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RESUMO

O sucesso da descri¢ao hidrodinamica das colisdes de ions pesados relativisticos desempenha um pa-
pel vital para entender as propriedades da matéria QCD. A esséncia da evolucao hidrodindmica, em
geral, foi atribuida a resposta dindmica as condi¢des iniciais flutuantes. Em particular, as caracteristi-
cas observadas nas correlacdes de duas particulas, referidas como “cume” e “ombro”, mostraram ser
reproduzidas com sucesso por simulacdes hidrodinamicas com condic¢des iniciais flutuantes evento a
evento, mas ndo por condi¢des iniciais médias. Posteriormente, leva ao entendimento atual, através de
extensos estudos de andlise hidrodindmica/transporte baseada em eventos por eventos, que as corre-
lagdes de duas particulas para o momento transversal inferior podem ser interpretadas principalmente
em termos de harmoénicos de fluxo v,,. Notavelmente, o fluxo triangular, vs, € atribuido principal-
mente a aparéncia da estrutura do “ombro” no lado externo da particula acionadora. Além disso,
entende-se que esses coeficientes harmonicos estdo intimamente associados aos correspondentes &,
as anisotropias da distribui¢do inicial de energia. No entanto, a linearidade entre v,, € €,, se torna
menos evidente para harmonicos maiores que n = 2. Isso sugere que as proprias flutuagdes de evento
a evento carregam informagdes importantes, além da linearidade observada. Se alguém se restringe
apenas a andlise das relacdes/correlacdes médias de eventos entre v,, € £,,, entdo alguns sinais hidrod-
indmicos genuinos das flutuagdes locais em cada evento individual podem ser desbotados ou ocultos
por trds de algumas correlagdes muito complicadas entre os harmonicos. Portanto, esperamos explo-
rar de um angulo alternativo que possa explicar de maneira simples a origem fisica do padrao de fluxo
anisotrépico.

Nesta tese, estudamos as correlacdes de duas particulas em relacdo a um modelo de tubo periférico,
entre os outros. De nossa perspectiva, as principais caracteristicas das correlacdes de duas particulas
observadas sdo atribuidas as flutuagdes de multiplicidade e a distribuicao de uma particula perturbada
localmente. A udltima € associada a resposta hidrodinamica as flutuagdes geométricas nas condi¢des
iniciais. Investigamos as propriedades das condicdes iniciais e do fluxo coletivo em relagdo ao mod-
elo proposto. E mostrado que os dados experimentais podem ser reproduzidos por simula¢des hidrod-
indmicas usando condi¢des iniciais adequadamente construidas. Além disso, em vez de calibragcdo
numérica, extraimos os pardmetros do modelo de acordo com suas respectivas interpretacdes fisicas e
mostramos que os valores numéricos obtidos estdo de fato qualitativamente de acordo com os dados
observados.

Além disso, como a hidrodindmica é conhecida por suas caracteristicas altamente nao lineares, varios
estudos foram realizados para explorar esse aspecto. Em particular, muitos esforcos foram dedicados
a relacdo entre excentricidades iniciais do estado e anisotropias do estado final. No contexto da de-
scricdo hidrodinamica evento a evento, analisamos as implicagdes para dois modelos caracterizados
por condi¢des iniciais distintas. A densidade de energia inicial do primeiro modelo adota uma dis-
tribuicdo do tipo Gaussiana, enquanto as do segundo modelo sdo caracteristicas de tubos periféricos
de alta energia. Calibramos as condicdes iniciais de ambos os modelos para que suas excentricidades
iniciais sejam praticamente idénticas. As distribui¢cdes escalonadas de probabilidade do fluxo coletivo
e as correlagdes entre os coeficientes harmonicos e excentricidades do fluxo sdo investigadas. Além

disso, os célculos sdo realizados para correlacdes de particulas em relacdo aos cumulantes simétricos,



coeficientes de resposta ndo lineares. Embora as correlacdes resultantes de duas particulas possuam
formas aparentemente semelhantes, os cdlculos numéricos indicam uma diferenca substancial entre
os dois modelos. Para ser especifico, a diferenca reside em observaveis mais detalhados, como o
coeficiente de correlacdo de Pearson entre harmonicos de ordem superior. Discutimos varios aspec-
tos essenciais relativos a linearidade e nao linearidade entre excentricidades iniciais e anisotropias no

estado final. Implicacdes adicionais sdo abordadas.

PALAVRAS-CHAVE: modelo hidrodinamico, correlagio de particulas, harmonicas de fluxo.



ABSTRACT

The success of the hydrodynamic description of relativistic heavy-ion collisions plays a vital part in
our ongoing endeavor to understand the properties of QCD matter. The essence of hydrodynamical
evolution, generally, has been attributed to the dynamic response to fluctuating initial conditions. For
instance, the observed features in two-particle correlations referred to as “ridge” and “shoulders”,
were shown to be successfully reproduced by hydrodynamical simulations with event-by-event fluc-
tuating initial conditions but not by averaged initial conditions. Subsequently, it leads to the current
understanding through extensive studies of event-by-event based hydrodynamic/transport analysis. In
other words, the two-particle correlations for the lower transverse momenta can be mostly interpreted
in terms of flow harmonics v,,. In particular, the triangular flow, v3, is mostly attributed to for the
appearance of the “shoulder” structure on the away side of the trigger particle. Moreover, it is under-
stood that the flow harmonics are closely associated with the corresponding ¢,,, the anisotropies of
the initial energy distribution. However, numerical calculations have demonstrated that the linearity
between v,, and ¢,, become less evident for harmonics higher than n = 2. This suggests that the
event-by-event fluctuations themselves carry essential information besides the observed linearity. To
be specific, if one restricts himself only to the analysis of the event-averaged relations/correlations
among v,, and ¢,,, then some genuine hydrodynamic signals from the local fluctuations in each indi-
vidual event might be washed out, or hidden behind some very complicated correlations among the
harmonics. Therefore, we hope to explore from an alternative angle, which may explain in a simple
way the physical origin of the anisotropic flow pattern.

In this thesis, we study the collective flow, particle correlations, and nonlinear response in terms of,
among others, a peripheral tube model. From our perspective, the main characteristics of the ob-
served two-particle correlations are attributed to the multiplicity fluctuations and the locally disturbed
one-particle distribution. The latter is associated with the hydrodynamic response to the geometric
fluctuations in the initial conditions. Also, we investigate the properties of the initial conditions and
collective flow concerning the proposed model. It is shown that the experimental data can be re-
produced by hydrodynamical simulations using appropriately constructed initial conditions. Besides,
instead of numerical calibration, we extract the model parameters according to their respective physi-
cal interpretations and show that the obtained numerical values are indeed qualitatively in agreement
with the observed data.

Moreover, as hydrodynamics is known for its high nonlinearity, various studies have been carried
out to explore this aspect. In particular, many efforts have been devoted to the relationship between
initial state eccentricities and final state anisotropies. In the context of event-by-event hydrodynamic
description, we analyze two different models characterized by distinct initial conditions. The ini-
tial energy density of the first model adopts a Gaussian-type distribution, while those of the second
model are features by high energy peripheral tubes. We calibrate the initial conditions of both models
so that their initial eccentricities are mostly identical. The scaled probability distributions of collec-
tive flow and the correlations between flow harmonic and eccentricity coefficients are investigated.
Besides, the calculations are carried out for particle correlations regarding the symmetric cumulant,

nonlinear response coefficients. Although the resultant two-particle correlations possess seemingly



similar shapes, numerical calculations indicate a substantial difference between the two models. To
be specific, the difference resides in more detailed observables such as the Pearson correlation coeffi-
cient between higher-order harmonics. We discuss several essential aspects concerning the linearity
and nonlinearity between initial eccentricities and final state anisotropies. Further implications are

addressed.

KEYWORDS: hydrodynamical model, particle correlation, flow harmonics.
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1 INTRODUTION

According to the Standard Model of particle physics (MARTIN: SHAW, 2017), quarks and glu-
ons are the elementary degrees of freedom of the strong interaction. Quarks carry color charge and
interact with each other via the exchange of gluons. The gluons are massless particles whose prop-
erties are determined by the local gauge symmetry. Because of the color confinement, color charged
particles such as quarks and gluons cannot exist as free particles. Instead, they are strongly bound
to one another, forming color-neutral composite particles, known as hadrons. From Quantum Chro-
modynamics (QCD), the fundamental theory of the strong interaction, the asymptotic freedom can be
derived. The latter indicates that interaction between particles becomes weaker at shorter distances.
That is to say, with increasing temperature or increasing baryon density, a phase transition shall occur
so that ordinary hadrons become deconfined.

Subsequently, the quarks and gluons become the proper degrees of freedom, and their motions are
no longer confined to the bound states, the hadrons. In this context, relativistic heavy-ion collisions
become the most promising approach to compress and heat up the nuclear matter in the laboratory.
The relevant experiments create the environment with extreme conditions, where the properties of the

so-called quark-gluon plasma can be investigated.

The hydrodynamic description (HAMA: KODAMA: SOCOLOWSKI JR], 2005) of high energy
nuclear collisions can be briefly summarized as follows. As two Lorentz contracted nuclei collide, a
large amount of energy is deposited into a small region of space for an exceptionally short duration
of time. Subsequently, a hot and dense matter is formed in such extreme conditions (CHEUK-YTN,
[994). The latter is assumed to be in local thermal equilibrium with immensely high temperature and
energy density, which follow by a hydrodynamic expansion. The temporal evolution is essentially
dictated by the conservation equations of energy-momentum and relevant conserved charges. As the
expansion proceeds, the temperature and density gradually decrease until the hadronization occurs.

Afterward, the characteristics of the system become more of a collection of free particles rather than
a fluid.

SPheRIO, a.k.a. Smoothed Particle hydrodynamic evolution of Relativistic heavy I0n collisions,
is a numerical implementation to simulate the hydrodynamic evolution (HAMA: KODAMA: JR],
2005). The code is based on the Smoothed Particle Hydrodynamic (SPH) algorithm (Monaghan,
1997; AGUIAR ef all, P00T; MOTA; CHEN; QIAN, 2017). The method parametrizes the contin-
uous density distribution of an extensive physical quantity in terms of the sum of base functions
with finite support. At the beginning of the hydrodynamic evolution, one requires the initial condi-
tions (IC). The IC consist of detailed space distributions of the energy-momentum tensor, baryon-
number, strangeness, and charge densities, at a given initial time 7 ~ 1fm (HAMA: KODAMA:
SOCOLOWSKITR], 2005). By combining the equation of state, the SPheRIO code can be used to
solve the hydrodynamic equations. By the end of system evolution, the decoupling prescriptions will
specify where and when the freeze-out happens where the hadron emission takes place. The final

state hadrons can be observed in the experiment. Thus one can compare the simulation results with
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experimental ones.

It is widely recognized that the hydrodynamic approach provides a good description of heavy-ion
collisions (KOLB: HEINZ, ?0073; HUOVINEN, 2003; HIRANO: TSUDA|, 2002; CASTILHO ef all,
201T77; CASTICHO ef-all, 2OT8). It gives many satisfactory results, such as the reproduction of the
rapidity and transverse momentum spectra, particle correlations, and collective flow. In particularly,
the collective flow was first observed in RHIC experiments, where the outgoing particles exhibit an
almond-shaped distribution. Such collective phenomena (VOLOSHIN:; POSKANZER: SNELLINGS,
2010; MCDONATD ef afl, P0T7; NACHMAN:; MANGANQO, P0TR) are regarded as an essential sig-
nal of the formation of quark-gluon plasma (QGP). As a matter of fact, the hydrodynamic calculations
were shown to be consistent with the experimental measurements of collectivity in terms of the final
state hadron distributions. Such observations confirmed the speculation that the evolution of the col-
lision system is mostly dominated by collective motion, while thermalization is attained to a high
degree. Therefore, the momentum distribution of nuclear matter produced in non-central collisions is
elliptic mainly, as the interactions between the constituents transform the initial geometrical fluctua-
tions in real space into anisotropy of final hadrons in momentum space. This has been interpreted as

the hydrodynamic response of the collisional system to the initial anisotropic geometry.

The anisotropic flow can be systematically quantified by using the Fourier expansion coefficients
of the particle azimuthal distribution (VOLOSHIN: ZHANG, 1996), where the second coefficient v,
is referred to as elliptic flow. The expansion coefficients v,, can be calculated by using the event plane
method, or particle correlations, among others. For the event plane method, an approximation is intro-
duced since the reaction plane cannot be directly measured in experiments. Therefore, it is estimated
by using the azimuthal angles of the outgoing particles (POSKANZER: VOLOSHIN, T998; [TA:
COLLCABORATION, 20T3). Furthermore, people have developed the two-particle correlation method
(WANG ef all, T991); TRZUPEK], 20TT; COLLABORATION), P0T6) to study anisotropic flow, which
does not explicitly depend on the reaction plane. However, an inevitable problem for the two-particle
correlation is that in addition to the flow correlation, there is a non-negligible contribution from
the non-flow correlation (DINH: BORGHINI; OLLITRAULT], 2000; BORGHINI; OLLITRAULT?
DINH, 2000). The non-flow correlation may be caused by (DANIELEWICZ ef all, T988; ADILER ef
all, 2007) resonance decays, (mini)jets, strings, quantum statistics effects, final state interactions such
as Coulomb effects, momentum conservation, etc. Therefore, an accurate flow analysis needs to take
into account the effects of non-flow, and different methods have been developed to eliminate the non-
flow correlations (ACKERMANN ef all, 2001; POSKANZER: VOLOSHIN, T99%; DANIELEWICZ
et all, T98Y; DINH: BORGHINI: OLLITRAULIT], 2000; BORGHINI: OLLITRAULT: DINH, 2000;
AGGARWAT ef all, 1997; RANIWALA: RANIWALA: VIYOGI, 2000). One of the most effective
methods is regarding cumulant expansions of multi-particle associations (BORGHINI: DINH: OLLI
'RAULT, 200T). This method is shown to be more efficient to eliminate the effect of non-flow at a
higher order, and the interference of the detector can also be taken into account appropriately. Be-
sides, some other methods have also been proposed, such as Lee-Yang zeroes method (BHALERAO?
BORGHINI; OLLITRAULI], 2003), Q-cumulant (BILANDZIC:; SNELLINGS; VOLOSHIN, 20TT),
among others (BILANDZIC et all, 2014), etc. All these different methods enriched and deepened our
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understanding concerning collective flow from different aspects.

