1, H1, S2, H2, H3, and S3) are responsible for more than 

75% of the accumulated main effects, which is better understood through phenomenology 

analysis, since these variables mitigate the flow recirculation identified at impeller/diffuser 
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interface. On the other hand, the polar angles along the blade (L1A2, L1A3, L2A2, L2A3, L3A2, 

L3A3 and A1) and leading-edge position of the splitter (SP1 and SP2) are negligible on 

polytropic efficiency main effects. Moreover, the meridional profile of the impeller beginning 

(P3x, P1x and P3x) and the blade-to-blade splitter position (POS) are variables without influence. 

The SS-ANOVA method was also applied through the trained RS in order to identify 

interactions between variables, as presented in the histogram of Figure 50. Despite the RS 

inherent errors, both SA methods have found almost the same most the important variables (S2, 

H2,   z,  2z,  3z, S3, A ,  3x and H3), with Morris’ method also classifying  OS, S1 and H1 

as important variables, since it is a more conservative SA method than SS-ANOVA.  

Figure 50 – SS-ANOVA histogram with interaction effects 

 

Source: Author. 

 

In summary, both SA methods indicate that the polar angles on the initial part of the impeller 

are not influent on polytropic efficiency, identifying only A4 (polar angle of trailing edge) as 

influential. The optimization of impeller blade angles alone did not achieve great improvement in 

isentropic efficiency in literature (EKRADI; MADADI, 2020; HILDEBRANDT; 

CEYROWSKY, 2019). On the other hand, the most important variables are present at the 

impeller/diffuser interface, which leads to the evaluation of the physical phenomena changes in 
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that region. Moreover, a thorough ‘entropy-guided’ phenomenon assessment is performed in the 

whole equipment to corroborate SA insights (Section 3.3). 

Finally, the sequential SA conducted herein exposes that interactions between variables are 

not properly identified by Morris’ method due to its ‘one-at-a-time’ DoE behavior provided by 

the Quasi-OT sampling, which also explains why the increase in the number of trajectories did 

not help the RS training. Moreover, the SS-ANOVA identified the interactions between variables 

H2/S2 and H2/S3 as more influential than the main effects of some design variables, reaffirming 

the importance of performing more than one SA method in high-dimensional models to have 

better insights into the model (SALTELLI et al., 2019). 

 

3.3.2 Optimization  

 

The optimization procedure through trained RS considered all 25 variables and its 

nominal and optimized values are presented in Table 23 The number of cases necessary for 

achieving the convergence was 6000, which would be unfeasible using a direct approach through 

the expensive CFD model.  

 

Table 23 – Variables’ nominal and optimized values 

Polar Angles Meridional Profile Diffuser 

Variable Nom. Opt. Variable Nom. Opt. Variable Nom. Opt. 

A1 [°] 0 2 P1x [mm] 38.68 39.48 S1 [mm] 0 0.2 

L1A2 [°] -22.64 -21.6 P1z [mm] 8.38 9.19 S2 [mm] 3.48 3.08 

L1A3 [°] -42.37 -41.3 P2x [mm] 85.04 85.34 S3 [mm] 3.48 4.73 

L2A2 [°] -25.34 -24.3 P2z [mm] 0.82 0.16 H1 [mm] 0 0.2 

L2A3 [°] -44 -43 P3x [mm] 57.41 59.01 H2 [mm] 10 9.81 

L3A2 [°] -47.64 -46.6 P3z [mm] 13.07 14.67 H3 [mm] 10 10.22 

L3A3 [°] -44.34 -43.3 P4x [mm] 94.13 94.83 POS [%] 50 55 

A4 [°] -45 -45 P4z [mm] 4.35 5.05    

   SP1 [mm] 20.89 27.16    

   SP2 [mm] 24.41 25.63    

Source: Author. 
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The maximum polytropic efficiency indicated by the RS optimization was 83.34%, as 

presented in Table 24. In order to verify the efficiency improvement conceived by the RS 

strategy, the optimized geometry found was modeled by CFD and a verification analysis was 

performed. A polytropic efficiency of 82.93% was obtained with a numerical difference of 0.41% 

in comparison with the RS optimized geometry. Therefore, a significant increase of 1.19% in the 

polytropic efficiency is reached by comparing optimized and original geometries, since the mesh 

uncertainty for that variable was only 0.106%.  

 

Table 24 – Polytropic efficiency of original and optimized geometries 

 

Model Polytropic Efficiency Improvement (%) 

CFD Original Geometry 81.74 % - 

Response Surface Optimized 

Geometry 
83.34 % 1.60% 

CFD Optimized Geometry 82.93 % 1.19% 

Source: Author. 

 

 

Of course, the high number of variables present in the model has limited their range of 

variation and, therefore, the reach of an optimization procedure improvement in polytropic 

efficiency. However, it allowed the Morris’ SA method evaluation for a high number of 

interacting variables (Section 3.3) and elucidated the advantages of using ‘factor fixing’ tools on 

large CFD models, since less variables would allow a larger range of variation on the most 

important variables. 