Differential elliptic flow is a topic which has been studied extensively for Au-Au collisions at
RHIC (BACK ef all, 2007; BACK ef all, 20054; BACK ef all, 2005H; ADAMS ef all, 2005a; ADCOX
ef all, P005). These studies involve the pseudorapidity, centrality, transverse momentum, and energy
dependence of elliptic flow v,. Theoretically speaking, elliptic flow is considered to be a response
to the almond shape of the overlap region in non-central collisions, which should not be significant
in central collisions. However, a sizable elliptic flow was observed in most central Cu-Cu collision
(ATVER ef all, 2007), which is, in turn, interpreted as caused by the fluctuations of the initial geom-
etry. Actually, the event-by-event fluctuations of IC was first pointed out by Kodama et al (AGUTAR
ef all, 200?2; IR ef all, 2004; ANDRADE ef all, 2006). Subsequently, much attention is paid to the im-
portance of the fluctuations in the initial conditions (FAKAHASHI ef all, 2009). More recently, it was
pointed out that such fluctuations are also the reason for the generation of triangular flow v3 (ALVEK]
ROLAND, 20T0) and other higher harmonics. Therefore, hydrodynamic with event-by-event fluctuat-
ing initial conditions is essential for the exact determination of collective flow observables and study
higher flow harmonics. The higher order flow harmonics have been measured at RHIC (ADARFE
ef_all, 2011; SORENSEN, 2011) and LHC (AAMODT ef_all, 2OTT; AAMODT ef_all, 2012). In
particular, the event-by-event distributions of flow harmonics also can be analyzed by the experimen-
tal collaborations (ITA|, POT3; MOHAPATRA, POT3; AAD ef all, 20T3). Subsequent hydrodynamic
simulations demonstrate that event-by-event hydrodynamics also works reasonably well in this case.
The model not only describes the average of flow harmonics but also the event-by-event distribution
of flow harmonics (GALE ef all, P0134), as well as event-plane correlations (BHALERAO: OLLI-
IRAULT: PAL, P0T3; TEANEY: YAN, 20T4). What is more, the observed structures of two-particle
correlations, referred to as “ridge” and “shoulders”, were also successfully reproduced by hydrody-
namical simulations with event-by-event fluctuating IC but not by averaged IC (FrAKAHASHI ef all,
2009). The event-by-event fluctuating initial conditions are now widely employed as a standard in

hydrodynamic simulations of heavy-ion collisions.

Concerning the mapping between initial state geometry and final state flow, many efforts have
been devoted. The participant eccentricity e, Was investigated regarding the initial geometry in
Ref.(ALVER ef all, 2007), and it points out that €, 1s responsible for elliptic flow. After “ridge”
and “shoulder” are observed, the study of IC decomposition is extended to the third-order Fourier
coefficient (ALVER: ROLAND, P0T0). Lately, Teaney and Yan introduced a cumulant expansion
to parameterize IC in relativistic heavy-ion collisions (ITEANEY: YAN, POTT). Moreover, it can be
shown (GALE: JEON: SCHENKE, 20173) that the distributions of initial eccentricities provide already
an excellent approximation of the measured v,, distributions when scaled by their mean value. The
linear nature for second order coefficient and nonlinear nature for higher order coefficients have been
studied in (NIEMT ef all, 2O12; TEANEY: YAN, 20172; GATE ef all, 20134; FU, ZOTS; QIAN et all,
2014). Additionally, the patterns of the fluctuations of the initial geometry and nonlinear effects in
the final state have been studied by measurements of event-plane correlations in ATLAS experiment
at the LHC (AAD ef all, 2014).

In general, the hydrodynamic model with event-by-event fluctuating initial conditions has been
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very successful in describing heavy-ion collisions at RHIC and LHC. It successfully reproduced the
particle spectra, anisotropic flow, particle correlations, correlations of event planes and the distribu-
tions of flow harmonics, etc. However, there are still unknown issues, and uncertainties remain, such
as the physics behind the observed structures of two-particle correlation and the mapping between
initial geometry and final flow harmonics.

Even though the distinctive features of two-particle correlations have been reproduced in the hy-
drodynamic approach, how the structures are generated is still not thoroughly understood. In this
context, the peripheral tube model (ANDRADE ef all, 2OT0R; QIAN et all, 2013) is proposed to
investigate the origin of these structures in the two-particle correlations. The model views the fluc-
tuations in the IC as consisting of independent high energy tubes close to the surface of the system.
These fluctuations sit on top of the background, elliptical energy density distribution, which is smooth
and obtained from averaging many different events. This simple model is intuitive and transparent
regarding its physical content. Subsequently, one might devise the desired IC, and employ a hydro-
dynamic code to investigate whether the outcome capture the essence of the existing experimental
data (ANDRADE ef all, P0T0a; HAMA ef all, 2009; ANDRADE ef all, 20TTa; HAMA ef all, 2O1(;
CASTICHO ef all, POT7; CASTICHO ef all, POTR). This thesis is dedicated to a hydrodynamical study
of particle correlations and collective flow, primarily based on the peripheral tube model. We study
the analytic results of two-particle correlations and nonlinear hydrodynamic response to the initial
geometry in this work, which is different from previous investigations of this model.

The present thesis is organized as follows. Chapter [ gives an overview of heavy-ion collisions.
We first review the definitions of some useful kinematic variables. Then, a brief description of nucleus-
nucleus collisions in terms of the hydrodynamical model is given. Subsequently, we examine the
implementations of the hydrodynamic model, inclusively the Smoothed Particle Hydrodynamics. The
SPheRIO code is presented and discussed. Chapter B is dedicated to topics such as collective flow,
eccentricity, and particle correlations. The associated analysis methods are also discussed. Chapter
A presents the results on the peripheral tube description of the two-particle correlations in nuclear
collisions. Chapter B presents the results on the study of nonlinearity in terms of an anisotropic

Gaussian model and peripheral tube model. Chapter B gives the concluding remarks.
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2 RELATIVISTIC HEAVY ION COLLISIONS

In modern particle physics (MARTIN: SHAW, 2017), the Standard Model is considered as the
theory to describe the three out of four known of fundamental interactions. Accordingly, the basic
constituents of matter are the quarks, leptons, together with photons, gluons, W and Z bosons, and
Higgs boson plays the roles as the “force carriers” which mediate the interactions between them.
Although most of the particles that we can directly observe are hadrons in the quark bound states, it
is understood that the free quarks and gluons can exist in specific extreme environments, known as
QGP. For instance, the Big Bang theory (SINGH: BANG, 2005; WEINBERG, 1977) predicts that in a
fraction of a second after the beginning, the Universe was primarily made up of free quarks and gluons.
Relativistic Heavy-Ion Collisions, on the other hand, have been proposed to produce such a state of
matter and among others, aimed to explore the properties of QCD matter. The Relativistic Heavy Ion
Collider (RHIC) and the Large Hadron Collider (LHC) were are established for the creation of such
extreme conditions in the laboratory which mimics the beginning of the Universe. To be specific, at
particle accelerators such as RHIC and LHC, two high-energy particle beams traveling in opposite
directions are accelerated to nearly the speed of light before the collision takes place. When ionized
particles collide at such high speeds, extremely high temperature and high-density environment is
created, where the QGP is formed. As the collision area cools off, thousands of particles are formed.
The measurements of these final state particles provide valuable clues about what is happening within
the collision zone, inclusively the thermal properties of the QGP. The endeavor of the experimentalists
associated with RHIC and LHC pave the way for our deepened understanding of the fundamental
building block of our Universe.

In order to theoretically analyze the relativistic heavy-ion collisions, one needs to choose some
convenient variables. In this chapter, we will first review the kinematic variables frequently used
in literature, then briefly describe the processes taken place at RHIC and LHC. Also, the hydrody-
namic model for relativistic heavy-ion collisions as well as its numerical algorithm is presented and

discussed.

2.1 KINEMATIC VARIABLES

In the relativistic heavy ion collisions, ions collide with each other at relativistic speeds, and
special relativity deals with such high speed movement. Therefore, it is necessary to learn about
how to describe a movement in relativistic mechanics. And then, the variables frequently used in

relativistic heavy ion collisions are introduced in terms of the basic variables in special relativity.

2.1.1 Four coordinates, four velocity and four momentum

In special relativity (HOBSON: EFSTATHIOU; LASENBY!, 2006), “time” and “space” are no
longer absolute as in classical dynamics, but is considered as relative four-dimensional space-time.

Thus, the position of an event in space-time is labeled by four coordinates (ct, z, y, x), which can be
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denoted by a contravariant vector as follow
ot = (2%, 2, 2% 2°) = (¢, 2,9, 7), (1)
here we use the natural units ¢ = i = 1. The covariant vector is
x, = (2, T1, T2, T3) = gu2” = (t, —x, —y, —), 2)

where g,,, is the space-time metric tensor with the following form

3)

uv =

o o o =
|
—

We may choose different reference frames to describe an event, so the same event may have
different four coordinates in different reference frames. But it does not matter, principle of relativity
states that the laws of physics take the same form in all reference frames. To understand the relation of
coordinates in different reference frames, we assume a particle has coordinates (¢, x, y, z) in cartesian
inertial frame S, and (¥, 2’4/, 2’) in cartesian inertial frame S’. This two different reference frames
S and S’ is moving away from each other with velocity v in the z-direction. On the basis of the

constancy of the velocity of light and principle of relativity, we can derive the Lorentz transformation

t = ’7(75 - Bx)v
o' =y(x = pt),
, )
¥y =y
7=z,
where 3 = v/c =vandy = (1 — g?)~1/2
According to the definition of the four-velocity
dz*
ut = — = (c,u”,u’, u*), 5
= ) )
we can derive the corresponding Lorentz transformations
ut =
/ u¥
W= Sy (6)
U = i)

The four-momentum is defined in terms of four-velocity

P =mut = (E,p*,pY, p°), (7)
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and the Lorentz transformations are

p* =(p® — BE),
o=,
¥ =p?,

E' =~(E - Bp®),

®)

These kinematic variables and the Lorentz transformations are widely used in special relativity,
but we hope to use some convenient variables which have simple properties under a Lorentz transfor-

mation in high-energy reaction processes.

2.1.2 Rapidity and pseudorapidity

In high energy nucleus-nucleus collisions, we choose longitudinal direction as the spatial z-axis
which is equal to the direction of the beam particle, and the transverse plane orthogonal to the lon-
gitudinal direction. A useful rapidity variable ¥ is induced to describe the longitudinal movement

(CHEUK-YIN, T994), it is defined by using the components of the four-momentum,

1 2
y==h (p0+p

)
2 Po — Dz

The advantage of using rapidity is that it has a simple Lorentz transformation. For example, the
rapidity of a particle in a laboratory frame F' is y, and in a boosted Lorentz frame F” is y'. Frame
F’" moves away from F' with a velocity [ in the z-direction. According to the definition of rapidity

Eq.(@) and the Lorentz transformation of four-momentum Eq.(8), we can obtain

1
/- ezt
= 3 )
1, 1-8
1 145
= Y- 511“1(@)» (10)

we find that the Lorentz transformation of the rapidity of the particle in this two frame is to add a

constant.

The four-velocity is normalized u*u, = 1, then the square of four-momentum ptp, = p§ — p2 —

p; — p? = m®. By defining the transverse mass of the particle

mi =m? + pr = py — p2, (11)

where m is the rest mass of the particle and transverse momentum p2 = p> + pz. It is easy to express
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the energy py and longitudinal momentum p, of particle in terms of rapidity

po = mycosh(y), (12)
p. = mrsinh(y). (13)

Therefore, as long as we measure the energy and longitudinal momentum, we can obtain the rapidity
of a particle.

Rapidity variable has its advantage of simple Lorentz transformation, hence it is convenient to
describe the dynamics of relativistic particles. However, in many experiments, what we can directly

measure is the angle 0 of the detected particle relative to the beam axis.

0 = arccos(l%z‘), (14)

where |p| = /p? + p2 + p? = \/p7 + p? is the 3-momentum of particle. Considering the realistic
measurements, it will be convenient to introduce the pseudorapidity variable which is defined in terms

of 0

n = —Inftan(6/2)]
1. |pl+p:
—1In . (15)
Then we can use pseudorapidity to express the momentum
Ip| = prcosh(n), (16)
p. = prsinh(n). a7

When the momentum is large enough to ignore the mass of the particle, then |p| = po, we find the
pseudorapidity variable Eq.(I3) approximately equal to rapidity variable Eq.(H). In experiments, we
can integrate out the pseudorapidity distribution dN/dn of particles from the measurements.

2.2 HYDRODYNAMICAL MODEL OF NUCLEUS-NUCLEUS COLLISIONS

As an emerging field, the high energy nucleus-nucleus collisions physics has developed into an
interdisciplinary related to nuclear physics, particle physics, statistical physics, relativistic fluid dy-
namics and astrophysics. It aims to create a extremely high-temperature and high-density environ-
ment like the early stage of Big Bang where the quark-gluon plasma may be produced (CHEUK-YTN,
[994)), then we can explore the deconfinement QGP and its properties. However, due to the confine-
ment of quarks, the existence of QGP is a very short duration of time, it is impossible to observe
QGP directly. Therefore, some models are employed to solve this trouble. In our work, we adopt the
hydrodynamic model. In this section, we will review the evolution of high energy nucleus-nucleus

collisions and the application of hydrodynamic model.
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2.2.1 High energy nucleus-nucleus collisions

is a simple schematic diagram for the collision of two nuclei in the center-of-mass system
(MCLERRAN, 2008). At first, two nuclei collide with a velocity close to the speed of light, due to
the Lorentz contraction, they look like two thin disks. Once the collisions take place, the colliding
nucleons will lose large amount of their energies in the inelastic processes. If the energy of each
nucleon in the center-of-mass system is high enough, the baryons can still have enough momentum to
move away from the region of collision after collision. Then the energy lost by the colliding baryons
is deposited in a small collision region of space, this high energy density environment leads to a new

matter formation, which is considered to be QGP.

hadronic phase
QGP and and freeze-out
hydrodynamic expansion
initial state

pre-equilibrium hadroniiation

Fig. 1 — High energy nucleus-nucleus collisions (MCLERRAN, POOY).

According to Bjorken’s suggestion (BIORKEN, T983) of the space-time evolution of a nucleus-
nucleus collision, the QGP will be in local equilibrium very soon after its formation, then it will

undergo a hydrodynamic evolution, as show in Fig. 2.

As the system expands, the temperature decreases to a critical value, which will lead the quark to
be confined into the hadron again. Then the system continues to expand because of the interactions
between produced hadrons. With the temperature dropping to chemical freeze-out temperature, the
inelastic collisions stop, the species of particle no longer change. Subsequently, when the temperature
drops to thermal freeze-out temperature, the elastic collisions stop, the multiplicity and spectrum is
determined. At last, the particles stop to interact with each other as the fluid becomes cooler and
cooler and more rarefied, hadron emission takes place. What we observe in the final state are free

particles.