The main differences between original and optimized geometries can be seen in Figure 51. 

The vaneless diffuser inlet was narrowed and the main passage channel between blade and 

splitter was larger. Also, the meridional profile has been enlarged in the transition from axial to 

the radial direction, which makes the flow smoother in this region.  

The original geometry provided by the 1D method is already high-performance equipment. 

Therefore, the polytropic efficiency gain is a significant improvement which is demonstrated by 

the phenomenology analysis. Furthermore, the high number of variables (25) stickle to find 

optimized configurations since it limits the ranges of variation of the inputs, jeopardizing the 
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possibility of greater geometry modification. Thus, multiple optimization procedures 

contemplating smaller groups of variables with larger ranges of variations should be tested to 

assess even better improvements. 

 

Figure 51 - Original and optimized geometries 

 

 

 

 

 

 

 

 

Source: Author. 

 

Moreover, to corroborate the SA insights about the physical model, the computational 

symmetric domain was divided into 20 regions equally spaced along the streamwise direction as 

shown in Figure 52. The average entropy was performed at each hub-to-shroud section, allowing 
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to identify those physical phenomena responsible for efficiency losses. Overall, an entropy 

generation total reduction of 8.5% was found between original and optimized geometries. Thus, 

the entropy gain shown in Figure 3.26 indicates that the impeller/diffuser interface region was 

responsible for almost 75% of all entropy increases in the domain, according to SA results. 

Therefore, a phenomenology analysis can bring a better understanding of the changes in the 

physical mechanisms presented by the original and optimized geometries in that region.  

 

Figure 52 – Computational symmetric domain regions and the entropy gain histogram 

 

 

Source: Author. 

 

3.3.3 Phenomenology Analysis  

 

 The phenomenology analysis initially focused on the impeller/diffuser interface region, 

since the entropy histogram discussed in Figure 52 indicated larger differences in that region. In 

fact, a backflow recirculation was identified, which increases fluid friction losses and causes a 

flow blockage near the impeller trailing edge, as evidenced by the streamlines on constant polar 

angle surfaces present at the original compressor in Figure 53.  
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Figure 53 – Surface streamlines on constant polar angle surfaces of the original geometry 

 

 

Source: Author. 

 

The CFD model investigation performed at the same region for the optimized geometry 

demonstrated the dissipation of the backflow recirculation present in the original model, as 

presented in Figure 54. The narrowing of the diffuser right after the trailing edge is responsible 

for smoothing the fluid flow in this region. 

 

Figure 54 – Backflow recirculation dissipation at the optimized impeller/diffuser region 

 

 

Source: Author. 
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 Furthermore, the flow blockage near the shroud caused by the recirculation was reduced 

by the optimization procedure as illustrated on the spanwise surfaces at 90% of blade height in 

Figure 55. These fluid flow modifications decrease the entropy generation and, consequently, 

increase the polytropic efficiency. 

 

Figure 55 – Velocity intensity near shroud for original and optimized geometries 

 

Source: Author. 

 

Moreover, significant differences are noticed in entropy generation inside the impeller, 

indicating that other loss mechanisms are present in this region. The flow structures known as 

swirls were identified after the change in the flow direction (from axial to radial) and propagated 

along the main channel (Figure 56), increasing their intensity until near the impeller trailing edge. 

 

Figure 56 – Original geometry swirl structures and rotational direction in the main channel. 

 

Source: Author. 
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The swirl structures in the main channel, highlighted in Figure 56, have opposite directions 

which indicates that the interaction between the main and corner vortex increases losses. Also, 

the same behavior was found in the secondary channels shown in Figure 57.  

 

 

Figure 57 – Original geometry swirl structures and rotational direction in the secondary 

channel 

 

 

 
 

 
Source: Author. 

 

 

In order to assess the impact of the optimization on this phenomenon, a comparison between 

original and optimized geometries is presented in Figure 58. A displacement of the main swirl 

structures was identified, which releases the flow restriction caused by the swirl near the trailing 

edge. Moreover, the secondary swirl structures were smoothed as well, which may be due to the 

splitter displacement indicated by the optimization. 
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Figure 58 – Swirl structures in the original and optimized geometry 

 

Source: Author. 

 

Finally, a vortical structure was found at the impeller using the Q-Criterion (ZHANG et 

al., 2018) near the leading edge of the main blade, as shown in Figure 59. The vortex structure is 

formed next to the blade tip, stretching over the leading edge of the splitter. Although the 

polytropic efficiency has been increased by an optimization procedure, the optimized geometry 

was not able to extinguish this vortex since the main blade leading edge has a low-pressure 

suction region inherent to the rotational movement of the compressor and the clearance gap 

(DOMBARD et al., 2018).  

 

Figure 59 – Vortical structure and low-pressure region on the original geometry 

 

 

Source: Author. 
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4 CONCLUSIONS  

 

A robust EOR compression system’s design procedure has been developed in the present 

work. The 1D model of the whole system can provide high-performance preliminary geometries 

to the designer and CFD SA and optimization can deliver further improvements in the machine’s 

fluid flow. The main conclusions of this thesis can be highlighted. 