Many interesting phenomena of the final state particles observed in the experiment provide strong
evidence for the existence of QGP. For example, the enhancement of strange particle yields is sup-
posed to should occur in the QGP phase (KOCH: MULLER: RAFELSKI, TY8#) is observed in RHIC
experiment (ABELEV ef all, 2007; CHEN ef all, D00R; AGAKISHIEV ef all, P017), as well as the J/ ¥
suppression (MATSUI:; SATZ, 1986; KAKADE:; PATRA; THAKUR, 20T14), Jet quenching (WANG
GYULASSY, 1997; ADAMS ef all, 003), photons and dileptons (ALAM: RAHA: SINHA, T996)

are also considered to be the important signals of QGP.
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freeze-out

Quark Gluon Plasma

space

Fig. 2 — The space-time evolution of nucleus-nucleus collisions (BIORKEN, T983).

2.2.2 The application of hydrodynamic model

Since the evolution of QGP finishes in a very short duration of time, we could hardly observe it
directly in experiments, so we employ hydrodynamic model to analyze its properties. As mentioned
above, the prerequisite for using the hydrodynamic model is that the QGP reaches the local thermal
equilibrium, in which the state can be characterized by initial conditions in terms of distribution of
four-velocity and thermodynamical quantities. In addition, the relations between thermodynamical
quantities are called equations of state (EOS) which is determined by the properties of QGP. With
the initial conditions and equations of state, the QGP follows a hydrodynamical expansion which is

controlled by (4 + i) conservation equations,

8,T" =0, (18)
9t = 0, (19)

where n!' are conserved charges like baryon, strangeness and so on. The energy-momentum is
" = (e + p)uu” — pg"”, (20)

where € is the energy density, p is the pressure, u* is the four-velocity of the fluid.

The main task in hydrodynamic model is to solve these partial differential equations. Moreover,
because of their highly nonlinear properties, it is really very hard to find an exact analytic resolu-
tion. There are some famous analytical solutions, such as Khalatnikov’s one-dimensional analytical
solution to Landau’s initial conditions (KHALATNIKOV], 1954)), the boost-invariant solution which is
used to estimate the initial energy densities in ultrarelativistic nucleus-nucleus collisions (HWA, 1974;
CHIU: WANG, T975; CHIU: SUDARSHAN: WANG, 1975), and a more general one-dimensional
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scale invariant solution proposed by T. Csorgs et al (CSORGO et all, 20073; CSORGO et all, D004),

which includes a class of transverse flows.

However, these simple analytical solutions obtained in some ideal conditions (like a symmetric
or one-dimensional configuration) have their limitation in realistic situations. Therefore, we turn to
a numerical method which can deal with any kind of geometry, even if the solution is not so precise.
Because what we want to observe is the general flow behavior which characterizes the dynamics of
the system at a given equation of state, initial conditions and the decoupling procedure. To solve the

hydrodynamical equations of motion, it is better to start from the variational formulation.

Firstly, we review the derivation of the equation of motion from the Lagrangian in the condition
of constraint. According to Ref.(HAMA: KODAMA: SOCOLOWSKI JRI, P005), the dynamics of

relativistic fluid is described by action

I= /d4x{—e}, (21)

where € = €(n, s) is the proper energy density, n, s are the proper baryon density and entropy den-

sity respectively. Considering constraints, that are the conservation laws and normalization of four-

velocity
8ﬂ<nuu) = 07
Ju(sut) =0, (22)
uu, = 1.

We can write variational formulation with Lagrangian multipliers
1
5 / B[ A () + €0, (su") — S — 1)] =0, (23)

where )\, £ and w are Lagrangian multipliers and arbitrary functions of z. The effective Lagrangian
can be obtained from Eq.(Z3)

1
Lepp(n, s, ut, N\, &, w) = —e — nutO,\ — sut0,§ — éw(u“uu - 1) (24)

By variations on n, s, u* respectively, we obtained the equations of motion

—u —u'O,\ =0, (25)
LT — w9, =0, (26)
—nd, A — 50,6 —wu, = 0. 27

Combining with the constraints in Eq.(Z2) and following the Gibbs-Duhem relation

dp = sdT + ndu, (28)
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the equations of motion (Z3,08,077) can be written to the standard form of the relativistic hydrodynamic
equation (IR,20).

This derivation involves the constraints, and it will be more complicated for more constraints. But
if we can parametrize n, s, u" in terms of a certain number of time dependent parameters 7(15) =
{a;(t),i=1,...,N}

_>

n o= w220y (29)
_c>it

s = s(r,ﬁ(t),d‘;t(t)x (30)
_>

w = u“(r,?(t),dflf”), 31)

(32)

the constraints are automatically satisfied, then the constraint terms in effective Lagrangian can be

omitted. Therefore, we can write the effective Lagrangian in a simple form,

@
Less(T (1), d dt(t)) = —/dre(n,s). (33)

Now we can obtain the equations of motion in the form of Euler-Lagrange equations, they are equa-
tions for the variables a;(¢). It will be convenient to solve the equations of motion in such a simple
form with few parameters. In this case, smoothed particle hydrodynamics is one of the most suitable

numerical methods to solve the continuity equation.

2.2.2.1 Smoothed particle hydrodynamics

Since numerical simulation transforms problem with continuous variable into discrete form, it
has become a very important tool for analyzing complex problems with the development of com-
puter capabilities. To apply the numerical simulations to physical problems, we have the following

procedure,

e Simplification and extraction of important physics from physical phenomena;

Building mathematical model by using governing equations;

Determine the computational frame by domain discretization with a finite number of particles;

Specifying the numerical algorithms with initial and boundary conditions, numerical discretiza-

tion of the system of partial differential equations;

Coding and implementation, including the computational accuracy, speed and storage etc.;
e Numerical simulation.

The governing equations for fluid dynamic are the conservation equations, and we will adopt smoothed
particle hydrodynamics algorithm to do numerical discretization, then translating the unsolvable par-

tial differential equations to ordinary differential equations.
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Smoothed particle hydrodynamics is a meshfree particle method based on Lagrangian formulation,
it was first applied to solve astrophysical problems (LUCY|, 1977; GINGOLD: MONAGHAN, 1977).
The basic idea of SPH (LIU: LIU, 20T0) is to describe the state of the system by a set of particles, each
particle carries mass, velocity and other physical properties and moves according to the governing
equations. Therefore, it can deal well with a large deformation experienced by the material. In this
aspect, since the relativistic nuclear collisions involve a extremely compressed and high-temperature
hadronic matter which expands into a very large space region, hence the SPH method is the best one

to the studies of relativistic heavy ion collisions.

To obtain the SPH formulation of governing equations, there are two basically steps. One is the
kernel approximation, from which field functions are approximated by integral representation method.
The other one is particle approximation, replacing integrations with summations at the neighboring

particles in a local domain so-called support domain.

In the kernel approximation step, one introduces the smoothing kernel function W for the approx-
imation of a field function. Supposing a physical extensive quantity A with the corresponding density
distribution a(r, t)

a(r,t) = /a(r',t)d('r — ) d*r, (34)
where Dirac d—function is given by

1 -
S(r—7r")={ O, : L :/’ (35)

Replacing the Dirac  —function by the smoothing function W with a finite spatial dimension A which
is called smoothing length. The density a(r, t) is transformed to a(r, t)

a(r,t) = /a(’r’,t)W(r —r';h)d*r, (36)

the smoothing function W satisfy the following conditions, IV is normalized

/W(r —r h)dr =1, (37)
and with compact support
W(r—7r";h) =0, for|r—r7r'|>h, (38)
it also has Delta function property
’llig(l)W(r—r’;h) =0(r—1r'). (39)

The second step, we introduce particle approximation to convert continuous integral representa-
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tion to discretized forms of summation over finite number of particles in the support domain.
a(r,t) = agpp(r,t) ZAW — i h), (40)

this is SPH representation of densities, where the continuous density is described by sum of finite
number of unit distributions, {r;, i = 1,..., N} is the position fixed on ith particle, the weight A;
represents the quantity of A carried by the ith SPH particle. From the normalization of the kernel W
in Eq.(B1), it is easy to obtain the total value of the quantity A of the system,

N
/aSPH(r,t)d3r = A (41)

In above, we obtained the discrete SPH representation of continuous densities of a physical exten-
sive quantity by using two steps. Now we can take advantage of it to the analysis of relativistic heavy
ion collisions, to transform the partial differential equations related to energy-momentum, entropy
and baryon number into time-dependent ordinary differential equations.

First, we discretize the density of conserved quantities with smooth particles. In the space-fixed

frame, the density of entropy and energy can be expressed as
s*(rt) = ZVZ (r — 1ri(t)), (42)

e(r,t) = Z EW (r —7i(t)), (43)

where v;, F; are the entropy and energy attached to the sth particle, and the total entropy and energy

are
N
/ Frsirt) = 3w, (44)
N
/ dre’(rt) = ) E; (45)

Then we choose entropy as the reference density, and the energy for the unit reference quantity s*

S/

At the same time, we should take into account the relativistic effects in RHIC in order to find out

at the position r = r;(t) is

the inherent characteristics of physical processes. The proper densities of entropy and baryon number
can be related with these space-fixed frame quantities by a Lorentz factor

s=~"ts" e=~"te (47)
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Therefore, according to Eqs.(B3,86,47), we can write the effective Lagrangian Eq.(B3) in SPH

representation

Laslrih) = - [ dSr;v—lEimr—m(t)):—Z(E)i

—\7

= - /d‘gr;'y_l (Z—i)l viW(r —ri(t)) = — lei(E/S*)i- (48)

7

According to variational principle, we can derive the equation of motion as follow

(2

d (pit+e Di Dj
E < yi%-vi) + ; viv; |:8_*12 + S*]?:| V2W<’r’z — ’l"j; h) = 0. (49)

To solve the numerical discretized equations, we resort to SPheRIO code.

2.2.2.2  SPheRIO code

In the above, we learned how the SPH method parameterizes the material flow based on discrete
Lagrangian coordinates (called SPH particles). Taking the entropy representation of the SPH model,
and by using the variational principle to derive the equation of motion, the SPH degree of freedom is
determined. The main advantage of this method is that it can handle any type of geometry and violent
dynamics. For example, as long as the size of the SPH particles is appropriately selected, the shock
wave phenomenon can be handled without numerical difficulty.

As a numerical implementation of SPH method, SPheRIO code is an ideal hydrodynamic code
using the Smoothed Particle Dynamics algorithm (Monaghan, 1T997; AGUITAR ef all, 2001; MOTA?
CHEN: QIAN, 2017). In the assumptions that the hot and dense matter created in high-energy colli-
sion reaches a local equilibrium, the SPheRIO code is employed to do hydrodynamical simulations for
relativistic high-energy collisions (HAMA: KODAMA: JRI, P00Y; TAKAHASHI ef all, P00Y; AN

DRADE et all, 2010a; ANDRADE ef all, 2012; QIAN et all, 2007h; QIAN et al., 2007a; DUDEK et
all, 20T4; CASTICHO ef all, POTR). We use the ICs represented by the distribution of fluid velocities,
energy-momentum tensor, baryon-number, strangeness, etc. for a given time parameter as input of
SPheRIO code. The initial conditions can be generate by using some event generator in simulations,
for example, HIJING (GYULASSY: RISCHKE: ZHANG, 1997), VNI (SCHLEIL; STROTTMAN,
1999), URASIMA (NONAKA; HONDA:; MUROYA, 2000), NeXuS (DRESCHER ef all, 20024). At
the same time, the equation of state describing the thermodynamic relationship is also needed, it can
reduce the degree of freedom of the hydrodynamic equation of motion.

As the system expands and cools, it proceed to the decoupling stage of the hydrodynamic model,
the constituent particles will eventually stop interacting with each other and be emitted as free parti-
cles. Thus, at the end of hydrodynamic evolution, we need the decoupling prescriptions in SPheRIO
code to specify where and when the freeze-out happens. There are three different freeze-out scenarios,
namely, thermal freeze-out, thermal and chemical freeze-out, and a continuous emission (CE).

In general, we can investigate the properties of the QGP through IC, EOS, Decoupling Criteria
with the help of SPheRIO. Many works show that SPheRIO can reproduce the results of the experi-
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ment in many aspects. For example, Fig. 3 and Fig. 4 are SPheRIO simulation results in comparison

to experimental data. NeXuS provides initial conditions of Au+Au collisions at \/syxy = 200 GeV,
which is specified in terms of number density, energy density and baryon density, then SPheRIO is
used to simulate the hydrodynamical evolution in each NeXuS event. Then we obtain the pseudora-

pidity distribution and transverse momentum distributions of charged particle at different centrality,

as shown in Fig. 3 and [Fig. 4. We can find that SPheRIO almost reproduces the pseudorapidity and

transverse momentum distributions observed in experiments. In addition, SPheRIO also provides a
good description of particle correlations and collective flow. We will briefly introduce the collective

flow in next chapter.
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Fig. 3 — (Color online) The charged particle pseudorapidity distributions for different centrality in
v/Synv = 200 GeV Au+Au collisions, the scatters are PHOBOS data (BACK ef_all, 2003),
and the solid lines are the correspoding SPheRIO simulation results.
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Fig. 4 — (Color online) Charged hadron transverse momentum distributions for different centrality in
Au+Au collisions at /syxy = 200 GeV, the scatters are PHOBOS data (BACK ef_all, 2004)),
and the solid lines are correspoding SPheRIO simulation results.
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3 COLLECTIVE FLOW

As we mentioned in 7, the space-time evolution of a nucleus-nucleus collisions undergo the
formation of QGP, hydrodynamic evolution, hadronization. It implies that the nature of the final state
hadron is closely related to the initial QGP and its evolution, so we can study the strongly interacting
QGP by analyzing the behavior of final state hadrons. Therefore, a large amount of experimental
measurements and theoretical analysis are devoted to study the relation between final state hadrons
and the initial hot and dense matter. Subsequently, some collective behavior was observed, this so
called collective flow is known as the response to the properties of collision system in the early stages
(DANIELEWICZ: ODYNIEC, T985; WELKFE ef all, T98K; WANG ef all, T99T).

Taking into account the different directions of the collective movement, the collective flow is clas-
sified into longitudinal flow and transverse flow. Longitudinal flow is the collective motion of a large
number of particles in the direction of the initial beam, and transverse flow is the collective motion of
a large number of particles in the transverse plane which orthogonal to the beam. Furthermore, trans-
verse flow includes radial flow arose in central collisions and anisotropic flow arose in non-central
collisions (OLLTTRAULT, T99R), they reflect the different physical scenarios. Since anisotropic flow
is sensitive to the interaction between the constituent materials very early in the system evolution, it
can provide us informations about the stage where the QGP may be the main player, such as the degree
of thermalization of the produced matter, equation of state and so on. What’s more, the large momen-
tum anisotropy of particle emission in the transverse plane is observed in experiments (BARRETTHE
efall, 1994; BARRETTE ef all, T997; AT ef all, 2003). Therefore, as the most direct observation in

the experiment, the anisotropic collective flow has attracted a lot of attention.

Anisotropic collective flow is the observed anisotropies of the azimuthal distribution in the mo-
mentum space. In non-central heavy-ion collisions (VOLOSHIN: POSKANZER: SNELLINGS,
2010), the two collision nuclei create an elliptical overlap region in transverse plane (r — y plane)
in which an anisotropic pressure gradient is formed. With the expansion of the system driven by the
pressure gradient, the anisotropy of the initial coordinate space is transformed to the anisotropy of
the momentum space. To quantify the anisotropy flow, it is customary to expand the single particle
azimuthal distribution in a Fourier series, the harmonic coefficients are used for a quantitative charac-
terization of the event anisotropy. The second order coefficient, referred to as elliptic flow, is closely

related to the initial geometry.

Furthermore, we often understand the two-particle correlations in terms of flow harmonics. As
we know, the “ridge” and “shoulders” structures of two-particle correlations are observed, which are
thought to be mainly dominated by two distinct contributions, that are elliptic flow and triangular
flow (ADARE ef all, 2008; BHALERAO: LUZUM: OLLITRAULI], P0TT). The elliptic flow term
related to anisotropic hydrodynamic expansion of the medium from an anisotropic initial state, and
the triangular flow term related to event-by-event fluctuating IC. Thereby, the two-particle correlation

can provide us more informations about the particle interactions at early stage.

Many efforts have been devoted to the relationship between initial state eccentricities and final
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state anisotropies (ITEANEY: YAN, POTT; TEANEY: YAN, 2012; GARDIM ef all, 2012; NTEMI
ef_all, DOT2; QIAN et all, 2014; GARDIM ef all, POTS; FU, DOTS). A quantitative notion on the
decomposition of the anisotropic IC was first proposed in Ref. (TEANEY: YAN, POTT; TEANEY]
YAN, D0OT7). The key idea of the study is that anisotropy of the IC can be decomposed in terms
of a cumulant expansion, where the resulting expansion coefficients correspond to the “connected”
part of the eccentricity at a given order. Therefore, a higher-order cumulant, by definition, has the
contributions from the “disconnected” combinations of the lower orders ones subtracted. Moreover,
flow harmonics are understood as the hydrodynamic response to IC fluctuations classified in terms
of cumulants, while the lowest cumulants are assumed to have dominant effects. In literature, for
a given flow harmonic order, the contribution proportional to the cumulant of the same azimuthal
order is attributed as much to the linear response. While those proportional to the combinations of
lower-order cumulants, which give rise to the same azimuthal order, are referred to as the nonlinear
response. In practice, it is noted that the response strength from different cumulant combinations
is different. Therefore, the “best estimator” is manually taken to minimize the deviation from the
perfect correlation (GARDIM ef all, POT2; GARDIM ef all, 2015). To be more specific, the mapping
between IC and flow harmonics resides in the correlation between an optimized linear combination
of a given set of cumulant products and the corresponding flow harmonics. By numerical studies,
such a mapping or correlation is understood to be mostly established, particularly for the most central
collisions. These works have incited further efforts concerning this train of thought (NIEMI ef all,
D017 EU, DOT9).

Another direction of approach is associated with flow analysis, and particularly concerning the
higher harmonics and particle correlations. Symmetric cumulant was proposed in Ref. (BILANDZIC
ef all, D014) as a distinct observable tailored for the correlations between flow harmonics. In particu-
lar, the symmetric cumulant does not depend on any particular event plane, neither on the correlation
between them. Moreover, it vanishes if the fluctuations of different flow harmonics are independent.
In this context, it is an excellent observable which is exclusively dedicated to exploring the correla-
tions between the flow harmonics and their fluctuations. As a comparison, event plane correlations
can be studied by using the method proposed in Ref. (BHALERAO:; OLLITRAULT: PAT], POT3). In
fact, most of the above observables can be formally expressed in terms of the moments of flow, as
discussed in Ref. (BHALERAO: OLLITRAULT: PAL, P015). Here, the definitions of other quantities
are derived through that of the complex anisotropic flow coefficient of nth harmonics V;,, namely, the
Fourier coefficient of one particle distribution. By evaluating the Pearson correlation coefficients be-
tween moments and other appropriately chosen quantities, one obtains the desired flow fluctuations,

symmetric cumulant, and event plane correlations.

More recently, the nonlinear response regarding ratios of mixed higher-order harmonic moments
has been investigated by several authors. Numerical studies are carried out in terms of transport as
well as hydrodynamic models while the results are compared against the data (BHALERAO: OLLI
IRAULT: PAT], 20T5; YAN: OLLITRAULI, 20T15; YAN: PAL: OLLITRAULT], ?0T6). The ratio of
the event average of the products of anisotropic flow coefficient, subsequently, give rise to various

observables such as v, {¥,, }, event planes correlation measured by CMS and ATLAS Collaborations.
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Furthermore, according to the spirit of IC Fourier decomposition, the flow harmonics are divided into
linear and nonlinear parts. The analyzes are entirely based on flow harmonics, not directly related
to IC eccentricities. The linear response is attributed to IC fluctuations while the nonlinear part is to
the mean geometric eccentricity. To separate the linear and nonlinear decompositions, in particular,
the linear responses are assumed to be uncorrelated to the nonlinear ones. The latter can be, again,
expressed in terms of the ratios of the event average of the products of anisotropic flow coefficients.

Hydrodynamic simulations show that the corresponding results are comparable to the data.

In following, there are some quantitative description of initial geometry and anisotropic flow.
We briefly review the method used to calculate the eccentricity, flow harmonics, nonlinear response
coefficients, as well as two-particle correlations.

3.1 ECCENTRICITY

The earliest quantitative description of spatial anisotropy was referred to as eccentricity (SORGH,
1999), defined by
(y? +a2)’
where the average is calculated with some weight, we can choose nuclear profile density (participant
nucleons), entropy or energy densities, or something else (e.g. number of binary collisions) as the

weight.

And then the participant eccentricity (ALVER ef all, 2007; ALVER:; ROLAND, 2010) is intro-
duced by

V(03 =02 +4(0s,)?

F2 = 02 + 02 2)
with
o2 = (%) — (z)?, 3)
or = (%) — (y)%, 4)
oz, = (zy) — (z)(y), (5)

where = and y denote the position of the participant nucleon in transverse plane.

After the third-order Fourier coefficient was discussed in Ref (ALVER: ROLAND, 20T0), Teaney
and Yan generalized the concept to higher order, and introduced a cumulant expansion to parameterize
possible initial conditions (TEANEY: YAN, POTT; TEANEY: YAN, 2017). In general, the eccentricity

defined by the transverse position (r, ¢) of the participating nucleons in their center of mass is given
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by
5n,n€lnq>n’n — gnem@n — _<T € >
(r)
[ rdrdgrme™®p(r, ¢)
[ rdrdérmp(r, ¢)
3 i
idy (rie’?)
€1€ = — . (6)
Considering
) ) n ,ing n,—ing
5,16”@” 'Sne—m@n _ (_ <T (& >) ) _(r e >)

() (r)
(r" cos(ng) + ir" sin(ng)) (r" cos(ng) — ir" sin(ne))
<7an>2
_ (r" cos(ngb»zr;;yn sin(ng))? | 7

thus Eq.B is equivalent to

V (r* cos(ng))? + (rmsin(ng))?

en = = , ®)
3 2 3 g 2
- SEEET G o
with eccentricity plane
1 (r"sin(ne)) T
(I)n = ﬁarctan (W) + E, (n > ].) (10)
3 & ¢
®, = arctan (%) + T, (11)

where the weight average (---) = [---p(r,¢)rdrdg/ [ p(r,¢)rdrd¢ takes the density p(r, ¢) as
weight.

Then, one can analyze the anisotropic collective flow for a given eccentricity described by the
cumulant expansion of initial condition. And the anisotropic collective flow is quantified by Fourier

expansion coefficients of the particle azimuthal distribution as in following section.

3.2 FLOW HARMONICS

The particle azimuthal distribution with respect to the reaction plane always can be expanded into
Fourier series (VOLOSHIN: ZHANG, 1996),

dN -
P 1+2 Zvn cos[n(¢ — Vgp)l. (12)

n=1
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By using the orthogonality properties of trigonometric functions, one can obtain the coefficients

v, = (cos[n(¢p; — Vrp)]), (13)

where ¢; is the azimuthal angles of the produced particles in momentum space, W iz p is the nth reaction
plane defined by the impact parameter and the beam direction. “(---)” represents the average over
all particles in all events, since the flow harmonic v,, is symmetrical with respect to its own reaction

plane, the sine term is canceled out.

Therefore, anisotropic collective flow is quantified by harmonics of flow, which is measured with
respect to their own reaction plane. The first coefficient v; is referred to as directed flow, the second

coefficient v, is referred to as elliptic flow, the third coefficient v3 is referred to as triangular flow, etc.

L -~
o 5

Fig. 5 — (Color online) Left: directed flow. Right: elliptic flow. (VOLOSHIN: POSKANZEK]
SNELLINGS, 201()

In RHIC and LHC experiments (AAMODT ef all, PO12; AAD ef all, PO12; ADARE ef all, POTT;
AATD) et all, 20T3), people have observed the non-zero v,, for n < 6. About the measurements of v,,,
we have to be aware of that, what we directly measured in the experiment is the azimuthal angles of
the produced particles, rather than reaction plane angle. To evaluate the flow harmonic v,, in realistic
situations, some experimental methods are developed, for instance, event plane method (BARRETTE
ef_all, T997; POSKANZER: VOLOSHIN, T99%), two and many particle correlations (WANG ef all,
1991), g-distributions (ADLER ef all, 2007?), Lee-Yang Zeros (ABELEV ef all, P008; BHALERAO:
BORGHINI; OLLITRAULT], P2003), Bessel and Fourier transforms (VOLOSHIN, 2006). Our study
on anisotropic flow is based on event plane method, so we will give a brief introduction on it in next

section.

3.3 EVENT PLANE METHOD

Although we can’t directly measure the azimuth angle of the reaction plane, we can estimate it
by particle azimuth distribution, and the estimated reaction plane is called event plane. According
to Ref.(POSKANZER: VOLOSHIN, T998), the event plane angle W, is the azimuthal angle of flow
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vector Q,, the event flow vector @), in the transverse plane is defined by
Qne = Z w; cos(ng;) = Qy, cos(n¥,,), (14)
Qny = Z w; sin(neg;) = Qp sin(n,,), (15)

where ¢; and w; are the measured azimuthal angle and weight for particle ¢, and the sums go over the
¢ particles used in the event plane determination. Therefore, the observed event plane angle W,, for
nth harmonic of the anisotropic flow is given by

]‘ |:Qn,y

v, = —arctan
n

1 > w;sin(ng;)
Qn,a::| = arctan |:Zz 0, cos(ngbi)} , (16)

with the range 0 < ¥, < 27/n.

Then, the observed v,, can be evaluated by using event plane,

v = (cos[n(¢; — ¥y))). (17)

However, the number of detected particles used to estimating event plane is finite, the event plane is

not exactly equal to reaction plane. To obtain the accurate harmonic v,,, we need to find the relation

obs

between v,

and v,,, we have following analysis

v’ = (cos[n(¢i — Vrp) + n(Yrp — ¥,)])
= (cos[n(¢; — Vgp)|cosn(¥rp — ¥,,)])
— (sin[n(¢; — Ugp)]sin[n(Vrp — V,)])
= (cos[n(¢; — Ygp)|){cos[n(Vrp — V,)]), (18)

where the sine term vanished because of the symmetry. Thus, we can get the harmonic v, by a

correction,

n = 19
=g (19)
where the event plane resolution is

Rn - <COS[TL(\I’RP - ‘Iln)D? (20)

and we can estimate the event plane resolution from the correlation of the planes of independent

sub-events,

Ry =/ {(cos[n(UA — UB)]), 1)

n n
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on account of following derivation

(cos[n(Uyy = U7)]) = (cos[n(¥;; — Wrp) — (V7 — Urp)])
= (cos[n(¥2 — Upp)] cos[n(U2 — Wpp)])
+ (sin[n(¥7 — Upp)]sin[n(VZ — Upp)])
= (cos[n(¥;; — Urp)]){cos[n(¥} — Urp)])
= R2. (22)

Simply put, in event plane method, we estimated the event plane angle by using azimuthal angle of
outgoing particles. Then, we evaluate the Fourier expansion coefficients of the particle azimuthal dis-
tribution respect to the event plane. At last, the coefficients v,, is calculated by dividing the observed

v by the event plane resolution, which is estimated from the correlation between two sub-events.

3.4 NONLINEAR HYDRODYNAMIC RESPONSE

A series of work shows that there is a linear relation between v, and participant eccentricity €,
(ALVER: ROLAND, 2010; ALVER ef all, 20T0; PETERSEN ef all, P010; TEANEY: YAN, 2O1T;
OIN et al], 20T0; QIAN et all, 2014). But the linear relation between v,, and ¢,, breaks down for

n > 2, since the high-order harmonics involves the nonlinear hydrodynamic response.

In Ref.(YAN; OLLITRAULI, 20T5; YAN:; PAL; OLLITRAULI], 20T6), a set of nonlinear re-
sponse coefficients Y, is proposed to study higher order harmonic flow. The single-particle distribu-

tion can be expressed in a complex form,

1 .
P(@)=5- >, Vae ™. (23)

n=—oo

Then the complex anisotropic flow coefficient of nth harmonics V,, is
Vi = v, (24)
where |V,,| = v,, can be calculated by using Eq.(I3).

The higher order flow harmonics v,, can be measured with respect to their own event-plane, and
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plane constructed by lower order flow harmonics,

w(vn) = ([ aor@costnto - w,1),
= </ (b kae MO=Yh) cosfn(¢p — \IJ)]>
= 2 </0 dgb%vn [cos[n(¢p — U,)] — isin[n(p — ¥,)]] cos[n(p — ¥,,)]
- % </0 ' dpv,[cos?(ng) cos(n¥,,) cos(n¥,,) + sin®(ne) sin(nV,,) sin(n¥,,)]
- z% </0 ngbvn[sirf(ngb) sin(n¥,,) cos(nV,,) — cos?(ng) cos(n¥,,) Sin(n\lln)}> ,
= (v, cos[n(¥,, —W,)]) — i (v, sin[n(¥,, —U,)]),
= (v, cos[n(¥,, —,)]),
therefore
Re(Vi(V5)?)
nu{Wse} = ————=- = (vycos/4(Vy — Wy)l]),
{ W2} A ( [4( )]
Re(Vs(V5)%)
ve{Wo} = ———=+= = (vgcos|6(Vy — Vg)l),
{ W2} i ( [6( )
i) = TUIEE = (o cosfo(v, - ),
v (U} — TEVVIVE) (5w — 20, — 30,))
VAIV2? | Va5[?)
U7{\Ij23} he <Vv7<‘/2 ) ‘/é > = <U7 COS(7‘I’7 - 4\1/2 - 3\113>> .