 

From the 1D optimization procedure:  

• Direct thermodynamic analysis is not enough for a complete design of supercritical 

centrifugal compressors train since they do not take into account fluid flow 

phenomena such as the high change in the fluid properties close to Widom-line, throat 

Mach number and condensation. Therefore, the implemented 1D model and the Gas-

like Behavior Margin (GBM) are able to circumvent the uncertainties of operating on 

the supercritical transitional region, ensuring suitable CFD convergence and physical 

analysis; 

• The 1D calibration procedure was developed to adjust the preliminary geometry 

provided by the 1D method to the CFD outputs, which proved to be an effective 

strategy after numerical verification; 

• The optimizer found a compression train system on the gas-like side, decreasing the 

total power consumed by 14.09%. The total power consumed by CFD modeling is 

higher than the 1D predictions due to three-dimensional loss phenomena. 

Nevertheless, a good agreement between numerical approaches is still verified, 

ensuring that the 1D code is robust for providing preliminary geometries; 

 

From the first-stage CFD model SA and optimization procedure:  

• The quasi-optimal sampling method used for generating Morris’ method DoE ensured 

the excellent spreading of the sample space, which was adequate in RS training of 

additive models, reducing the need for new CFD simulations. This sampling can be 

applied to high-dimensional 3D CFD models, such as turbomachinery, to fit response 

surfaces with reduced computational costs; 
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• Morris’ SA method was applied for the first time in turbomachinery devices and has 

proven to be a reliable tool to rank the main effects for factor fixing purposes. From 

this method, only 1.2% of SS-ANOVA clock time is used. Moreover, Morris’ method 

is more conservative than SS-ANOVA methodology since it classifies less variables 

as non-important.  he use of Morris’ method in turbomachinery is a promising tool 

that can effectively increase the number of design variables of a design allowing the 

simultaneous study of their impact on the equipment performance; 

 

From the fourth-stage CFD model SA and optimization procedure:  

• An optimized design of a low-flow coefficient s-CO2 centrifugal compressor (Φ   

0.01) with PR = 3.4 was obtained. The innovative strategy developed herein used a 

high-dimensional (25 variables) CFD model that was submitted to an indirect 

optimization procedure using a surrogate model, which has improved the polytropic 

efficiency of the equipment by 1.19%. This performance gain is able to increase even 

further the optimization performed using the previous 1D model. Moreover, a 

reduction of 8.5% in total entropy generation was achieved. This optimized machine 

can deliver significant reductions on EOR compression system’s operational costs. 

• The Morris’ SA method was used to obtain insight of the variables’ impact on 

polytropic efficiency and for screening the sample space, in order to train a RS that 

could properly represent the CFD model. However, the Quasi-O  sampling of Morris’ 

method had to be combined with Incremental Space Filler (ISF) for proper RS 

training, exposing Morris’ method limitation to properly screen a sample space 

containing interacting variables, which was accomplished by using the ISF sampling 

methodology, which still is indicated as a cheap combination of sampling strategies 

for RS training of large CFD models. Moreover, SS-ANOVA method identified 

interactions between variables that could not be assessed by Morris’ SA due to its 

one-at-a-time DoE.   

• A deep ‘entropy-guided’ phenomenological analysis of the main flow features for the 

optimized geometry has been carried out through streamlines and entropy behavior. 

This strategy identified the locations on the computational domain where the sources 

of losses were reduced, especially at the impeller/diffuser interface reducing the flow 
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recirculation present in the original geometry. Moreover, swirls were displaced and 

smoothed in the impeller. This phenomenology assessment strategy has speeded up 

the analysis of fluid flow behavior.  
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Research Prospecting 
 

Finally, some future investigations and comments that appeared during the conducted research 

are worth mentioning:  

 

• Morris’ SA method is not able to predict the interactions between variables alone. 

Therefore, the implementation of other SA screening (cheap) methods that can identify 

interactions to precede the Morris’ method is under consideration (Fractional Factorial Sampling)  

• Application of novel RS regression methods could improve functions training quality.  

• The 1D model needs to be improved to admit mixtures, as the widely employed in oil 

industry: CO2/CH4. 

• Function training for 1D/CFD calibration procedure can complement the 1D model and 

speed-up the preliminary geometry generation. 

• The high number of variables in a model has limited their range of variation. 

Demonstrating the advantages of using ‘factor fixing’ tools in order to perform an optimization 

with less variables and wider ranges of variation.  

• The vortices’ structure responsible for decreasing the machine’s performance are created 

at the leading-edge and its shape from hub-to-shroud or the insertion of protuberances on blade 

walls are going to be considered in further studies. 

• The operational range of centrifugal compressors is delimited by surge and choke lines, 

we intend to evaluate the impact of geometrical changes on these lines. 

• Transient modeling for better understanding of phenomenological improvements provided 

by the optimization. Also, so compressors with vaned diffuser can be properly studied. 
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