(Val*|Vsl)

Above equations indicate that the measurements of higher order flow harmonics in the event plane of

V5 and/or V3 are equivalent to the corresponding measurement of event plane correlations.

The nonlinear response coefficients are induced by assuming that higher order harmonics are the

superposition of medium nonlinear and linear responses, as follows,

Vi=
Vs =
Ve =

‘/7:

Vir + Xxa (V2) )

Vsr + x5V2 Vs,

Vst + xo2 (V2)® + xe3 (V3)?,
Vi + X7 (V2) Vs,

27)

where components Vy;, Vs, Vs, Vrr are linearly proportional to €4, €5, €¢, €7 respectively, and

the nonlinear terms relate to the lowest-order harmonics V5 and V3. ., can be interpreted as ratios

between nonlinear and linear flow response coefficients.
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By using some general assumptions, the non-linear parts is isolated from the linear part as follows

L))
A (AT
AT
A (AENTAR
Va(V5)?)
A (AT
(Va(V)?)
A (AT
L (V(V)RVE)
A AT A 8

Substituting Eq.(24) into above nonlinear response coefficients Eq.(2&), we obtained

U4U§ei(4[‘1’4—‘1’21)
wo e
<U4U§ COS(4[\II4 — \112])> + 7:(1)41}% Sin(4[\:[f4 — 1112]»
(v3) ’

(5\115 2Wo— 3‘1/3) >

(vsvguze’

(v303)
<U5’027J3 COS(5\IJ5 - 2\112 - 3\113» + ’i<’U5UQU3 Sin(5\1[5 - 2‘1/2 - 3\113»

(vv3)

Y

VU3 3i(6[¥6—W2])
o =
{vgv3 cos(6[Wg — W) + i(vevs sin(6[Ws — Wy)))

(v5) ’

Uﬁvgei(ﬁ[‘lfe—\lfs])
o = M
(vgv32 cos(6[Ws — W3])) + i{vev2 sin(6[¥s — U3]))
(v3) ’

(V702 05ei(TP7—4T2=3T5))
X7 = 4 2
(vu3)
_ (vrv3us cos(T¥7 — 4Uy — 3W3)) + i(vrv3vs sin(7TV; — 40, — 3W3)) (29)
N (v305) ’

where (- - - ) represents the average over all events, and the imaginary part infinitely close to zero for

a large number of events.

Then substituting equations (26) into above equations of nonlinear response coefficients, we ob-
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tained

Y = (va{W2})
VAIZRN
- = (vs{Wa})
VVaPIVaP?)
Yor — (vs{¥s})
VA(IVal%)
Yo — (v5{Was})
VAIVBY
(vr{W23})

A (AT AE

Therefore, the Eq.(P9) can be calculated in hydrodynamics, and the Eq.(BU) can be inferred from

(30)

experimental data.

3.5 TWO-PARTICLE CORRELATIONS

In section B3, we learned the event plane method for flow analysis which relies on the azimuthal
correlation between particle and the event plane, azimuthal correlation between two sub-events. From
another perspective, we also can study flow by using two-particle correlation (WANG ef all, T991;
VOLOSHIN: POSKANZER: SNELLINGS, 2010) which do not need to estimate reaction plane.

The correlation between particle and the reaction plane can introduce the correlation between

particles. Supposing the azimuth angle difference between two correlated particles is A¢, and their

T 7 respectively. From the single-particle az-

n n

corresponding Fourier expansion coefficients are v

imuthal distribution in Eq.(I2), the particle-pair distribution can be derived as follows

AN pair 1 [*™dN, dN
W x o ; %((ﬁ)d_gb(qﬁ—i‘A(b)Cw
21 & s
- % 1+ Z 20} cos[n(¢ — Wgp)] | |1+ Z 20y, cos[n(¢ + Ag — Ugp)] | do
0 n=1 n=1
2w | X >
= 1+ % Z 20! cos[n(¢p — Wrp)] - Z 207 cos[n(¢ + A¢ — Urp)] | do,
0 n=1 n=1
(31)

by considering the orthogonality properties of trigonometric functions

27
n # k, /o 20T cos[n(¢ — Wrp)] - 205 cos[k(p + Ap — VUgp)]de = 0,

2T
n = k, / 20T cos[n(¢ — Wrp)| - 2v7 cos[n(é + Ap — Urp)|do = 4nvIv? cos(nAg)(32)
0
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Then the two-particle azimuthal distribution is obtained

deai'r > T A
—— 1 2 Ag).
iAo x 1+ 321 v, vy cos(nAQ) (33)

It is easy to find that the angle of event plane is not used in the two-particle correlation distri-
bution function. Moreover, a simpler technique have been proposed to extract flow harmonic v,
from two-particle correlations (SCHCAGHECK], T999; PRENDERGAST ef all, 2000; SINGH: JAIN,
994). However, in addition to the contribution of the anisotropic flow, the two-particle correlation
also has some non-flow contributions (DINH; BORGHINI; OLLITRAULI], 2000; BORGHINI: OL-
LITRAULT: DINH, 2000). To obtain the accurate and reliable results, we need to eliminate the effects
of non-flow correlations, such as using the flow analysis from cumulant expansion of multiparticle
azimuthal correlation (BORGHINI: DINH: OLLITRAULT], 200T).

In turn, we often understand the two-particle correlation in terms of flow harmonic v,. Many
methods (ULERY:; WANG, 2009; SHARMA; PRUNEAU, 2009; ADAMS ef all, 2005b; ADILER ef
all, D006; MA”ef all, 006; PUTSCHKE, 2007) have been proposed in both theoretical and experi-
mental studies of two-particle correlation. To calculate the two-particle correlation, first, we pick a
trigger particle whoes transverse momentum is p~., azimuthal angle is ¢”. Then, the particles corre-
lated with the trigger particle is picked out as associated particles whoes transverse momentum is p7,
azimuthal angle is ¢*. Generally speaking p- > pZ}, the distribution of the azimuthal angle difference
A¢p = ¢4 — ¢T gives the raw correlation function. By convention, what we are interested in is the

correlations that the background has been subtracted,
J(Ag) = C(A¢) — B(Ag). (34)

The background distribution B can be constructed by mixed pairs which is formed by using parti-
cles from different events, and C' is evaluated by using the particle pairs from the same event. The

correlation function is normalized by dividing the number of trigger particles.

Additionally, the two-particle correlations also can be calculated by using ZYAM method to sub-
tract the effects of elliptic flow that from background. The ZYAM method (ATITTANAND ef all, 2005
ADILER ef all, P006) is based on the two source model which express the correlation function as a

sum of harmonic correlations and di-jet correlations J(Ag),
C(Ap) = E(1+2<vlvy > cos2A¢) + J(A), (35)

where v]" and v are the elliptic flow coefficients of trigger and associated particle respectively. The
di-jet function has a negligible intensity at the minimum Ag,,,;,, which is the zero yield at minimum
(ZYAM),
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then
C(A¢mzn> - 5(1 + 2 < ’U;’U;‘ > Co8 2A¢mm)7 (37)

where the elliptic flow can be calculated by using event-plane method, then we can fix the factor £ at
the minimum Ag,,;,, finally we can get the subtraction correlation J(Ag).
In follwing chapter, we study the origin of these special two-particle correlation structure by using

peripheral tube model.
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4 ON THE PERIPHERAL TUBE DESCRIPTION OF THE TWO-PARTICLE CORRELA-
TIONS IN NUCLEAR COLLISIONS

The two-particle correlation analysis was originally employed to extract the information on jet, by
subtracting the background global features such as those generated by collective expansion. However,
as it was applied to the study ofjet (ADAMS ef all, 005K, ADLCER ef all, 2006, PUTSCHKE, 2007),
an revolutionary cognition was proposed in the topology studies of hydrodynamics using two particle
correlation analysis (FAKAHASHI ef all, 2009). In that work, the near-side and away-side structures
of two-particle correlation is reproduced through event-by-event hydrodynamic expansion of the IC
hot spots, and without considering jet. That is to say, there are no jets in these events, two-particle
correlation is attributed to the signals from specific physical mechanisms and the collective flow result
from anisotropies of initial geometry. What’s more, the fluctuating non-uniform initial condition plays
a vital role in this process. To understand the specific physical mechanisms, a series of studies of two-
particle correlation based on peripheral tube model have been done (HAMA ef all, POTT; ANDRADE
ef all, POTTH; HAMA ef all, 20173; QIAN et all, 20173).

The peripheral tube model (ANDRADE ef all, 2010d; HAMA ef all, 200Y; ANDRADE ef all,
20172; HAMA ef all, P0OT3) provides a straightforward and reasonable picture for the two-particle
correlations. It is an approach within the general event-by-event hydrodynamic scheme. The model
views the fluctuations in the IC as consisting of independent high energy tubes close to the surface of
the system, where the location of each tube is random. Thereby, each tube affects the hydrodynamical
evolution of the system independently, and their contributions are summed up linearly to the resultant
two-particle correlations. In this approach, one substitutes the complex bulk of the hot matter by an
average distribution over many events from the same centrality class.

The above picture attempts to interpret the physical content of fluctuating IC regarding the gran-
ularity represented by peripheral high energy tubes. To be specific, if a tube located deep inside the
hot matter, the effect of its hydrodynamic expansion would be quickly absorbed by its surroundings,
causing relatively less inhomogeneity in the medium. On the contrary, a tube staying close to the
surface leads to a significant disturbance to the one-particle distribution, resulting in an azimuthal
two-particle correlation structure similar in shape and magnitude to the observed data.

By numerical simulations, as shown in Fig. 7, one finds that the fluid is deflected to both sides
of the tube, causing two peaks separated by ~ 120 degrees in the one-particle azimuthal distribution.
Subsequently, this leads to the desired two-particle distribution where a double peak is formed on
the away side, whose height is approximately half of the single peak located on the near side. It
is shown that the resultant correlation structure is robust against the variation of the model parame-
ters (ANDRADE ef all, 2010a; ANDRADE ef all, 2017). Furthermore, simulations carried out with
multiple peripheral tubes show very similar features in the corresponding two-particle correlations.
Therefore, it is strongly indicated that the two-particle correlations can be seen as a superposition of
those contributions due to individual peripheral tubes.

We note that it is meaningful to compare the present model to another approach frequently em-

ployed in the literature, where the one-particle distribution are decomposed into different flow har-
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monics. Subsequently, the collective flow related to the harmonic coefficients are understood to be
mostly independent and associated with the corresponding eccentricity components in the IC. In other
words, v is related to €9, v3 is related to €3, v and v3 are independent. Generally, the hydrodynamic
evolution linearly transforms the initial state geometric inhomogeneity into the final state anisotropy
in momentum space. The difference in our present model is that the effect is considered as local, as a
result of how the expansion is affected by a high energy tube close to the surface of the fluid. There-
fore, it is irrelevant to the fluid dynamics of the rest of the system, but localized to a specific azimuthal
angle ¢y associated to the peripheral tube in question. As hydrodynamics is understood as an ef-
fective theory at the long wavelength limit, the peripheral tube interprets the two-particle correlation
in terms of phenomena where the characteristic length is comparable to the system size. Concerning
harmonic coefficients, the event planes of the elliptic and triangular flow coefficients which generated
by the tube are therefore both correlated to the location of the tube ¢.,,.. However, as one carries
out the event-by-event average, ¢y.ne 1S averaged out, and the resultant expression (for instance, see

Eqgs.() and (B) below) does not explicitly depend on it.

This chapter is organized as follows. In section B, we briefly review the peripheral tube model
and discuss its main results on the observed two-particle correlations. Subsequently, in section &2,
we show that the experimental data can be reasonably reproduced by appropriately constructing the
IC with the peripheral tube. Furthermore, in section B3, we extract the model parameters using
event-by-event simulations with various devised IC reflecting the average background and event-by-
event fluctuations. It is shown that those extracted values are indeed in accordance with the observed
two-particle correlation data. The last section we discuss the case of multi-tube model.

4.1 THE ANALYTICAL PERIPHERAL TUBE MODEL FOR TWO-PARTICLE CORRELATIONS

The peripheral tube model is based on the assumption that the “ridge” and “shoulder” structures
of two-particle correlations in nuclear collisions consist of two contributions. The first part is due
to the average almond shape energy distribution of the IC, which generates the dominant part of
the resultant collective flow. It is treated as the background flow in our approach. Owing to the
multiplicity fluctuations, the contributions from the proper events does not cancel out with those
from the mixed event, and the residual is proportional to the standard deviation of the multiplicities.
The second contribution comes from that of a peripheral tube. In terms of the language of flow
harmonic coefficients, it produces aligned elliptic and triangular flow. The above picture can be used
to explain the event plane dependence as well as centrality dependence of the observed two-particle
correlations (QIAN et all, POT3; CASTILHO ef all, P0T7). To be specific, we assume that the two-
particle correlations is entirely determined by the one-particle distribution. Instead of writing the latter
down directly in terms of Fourier expansion (BORGHINI: DINH: OLLITRAULIT], P00T), we write
down the one-particle distribution as a sum of two terms, namely, the distribution of the background
and that of the tube.

dN
do

dNbgd
do

dNtube
d¢

(¢7 thube) = (¢) + (¢7 thube)a (1)
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where
dgfd (6) = 1+ 205 cos(20)), @)
dNtu e Ntu e
d¢b (¢7 ¢tube) 27_‘_b n;g 2U:LUbe COS(”[¢ - ¢tube]>' (3)

In Eq.(2) we consider the most simple case for the background flow, by parametrizing it with the ellip-
tic flow parameter vg ¢4 and the overall multiplicity, denoted by Ny,.q. The contributions from the tube
are measured with respect to its angular position ¢y, and a minimal number of Fourier components
are introduced to reproduce the desired two-particle correlations (ANDRADE ef all, P0O17), that is
to say, only vi"° and v§"*° caused by the random distribution of the tubes are retained in Eq.(3). It
is worth noting that although both the contributions from the background and the tube are written in
Fourier expansion, they are intrinsically independent distributions. In particular, the triangular flow
in our model is completely generated by the tube, and since its symmetry axis is correlated to the tube
location ¢, the variation of the latter is related to the event-by-event fluctuations. We also assume
that the flow components from the background are much more significant than those generated by the

tube, W5 is mainly determined by the elliptic flow of the background v;gd.

Following the methods used by the STAR experiment (FENG, DO0OR; AGAKISHIEV et all, DOT0),

the subtracted di-hadron correlation is given by
deair o deair prop deair i

where ¢ = |@1rigger — VEp| is the trigger angle (¢ = 0 for in-plane and ¢, = 7/2 for out-of-plane

“4)

trigger), and superscripts “prop” and “mix” respectively indicate that the particle-pair is constructed
by using particles from same event and different events. By using Eq.(B), one finds the proper two-

particle correlations

dNpoir \ PP dNT ANA 0. dbrune
< dA¢ > - /f(ﬁbtube)d—gb(%,cbtube)w(%+A¢,¢tube)% o

®)

where f(¢iupe) is the distribution function of the tube, and superscripts “7” and “A” indicate “trigger”
and “associated” particles respectively (c.f. subscripts “7™ are shorthands for “transverse”). For

simplicity, we take f(duube) = 1.

The combinatorial background (dNy,;:/dA¢)™ can be calculated by using either cumulant or
ZYAM method (AITTANAND ef-all, P2005). Though both methods yield very similar results in our

model, it is more illustrative to evaluate the cumulant. Following similar arguments presented in
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Ref. (QIAN et al), 2Z0T3),

AN, mized(cmlt) , ANT dNA ,
<—dAp¢ > = /f(¢tube) / f(QStube)W(gbsa ¢tube)d—¢(¢8 + AP, Prune)
d¢;ube d¢s d(btube
2 2w 27 ©
it is straightforward to show that the resultant correlation reads
Ay N NEaNiG) = (V) ()
dAg (2m)?
X (14 2025 cos(2¢,)) (1 + 20584 cos(2(Ad + ¢,)))
+ <N£beNt1?1be> Z 2,Utube,TUtube,A COS<HA¢) (7)
(2’71')2 n n :
n=2,3

where the event average is carried out by integration in ¢,.. The above expression explicitly depends
on ¢,, which can be used to study the event plane dependence of the correlation. In particular, the
trigonometric dependence of the background contribution on ¢, indicates that its contribution to the
out-of-plane triggers is opposite to that for the in-plane ones. As a result, for the out-of-plane correla-
tion, it leads to an overall suppression in the amplitude, as well as forms a double peak structure on
the away side. Indeed, experimental data (FENG, D008; AGAKISHIEV ef all, P0T0) shows that the
overall correlation decreases while the away-side correlation evolves from a single peak to a double
peak as ¢, increases. Since these observed features are in agreement with the analytically derived

results, the peripheral model is shown to be meaningful despite its simplicity.
By further averaging out ¢,, one obtains

deair (cmlt) B i o deair (¢) (cmlt) d¢
dA¢ 21, dAp 7 ¢

<N}£dN}id> - <N§?gd> <Nt;4gd>

(1 4 2008874 o5 (2A))

(2m)?
NI NA
4 % 37 2ubeTyibed cog(n Ag). ®
n=2,3

If the model is indeed realistic, one should be able to obtain the parameters in Eq.(8) according
to their respective physical content, while the resulting correlations should be still quantitatively in
agreement with the data. This is the principal object of the present work. In what follows, by carrying
out numerical simulations, we first show that an appropriately constructed IC can reasonably repro-
duce the observed data. Furthermore, we attempt to calculate the model parameters according to their
definitions. This is done by using various IC tailored to match the respective physical properties of IC
in question. In particular, we study the multiplicity fluctuations as well as the flow harmonics of dif-
ferent IC associated with the background as well as the peripheral tube. The two-particle correlations

are then evaluated by using the obtained values.
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4.2 PARAMETERS AND HYDRODYNAMIC SIMULATION RESULTS OF ONE-TUBE MODEL

In this section, we will employ the one-tube model to do simulations, we focus on mid-central 200
AGeV Au+Au collisions. At first, we devise the IC according to the peripheral tube model. Then, by
means of SPheRIO code to observe the temporal evolution of IC, to learn about how the tube leads to
the ridge structures in a visible way. After that, we evaluate the two-particle correlations and compare

with experimental data, to analyze the rationality of hydrodynamic results in this IC.

To determine the background energy distribution, we average over the 343 events generated by a
microscopic event generator, NeXuS (DRESCHER ef all, 2001), for the centrality window 20%-40%
as shown in Fig. §. Then we parametrize the obtained almond shaped energy distribution in the x — y

plane, which can be fitted by the following parametrization

8

gt = (9.33+7r2 +2r)e " 9)

with

ro= /04122 + 0.186y2.

Considering the multiplicity fluctuations, we let background energy density distribution fluctuates as

follow

€hgd = €bgdo T €bgdo * G, (10)

where G is a Gaussian distribution function. The influence of multiplicity fluctuations on two-particle
correlations can be find in Fig. 8.

The profile of the high energy tube which will be embedded into the background obtained above
is parameterized as follows
Etube — 126_(33_-77tube)2_(y_ytube)2 , (1 1)

where the tube is located at a given value of energy density close to the surface, determined by a free

parameter ry,pe, SO that its coordinates on the transverse plane read

Ttube COS 0
Liube — (12)
b V041 cos2 6 + 0.186 sin2 0

Ttube SIN 0
V0.41¢cos20 + 0.186sin2 6

Ytube

Here rq,pe is used as a free parameter whose value is chosen to be 2.3 in following calculations, and

the azimuthal angle of the tube 6 is randomized among different events.

By combining the two pieces together, the IC for the present model read

€ = €pad + €tube, (13)
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Fig. 6 — (Color online) Left: the background energy distribution obtained by averaging over many
NeXusS events. Right: one random event with a high energy peripheral tube sits on top of the
background. The parametrization of the IC is discussed in the text.

and the sample graph of IC with one tube is shown in Fig. 6.
Subsequently, we carry out hydrodynamical simulations by using the SPheRIO code. We generate

a total of 2000 events by using the IC profile discussed above, in which the location of tube varies
from event to event. It is considered to be the fluctuations of IC in event-by-event basis, and the
hydrodynamical simulation is carried out for each event. At the end of hydrodynamical evolution, a

Monte-Carlo generator is evoked 200 times for hadronization in order to further increase the statistics.

The temporal evolution of IC with one tube on the transverse plane is shown in Fig. 7. From
which, one finds that the fluid is deflected to both sides of the tube, causing two peaks separated by
~ 120 in the one-particle azimuthal distribution. As a result, the desired two-particle distribution with

a double-peak on the away side will be formed.

In Fig. 8, we studied the effects of multiplicity fluctuation on two-particle correlations, it shows
that the multiplicity fluctuation has a significant impact on the integral of two particle correlation
distribution. The following results all take into account the multiplicity fluctuation. The resultant
two-particle correlations, evaluated by cumulant method and ZYAM method, are shown in Fig. 9,
in comparison with the PHENIX data (ADARE ef all, 2008). As the hydrodynamic simulations are
two-dimension, the obtained correlations are multiplied by a factor related to the longitudinal scaling
of the system. From Fig. 9, we find that there are indeed two symmetrical peaks in the resultant flow,
and the single peak located on the near side is higher than the height of double-peak. What’s more, the
results are consistent with PHENIX data, no matter in cumulant method or ZYAM method. It shows

that the interpretation of one-tube model and the resultant two-particle correlations are self-consistent.

At the same time, we present the overall elliptic flow, ug“ in Table [, which is also evaluated

from hydrodynamical simulations considered event-by-event fluctuating IC consisting of the back-
ground and tube. By comparing the value against the data of 20%-60% Au+Au collisions obtained by
PHENIX (AFANASIEV ef all, 200Y), as in APPENDIX O Table B, we can find the simulation result
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Fig. 7 — (Color online) The temporal evolution of the IC consisting of one peripheral tube placed on
top of an elliptic smoothed background energy distribution. The parameters for the IC used
in calculation are discussed in section III.
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Fig. 8 — (Color online) The influence of fluctuation of multiplicity on two-particle correlations in one
tube model. The results are calculated by using cumulant method. Where the red line is for
background Eq.(IM0) with fluctuation which controlled by a Gaussian function GG centered at O
and standard deviation o = (.18, the green line is for background Eq.(8) without fluctuation.
The momentum intervals are 0.4 < p# < 1 Gev and 2 < pL. < 3 Gev.

is consistent with the collisions of the same centrality window.

Table 1 — The calculated background as well as overall elliptic flow coefficients for correspoding trans-
verse momentum intervals of trigger and associated particles. The calculations are carried
out by using IC as described in the text.

0d<pr<l|l<pr<?2|2<pr<3
s 0.11 0.21 0.36
o3l 0.09 0.17 0.26
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Fig. 9 — (Color online) The di-hadron correlations obtained in SPheRIO simulations, comparing with
PHENIX data. Where the red line is calculated by using cumulant method and green line is
calculated by using ZYAM method. Left: di-hadron correlations for the momentum intervals
0.4 < p4 < 1Gevand 2 < pl. < 3 Gev; Right: di-hadron correlations for the momentum

intervals 1 < ps < 2 Gev and 2 < pL < 3 Gev.

4.3 PARAMETERS EXTRACTED FROM SIMULATION RESULTS

Now, it is interesting to verify that the parameters given in Eq.(8) are indeed quantitatively mean-
ingful. To achieve this, we extract the model parameters in Eq.(B) using mostly the same arguments
leading to very expression. On the one hand, the background flow coefficients vg ¢ can be obtained
directly by investigating the hydrodynamic evolution of IC solely determined by €,,q. A total of
2000 events with 200 Monte Carlo each are considered in the evaluation, the obtained values are
summarized in Table .

On the other hand, however, some of the parameters can also be inferred straightforwardly from
the experimental data or SPheRIO results. Here, we estimate those from SPheRIO simulation results.

To estimate the multiplicity fluctuations of the background, (N4 Nikq) — (N 1) (NiLq). we count, on

an event-by-event basis, the number of particles of corresponding momentum intervals. The events in
question are those generated by NeXuS of 20% - 40% centrality window, and we made use of a total

of 1000 events. By using Fourier expansion of the two particle correlation, and extracting the second

and third order coefficients,

a — <Nkz;de;4gd> B <N13éd><Ntf‘gd> QUbgd,TUbgd,A + <Ntz;1beNt?1be> 2Utube,TUtube,A (14)
’ (27)? 2 2 (27)? 2 2 ;
NT NA ube ube
as = < tlzl;/r);ube>2 ; b ,Tvit)) b 7A7 (15)

bed,T bgd,A ;
where v,*"" and v, i

s calculated from the elliptic background in tube model (as Table [), then
we obtained the multiplicity fluctuations estimated from simulations, and the parameters related to

tube, A

tube, " tube,A tube, T
, and vy

U, , Ug , Us , as follows,
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Fig. 10 — (Color online) The calculated two-particle correlations by using one-tube IC for 20% — 40%
centrality window in comparison with the corresponding data by PHENIX Collabora-
tion (ADARE ef all, P008), and those obtained by using the extracted paramters in Table
M and Eqgs.(I6) and (7). The SPheRIO results from using cumulant method are shown in
red solid curves, the data are shown in solid squares, and those obtained by the estimated
parameters are shown by the blue dashed curves. Left: the results for the momentum inter-
vals 0.4 < p# < 1 Gev and 2 < pL < 3 Gev. Right: those for the momentum intervals

1 < ps <2 Gevand 2 < pk < 3 Gev.

<Ngng{)4gd> - <ng;d><Ntflgd> = 14.67,

T A tube, T tube,A

ube ube
T A tube,T" tube,A
<NtubeNtube>v3 VU3 - 163,

for 0.4 < p4 < 1,2 < pk < 3, and

<Nngdei;d> - <Nggd><Nl;4gd> = 5.07,
<NtT NtA >,U;ube,T,U;ube,A _ 136,

ube” tube

T A tube, T’ tube,A __
<NtubeNtube>03 (% = 148,

for 1 < p#t < 2,2 < pk < 3 respectively.

(16)

7

Finally, by substituting the above parameters back into Eq.(8), one obtains the two-particle corre-

lations as also shown in [Fig. T0. It is found that the two approaches are in good agreement with each

other.

4.4 DISCUSSION ON MULTI-TUBE MODEL

In order to understand the physical mechanism behind the ridge effect of hydrodynamic model in

a simple way, in the above, we studied a simple model with only one high energy peripheral tube in

anisotropic background, verified the consistency of analytic peripheral tube model. But in realistic

situations, it is impossible for the IC to contain only one tube. Therefore, in this section, we will
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discuss the IC with several high energy tubes whose location and energy may also fluctuate.

Based on the one-tube model discussed above, we add more tubes on the background, the maxi-
mum energy density and size of additional tubes are identical, but the azimuthal angles are random.
The corresponding two-particle correlations for IC with 2, 3, 4 tubes are presented in Fig. T1]. Since
the correlation distribution curves are evaluated from only a few hundred events, they are not very
smooth, but enough to observe the impact of number of tubes. As the number of tubes increases, only
the peak heights change less, the two-particle correlations maintain the overall shapes with the charac-
teristic triple-ridge structures, which is consistent with the results in Ref.(HAMA ef all, P0T3). That is
to say, simulations carried out with multiple peripheral tubes still show such robust feature of the two-
particle correlation structure, which strongly suggests that the emergence of the special structures

of two-particle correlations can be naturally interpreted as a superposition of those of independent

peripheral tubes.
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Fig. 11 — (Color online) Two-particle correlations for IC with different number of tubes. The results
are calculated by using cumulant method in the momentum intervals 0.4 < p7 < 1 Gev and
2 < pr < 3 Gev.

The fluctuations in the initial state are explored by studying the v,,, as well as the correlations be-
tween event planes of different order. We further investigate the correlation between the event planes
of vy and v3, the distinct feature can serve to discriminate the present model and other approaches.
Roughly speaking, from the standard viewpoint, the event planes of different harmonics are mostly
uncorrelated, since the fluctuations in eccentricity €,, are small and random. It is mostly confirmed
by the recent measures carried out by ATLAS Collaboration (AAD ef all, 2014). In the reference
(AAD et all, DO14), for 20%-30% centrality collisions, the distribution of (V5 — W3) deviates only
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about 0.5% from a completely uncorrelated one. And the centrality dependence of the correlator is
evaluated, and it is observed that it further approaches a completely uncorrelated distribution as one
goes to most central collisions. At a first glimpse, this is exactly on the contrary of what is proposed
in our model. The elliptic and triangular flows from the tube are originated from the same cause, a
peripheral high energy tube, and therefore their event planes are correlated. However, there is one
subtlety. If one adds two tubes onto anisotropic background and assumes that the resultant distribu-
tion is just the superposition of those individual contributions, one observes that the resultant event
planes might not behave linearly. This can be seen by assuming that the azimuthal angles of the two

tubes are 0 and ¢;, the harmonic coefficients are v}; with ¢ = 1, 2. It is straightforward to find that

v2 sin 2¢,
Uy = = arct ! 18
2= paretan vs + v3 cos 2¢; (18)

1 v2 sin 3¢,
U3 = = arct : : 19
37 gt vi + v3 cos 3¢y (19)

Thus in general W, # U5 if the harmonic coefficients of the two tubes are not exactly identical.
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Fig. 12 — (Color online) The relative angle distributions calculated by using IC with different number
of tubes, where each curve is obtained by using 3000 events.

It is worthwhile to verify whether the IC with multiple numbers of tubes will lead to the overall
event planes V¥, and W3 correlations in the simulation. Following the definition of correlation function

in (AAD ef all, 20T4), we can evaluate the two-plane relative angle distributions by dividing the



61

foreground by the background, as follows,

S(k(\pn — qjm))
B(k(q’n - qjm))

Ck(¥y, — U,n)) = (20)
where the background distributions B is calculated by combining event plane angles from different
events, while the foreground distributions S is calculated by combining event plane angles from the
same events, and both of the distributions are normalized to one. Then, we obtain the results in
and [Fig. T3, they are in accordance with that in Ref.(AAD ef all, 2014). As shown in [Fig. T3, the
relative angle distribution approaches to that of random distribution as the number of events increases.
The results for ICs with two, three and four high-energy tubes shows that event planes are uncorrelated.
It is consistent with previous findings in Ref. (HAMA ef all, P0173), where the background is assumed
to be isotropic, and the tubes are identical. This indicates that the tube model is consistent with the

observed event plane correlation.
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5 ANISOTROPIC GAUSSIAN MODEL AND PERIPHERAL TUBE MODEL

The methods for decomposition of the IC and flow harmonics have been extensively employed to
explore relevant information regarding the collectivity of the system. However, due to the nonlinearity
of hydrodynamics, to what degree the mapping between IC and flow harmonics can be established
quantitatively and therefore captured by the proposed methods is still not entirely settled. Also, from
the AdS/CFT viewpoint, hydrodynamics stands on the other side where the system is strongly inter-
acting with intricated correlations, while according to the duality, the linear response theory is valid
only for its dual gravity theory. That is because the dual gravity theory is a weak coupling theory, and
the linear response theory is a perturbation theory under weak coupling. In this context, it is meaning-
ful also to investigate some alternative approaches regarding the description of IC and its subsequent
effect on collective phenomena, such as the Bessel-Fourier expansion.

The peripheral tube model (ANDRADE et all, 20T0a; HAMA et all, 2009) discussed above pro-
vides an intuitive explanation for the generation of the triangular flow and two-particle correlations.
The model can also be viewed as an alternative approach in the context of event-by-event hydrody-
namics. The IC is divided into background and fluctuations. The former is obtained by averaging
the distribution over many events from the same centrality class. While for the latter, the IC fluctua-
tions are understood as consisting of independent high energy spot located close to the surface of the
system, referred to as peripheral tubes due to its longitudinal extension. The resultant higher-order
harmonics are attributed to how a peripheral tube affects the hydrodynamical evolution of the system

locally. The overall contributions are obtained by the superposition of those of individual tubes.

The essential feature of our model is that the above picture attempts to interpret the IC fluctuations
in terms of the localized ones, instead of the global sinusoidal expansion regarding moments. To be
specific, if a tube is located deep inside the hot matter, which might, however, contribute significantly
to the moment expansion, is less relevant in our approach. To the best of our knowledge, the effect of
its hydrodynamic expansion would be mostly suppressed by its surroundings, causing less significant
consequence in the medium. This is contrary to a tube staying close to the surface, which might cause
significant disturbance to the one-particle azimuthal distribution, as well as the related two-particle
correlations. The model has been employed to study various features of the observed two-particle
correlations in comparison with data (ANDRADE ef all, P0T0a; HAMA ef all, 2009; ANDRADE ef
all, POT7; HAMA ef all, 2013; WEN ef all, 2019).

In this context, the present study is motivated to carry out a closer comparison between the IC
of the peripheral tube model and those related to moment decomposition. The primary strategy is to
prepare two sets of event-by-event fluctuating IC with mostly identical eccentricity distributions and
then investigate the subsequent linear as well as nonlinear hydrodynamic response and the resultant
flow harmonics. Although similar in terms of its Fourier components, the IC in question are visu-
ally distinct by construction. By employed most of the methods of IC and flow analysis mentioned
above, we evaluated various relevant observables. Substantial differences between the two models are

presented and discussed. Furthermore, the implications of the present findings are addressed.
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This chapter is organized as follows. In the next section, we briefly review the peripheral tube
model and device an anisotropic Gaussian model which primarily consists of moments of Fourier
decompositions. The latter is mostly Gaussian in the radial direction, and in the azimuthal direction,
it is parameterized to contain different harmonic orders. Subsequently, in section 872, we explain how
the parameter of the anisotropic Gaussian IC are adjusted so that it gives largely identical eccentricity
distributions to those of the peripheral tube model. Both models are then fed to the hydrodynamic
code SPheRIO. The calculations are carried out for flow harmonics and their probability distributions,

symmetric cumulant, mixed harmonics, as well as nonlinear response coefficients.

5.1 BRIEF DESCRIPTION OF MODELS

In this section, I will first give a brief description of the peripheral tube model and anisotropic
Gaussian model. In the peripheral tube model, event-by-event fictuating ICs are generated by placing
three random tubes on the background. For the anisotropic Gaussian model, the event-by-event fluc-
tuations can be implemented by adjusting the model parameters C), and 6,, to take random values. In
essence, these two models provide very different initial conditions.

Then we discuss the effects of anisotropic Gaussian model parameters through the simulations of
Au+Au collision at 200Gev. That is, by adjusting the parameters of the anisotropic Gaussian model,
we obtain a €, — v,, distribution similar to the tube model, as well as a similar two-particle correlation
distribution curve. It implies that, even though the IC are quite distinct, if one appropriately choose
the model parameters, the scatter plots as well as two-particle correlations from the two models may
look similar. But the probability density distributions of the event-by-event ¢,, and v,, in anisotropic

Gaussian model is different from the peripheral tube model one.

5.1.1 Peripheral tube model

In previous work (WEN ef all, P0019), we studied the two-particle correlations in Au+Au collision
at 200Gev by using peripheral tube model. As mentioned above, the IC of the peripheral tube model
consist of a smoothed background and a few high energy tubes close to the surface of the system. The
background give rise to the averaged bulk properties of the system, while the tubes characterize the

event-by-event fluctuations. Subsequently, the energy density profile of the model is given by
€ = €pgd T Etube- (1)
Here, the averaged background distribution reads
ehed = (K + Lr* + Mrhye ™™ (2)
with

r =/ ax?+ by?, 3)
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where the parameters K, L, M, a, b, c are determined by a numerical fit to the averaged IC generated
by NeXuS or EPOS (DRESCHER ef all, 2002H; DRESCHER ef all, 2001; WERNER: LIU: PIEROG,
2006; WERNER:; KARPENKO: PIEROG, 2011; WERNER ef all, 2014). The profile of a high energy
tube is given by

(513' - xtube)Q - (y - ytube>2

ube — A ube € - ) 4
€tub tube €XP Rete “4)
with
To
T'tube (5)
' Vacos? 6 + bsin® 6
Liube — Ttube COS(Q)
Ytube = Ttube Sln(e)

where Agupe and Ry, are the maximum energy and radius of the tube, while r,,. give the radial
location of the tube, subsequently determined by ¢, a, b, and . The azimuth angle 6 is randomly

chosen for individual tube.

We found that the peripheral tube model can reproduce the two-particle correlations well for
Au+Au collision at 200Gev. We understand it as that due to the local non-uniformity in the initial
energy density distribution, that is, the high energy tubes affects the direction of the flow in the
hydrodynamic evolution, resulting in two peaks in the azimuth distribution of the single particle, thus
forming a special structure of the ridge. In order to study the effects of non-uniformity of the local
energy density in peripheral tube model, Prof. Kodama proposed the anisotropic Gaussian model with

a local energy density that is very different from that of the tube model.

5.1.2 Anisotropic Gaussian model

The initial energy density distribution in anisotropic Gaussian model is given by

2

e(r,0) = Ze ZON (6)

1/2

R(6) = Ry |1+ ) Chcos(n(0—6,)| . (7)

n=2
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and the total energy can be integrated out by

e

e(r,0)drdd

21 [e%¢} 2
= / / rZe R2O drdf
2T
_ Z 2 R2(9)d d&
/ / B 6)e (& 9))

= — R26/ - d:deH where x = !
3 ), O, R(0)
Z 27

= — R2(9)d9
2 Jo

®)

Here, for a given azimuthal direction, the radial distribution is essentially Gaussian. The azimuthal

dependence of the radius is contained within the specific form of R(f). The latter draws a closed curve

as one varies the azimuthal angle ¢ from 0 to 27. The value of the parameters R, and 2 are chosen to

reproduce the same size and average total energy of the given IC. Also, C), and #,, are randomized to

reproduce the same eccentricity distribution of the tube model, as will be further discussed below.

According to the definition of eccentricity

En
we have following derivations

B 02# J= rmre(r, 0)drdo
a fozw Jo” re(r, 0)drdd

(™)

with

V/ (r" cos(nf))? + (rmsin(nf))?

5 9
= €))

027r 0<>C> rmrZe RQ(")drdQ
Er
027'r OoonZR ©) - 32(9)d( 0))d(9
Er
7 21 o o0 TQ
m m/2 —x =
B [ =
7 2w m
2O (= + 1)do
25 | BTTOrNG A+
Rm
or I :
o (2 T "
T+l
1+ ZC” cos(n(f — Hn))] do. (n
n=2
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0% I~ ™ cos(mb)re(r, 0)drdo
2T [ re(r, 0)drdd

(r"cos(mb)) =

7,,2
02” Jo~ rmcos(mb)rZe ®@ drdf
Er
fo rm cos(m@) 9)6 R2<9>d( -

ET

)6

VA 27 00
= — Rm+2(9)cos(m6’)/ e "dxdf, where x =

Z [ m
= = m %
T R™™%(0) cos(ml)I'( 5

_ Rmr( L 1)IC (12)

2m

R*(0)
+1)do

2
with

T+l
1+ Cyeos(n(0 — en))] do. (13)

n=2

2w
12:/ cos(mb)
0

<TmSiIl(m¢9)> _ 027F 0 r Sln(me)re(r,g)drde
fo re(r, 0)drdo

r2
0% JS rmsin(m@)rZe =@ drdf
Er
fo ™ sin(m#) 22 o)e ] 0>d(
ET

)

Z 21
2Er
Z 271'
= 5/, R™2(6) sin(m@)F(%
Rm
Top
2 (

RmH(H)sin(mH)/ 2™ 2e~%dxdf, where x =
0
+1)do

5+ )15 (14)

with

2m %—H
I8 = / sin(m#) |1+ Z C,, cos(n(0 — Hn))] do. (15)
0

n=2

Then, the eccentricity can be derived from above equations

S
., - VEPTOER 6
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For small angular inhomogeneities, namely, C;, < 1, one finds the following simplified expressions

for the eccentricities

2
e~ 20, (17)
as shown in and eccentricity planes
1 I 7
®,, ~ —arctan2—% + —. 18
narc an 7C + n (18)

In practice, we adopt Simpson method to numerical integrate the eccentricity in SPheRIO simulation.
shows the eccentricity calculated by using Eqs.(If) and (7).

To learn about the effects of the model parameters, here we study five different sets of choices
for the parameters C), and 6,,. The IC of the anisotropic Gaussian model is specified as follows. Ac-
cording to the range of initial energy density distribution and initial total energy in peripheral tube
model whose parameters are given in Chapterd, we can determine the anisotropic Gaussian model
parameters Z = 11.7, Ry = 3. The parameter C), of a given event, when it is not vanishing, is
chosen according to the positive part of a Gaussian distribution. Here are the parameterization of the

Gaussian distribution for the five sets of parameters.

(1) For the set 1

(5 1s Gaussian distribution centered at O with o = 0.3,
Cs5 is Gaussian distribution centered at 0 with o = 0.22,
C,=0, (n#2,3).

02 uniform distributed in —5 < 0 < 7,

03 uniform distributed in —% < 03 < %.

For the sets 2, 3, 4, and 5

(5 is Gaussian distribution centered at 0 with o = 0.3,
(5 is Gaussian distribution centered at 0 with o = 0.22,
(4 is Gaussian distribution centered at 0 with o = 0.2,
(5 is Gaussian distribution centered at O with o = 0.15.
Cn=0, (n#2,3,4,5).

And the interval of 6,, are following

(2) For the set 2
0220,93:0,64:0,9520.

(3) For the set 3
0> uniform distributed in —% < 0 < 7,
05 uniform distributed in —% <03 <Z,

6, uniform distributed in —% <, <Z,
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0.6

Fig. 14 — (Color online) The relation between model parameters C;, and eccentricity €,. Scatters are
the results of Eq.(I#), determined by a series of random values of Cy, C3, Cy, C5 in set 4,
and 0,, uniform distributed in —7 < 6,, < T for (n = 2,3,4,5). Solid lines are the results
of Eq.(I2).

05 uniform distributed in —{5 < 05 < {5.

(4) For the set 4

0> uniform distributed in —F < 0, <

2

03 uniform distributed in —% < 03 <

9

04 uniform distributed in —7 < 0, <

b

13 =13 wx N

05 uniform distributed in —% < 05 < .
(5) For the set 5
0, uniform distributed in —27 < 05 < 2,
03 uniform distributed in —27 < 03 < 2m,
0, uniform distributed in —27 < 0, < 2,
05 uniform distributed in —27 < 05 < 2.
The parameters C), are taken to be vanishing or varying according to a Gaussian distribution.
For the set 1, we take nonvanishing C,, for n = 2, 3, while the corresponding event planes 6, and

03 are randomly chosen. We found that the obtained scatter plots of ¢,-v,, for n = 4,5 are quite
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Fig. 15 — Left column: the scatter plots of flow harmonics v,, vs. eccetricities ¢,, for the peripheral
tube model; Middle column: the scatter plots of flow harmonics v,, vs. eccetricities ¢,, for
the anisotropic Gaussian model with parameter set 1; Right column: the scatter plots of flow
harmonics v,, vs. eccetricities &, for the anisotropic Gaussian model with parameter set 2.
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Fig. 16 — Left column: the scatter plots of flow harmonics v,, vs. eccetricities ¢,, for the anisotropic
Gaussian model with parameter set 3; Middle column: the scatter plots of flow harmonics v,,
vs. eccetricities €, for the anisotropic Gaussian model with parameter set 4; Right column:
the scatter plots of flow harmonics v,, vs. eccetricities ¢,, for the anisotropic Gaussian model

with parameter set 5.
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Fig. 17 — (Color online) A comparison of the calculated di-hadron correlations for 0.4 < pussociated <
1 and 2 < pirigger < 3 for different IC: the peripheral tube model and the anisotropic
Gaussian model with parameter sets 1, 2, 3, 4, 5, comparing with PHENIX data.

different from those of the peripheral tube model, as shown in Fig. T5. The resulting two-particle
correlations shows a slightly higher “shoulder” as shown in Fig. T7. For the sets 2, 3, 4, and 5,
we take nonvanishing C), only for the corresponding n, and set all other C),, = 0 for any m # n.
Moreever, for the set 2, we take #,, = 0. For the sets 3, 4, and 5, ,, is drawn randomly. The obtained
scatter plots &,,-v,, are found to be similar to those of the peripheral tube model, as shown in
and Fig. T@. For the set 2, the resulting two-particle correlations are quite different from those of the
peripheral tube model. On the other hand, for the sets 3, 4, and 5, the two-particle correlations possess
similar shapes to those those found in the peripheral tube model as shown in Fig. T7. In a word, by
adjusting the anisotropic Gaussian model parameters C), and #,,, we can obtain the ¢,,-v,, relations and
two-particle correlations similar to that one in tube model.

However, in [Fig. T8, we find the probability density distributions of the event-by-event ¢,, and v,
for set 4 in anisotropic Gaussian model is different from tube model, although the ¢,,-v,, relations and
two-particle correlations for set 4 in anisotropic Gaussian model looks similar with tube model. In
addition, it is difficult to see from the results of the two-particle correlation whether the high-order
flow coefficients under the two models are consistent. Therefore, in order to further compare the
high-order flow coefficients in this two models with the experimental data of the Pb+Pb collision at
2.76 Tev, we will simulate the Pb+Pb collision by using the tube model and the anisotropic Gaussian

model in next section.
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5.2 SIMULATIONS FOR 2.76 TEV PB+PB COLLISIONS AT 20% — 25% CENTRALITY BY
USING PERIPHERAL TUBE MODEL AND ANISOTROPIC GAUSSIAN MODEL

In last section, we learned that we always can obtain the similar two-particle correlations by
choosing property parameters in these two different models. For a further study, in this section, we
will concentrate on the nature of high-order flows. To compare with experimental data, we will do
simulations of 2.76 Tev Pb+Pb collisions at 20% — 25% centrality by using anisotropic Gaussian
model and peripheral Tube Model.

We first parameterize the average EPOS initial conditions obtained from many events. Then plac-
ing three high-energy tubes on this average IC background, and by adjusting the radius, energy and
position of the tubes, we obtained the two-particle correlation close to the EPOS+SPheRIO simula-
tion. Subsequently, under the precondition that the total energy is similar and the probability density
distribution of ¢, is similar, we use the tube model and the anisotropic Gaussian model to do the sim-
ulation of Pb+Pb collisions. At last, we compare these two models in various aspects, including tem-
poral evolution, ¢,-v,, relations, probability density distribution of the event-by-event v,,, di-hadron

correlations, nonlinear response coefficients, symmetric cumulants and mixed-harmonics.

5.2.1 Parameterization of models

In order to design initial conditions of peripheral tube model, we first employ EPOS to generate
the initial conditions for \/syy = 2.76 TeV Pb+Pb collisions at 20% — 25% centrality. And we
average out the ICs of 2800 events, the averaged IC is shown in Fig. T9.

lo_l L L 1 1 1 L 1 L I_
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—4 g P
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Fig. 19 — (Color online) The averaged EPOS IC for /syy = 2.76 TeV Pb+Pb collisions at 20%—25%
centrality.

Then, we parameterize the averaged IC of Pb+Pb collisions for the 20% — 25% centrality class
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at 2.76 TeV in the x — y plane by using Eq.(Z), and take it as background, hence the parameters
K, L, M, a, b, care determined as in Table.l. Subsequently, we put three tubes given by Eq.(8) on
the background. The maximum energy A1 and the location r( of tubes are determined based on the

results of the two-particle correlation, we take different value to carry out the two-particle correlations,

see in [Fig. 20.
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Fig. 20 — (Color online) The di-hadron correlations for different value of peripheral tube model param-
eters, and 0.4 < passociated < 1 and 2 < pyrigger < 3. Left column are results for different
maximum energy of tubes at a given radial position, at the top of the right column are results
for different radial positions of tubes at a given maximum energy, at the bottom of the right
column is the results for A, = 30 and 7y = 1.3 comparing with EPOS+SPheRIO results
which has been translated.

Finally, when we take A, = 30 and rp = 1.3, it can reproduce the two-particle correlation
closer to the results of EPOS+SPheRIO simulations. Therefore, the parameters used in the present
study are summarized in Table D

As a comparison, we introduce the anisotropic Gaussian model discussed in last section. It sat-
isfies the precondition that the anisotropic Gaussian model and the peripheral tube model have the
similar initial total energy and similar probability density distributions of eccentricity €,,. The param-

eters employed for the anisotropic Gaussian model are summarized in the Table B. The parameters
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Table 2 — The model parameters of the peripheral tube model in the present study

K L M
103.9 -89 28.5
a b c
0.077 0.033 2
Atube 7o Rtube
30 1.3 1.1

C,, are randomly chosen to satisfy a normal distribution centered at M,, with standard deviation o,,.
This is carried out numerically using the Box-Muller method as follows. One first picks out U/; and
Us, two independent, uniformly distributed random numbers in the interval [0, 1]. Then, C,, can be

evaluated accordingly to the following expressions

G = /—2InU cos(2nls), (19)

C, = G-0,+M,. (20)
If one obtains a negative C,, it is simply being cast out.

Table 3 — The model parameters of the anisotropic Gaussian model in the present study

Ry 3.1

A 133

n On M,,

2 0.075 0.39
3 0.095 0.045
4 0.145 0.073
5 0.128 0.063

5.2.2 Numerical results

As discussed above, the parameterization of the peripheral tube model is adjusted to mimic event-
by-event fluctuating initial conditions generated by EPOS. On the other hand, those of the anisotropic
Gaussian model is tailored accordingly to produce mostly identical eccentricity distribution. However,
both the IC and the subsequent temporal evolutions are quite different visually, as clearly demon-
strated in [Fig. Z1]. In the case of the tube model, evolution is evidently dominated by the deflection of
the flow by the high energy tubes. To be specific, the resultant peaks of particle emission are clearly
associated with the locations of the three tubes, as discussed in Refs. (ANDRADFE ef all, 2010a; WEN
ef all, 2019). On the other hand, in the case of anisotropic Gaussian model, the overall energy distribu-
tion is smoother. It is rather difficult to predict the resultant evolution. Although, on an event-by-event
average, the apparent mapping between IC eccentricities and flow harmonics can be established, as

discussed below.
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Fig. 21 — (Color online) The calculated temporal evolution of two random events of the peripheral
tube model with three tubes (left column) and of anisotropic Gaussian model (right column).
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Fig. 22 — (Color online) The calculated scatter plots of flow harmonics v,, vs. eccetricities ¢,, obtained
by the peripheral tube model (left column) and anisotropic Gaussian model (right column).
In both cases, a total of 2000 events have been used to draw the plot.
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We have investigate the relationship between eccentricities and flow harmonics for both models.
The resulting scatter plots of flow harmonics v,, vs. eccetricities ¢,, are shown in [Fig. 22. It indicates
a significant positive linear correlation between e, and vo. However, as observed in previsous stud-
ies (NIEMI ef all, DOT?2; FU, DOT5), the above correlations decrease as n increases. A comparison
between the tube model and the anisotropic Gaussian model shows that the linearities presented in
the two models are quite similar, although the former seems slightly stronger.

To present the results from a different aspect, we show the probability density distributions of
event-by-event eccentricities ¢, as well as those of flow harmonics v,,, in Fig. 23. Here the calculated
probability distributions from the two models are compared against each other. The plots in the
left column of give the probability density distributions of initial eccentricities. This mostly
serves to ensure quantitatively that the tuned models do possess “similar” IC in terms of eccentricity
components. The right column, on the other hand, presents the resulting event-by-event distributions
of flow harmonics. Here, a sizable difference is observed in the case of the elliptic and quadrangular
flow coefficients. We note that this observation does not contradict to the linearity that one may draw
from [Fig. 27. In fact, this is consistent with the fact, for instance, the slope of the top-right plot of
is slightly larger than that of the top-left plot.

Table 4 — The calculated average v,, for 2.76 Tev Pb+Pb collisions at 20% — 25% centrality

U2 U3 Uy Us
Peripheral tube model 0.064 | 0.026 | 0.0146 | 0.0049
Anisotropic Gaussian model | 0.078 | 0.025 | 0.0228 | 0.008

At the same time, we find that the average value of v, calculated in this two models are not
completely consistent as shown in Table (8). Besides, we have calculated the p; dependence of v3 by
using event plane method in Fig. 24. It shows that although the probability density distribution and
average value of v3 are approximately equal, the pr dependence of v3 in this two model is different.

To further investigate the linearity, we rescale the above results and present the normalized prob-
ability distributions in [Fig. 25. However, for the present purpose, we show in the same plot, the
normalized distribution of ¢,, against that of v,,. We note that, in comparison with other existing
results (GALE ef all, P0T3a; EU, 20T5; BOZEK: BRONIOWSKI, P0T3; GATE ef all, DOT3H), the pe-
ripheral tube model does present somewhat distinct features that the distribution of v5 does not follow
the distribution of 5. However, since eccentricity cannot be measured experimentally, the present
findings do not contradict with any existing theory straightforwardly. On the other hand, this result
can be intuitively understood in terms of the peripheral tube model. When a tube is located deep
inside the system, the effect of its hydrodynamic expansion is mostly absorbed by the surrounding
medium. As a result, although it contributes significantly to the eccentricity, due to the smallness of
its radial coordinate, it causes relatively insignificant impact to the flow harmonics. On the contrary, a
tube sitting close to the surface possesses the precisely opposite characteristic. It leads to a significant
disturbance to the one-particle distribution, resulting in sizable inhomogeneity in the media, while
contributes little to the initial eccentricity. As the IC configuration exaggerate the above feature, to

some extent, its subsequent manifestation observed in is expected.
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butions of the resultant flow harmonics v,, in the two models.
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Fig. 24 — pr dependence of v3 in anisotropic Gaussian model and peripheral tube model.

In Fig. 26, we evaluate the di-hadron correlations for the peripheral tube model and the anisotropic
Gaussian model. We note that the resulting correlations shown in do not attains zero at
the minimum. This is simply because the IC prepared in the present study does not contain any
fluctuation in total entropy, and therefore, the resultant multiplicity fluctuations are minimized. In
fact, one can numerically check that the correlations presented in integrate to zero over a
period 0 < A¢ < 27. As shown in our previous studies, the main features of the obtained di-hadron

correlations are very similar for the two models.

Now, we move to the study of linear and nonlinear response coefficients and other observables
related to higher moments. By making use of the complex anisotropic flow coefficient (BHALERAO!
OLLITRAULT: PAL 20O15)

1 +oo '
P(@) =5 >, Vae ™ 1)

n=—oo

where V,, = v, exp(in¥,), and v, = |V,|. Subsequently, one may study the nonlinear response
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coefficients given by (BHALERAO: OLLITRAULT: PAL, POTS; [YAN: OLLITRAULI, P0OT5)

(Va(V5)?) (g3 cos(4[Wy — Wy]))

“T Ty T I =2
o = B060)_ foentolde — b)) o
o = AT _ foaeontlte - i) os)

where, for instance, the imaginary part of the first expression (v4v2 sin(4[¥4 — Wy])) = 0 for a large
number of events. In Table B, we present the calculated nonlinear response coefficients evaluated for
the two models in comparison to the EPOS+SPheRIO simulations and experimental data from CMS
and ATLAS (YAN: PAL: OLLITRAULI], 20T6; CHATRCHYAN ef_all, 2OT4; AAD ef all, 20T4).
We find that the simulation results are systematically higher than experimental data, especially for
peripheral tube model and anisotropic Gaussian model. Though not shown explicitly here, when
included the statistical uncertainties, the EPOS+SPheRIO results are primarily consistent with the
experimental data with error bars taken into consideration. The results between the peripheral model
and anisotropic Gaussian model are, mostly, of similar magnitude, but the difference is substantial.
In fact, the difference between the two models regarding nonlinear response coefficients is more

substantial than that of linear ones, discussed above.
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Table 5 — The calculated nonlinear response coefficients for 2.76 TeV Pb+Pb collisions for the 20%-
25% centrality class.

Number of events | x4 X5 X62 X63
CMS and ATLAS data 0.818 | 1.878 | 0.715 | 0.878
EPOS+SPheRIO (1800 events) 1.13 | 244 | 1.08 | 1.11
Peripheral tube model (2000 events) 1.50 | 244 | 346 | 2.33
Anisotropic Gaussian model (2200 events) 1.69 | 2.794 | 297 | 1.12

In Table B, we present the results of symmetric cumulants as well as normalized symmetric cumu-
lants (ADAM ef all, P016), calculated by using the following definitions.

SC(m,n) = (vpon) — (vp){vm), (26)
NSC(m,n) = L2 “Zz - <§,Z">> W) 27)

Again, the calculated results are compared with those from EPOS+SPheRIO simulations for 2.76
TeV Pb+Pb collisions in 20% — 25% centrality class. Lastly, we show in Table @ the calcualted mixed
cumulants, also compared with the EPOS+SPheRIO results. The normalized symmetric cumulant
is understood as a measure for the correlation of the magnitude of flow fluctuations. The mixed
harmonics, on the other hand, are related to the ratios between flow harmonics evaluated by different
event planes. It is found that the difference between the two models is significant. Especially for
SC(4,2) and NSC(4,2), the signs of the correlations are opposite for the two models. The observed
difference residing in higher harmonics and nonlinear response coefficients reflects the distinction

between these two models.

Table 6 — The calculated symmetric cumulants for 2.76 TeV Pb+Pb collisions in 20% — 25% centrality

class.
SC(4,2) SC(3,2) | NSC4.2) [ NSC(3,2)
EPOS 0.383 x 107° | —0.116 x 107 |  0.177 -0.02
Peripheral tube model 0.043 x 107 0.134 x 107 0.035 0.035
Anisotropic Gaussian model | —0.252 x 107° | 0.0552 x 107° -0.063 0.011

Table 7 — The mixed harmonics for 2.76 TeV Pb+Pb collisions in 20% — 25% centrality class.

EPOS Peripheral tube model | Anisotropic Gaussian model
(v4v3 cos(4[Wy — Ws))) 7.72x107° 4.09 x 107° 8.39 x 107°
<U5U2U3 CO§(5\I/5 —2Wy — 3\113» 1.38 x 107° 0.954 x 107 1.38 x 1079
{(vgv3 cos(6[Wg — Ws))) 0.0874 x 107° 0.0721 x 107° 0.129 x 107°
(vgv3 cos(6]W — W3))) 0.157 x 107 0.301 x 10~° 0.119 x 107
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6 CONCLUSION

To summarized, in this thesis, we have explored several aspects regarding the collectivity in hydro-
dynamics and its connection with initial state fluctuations. To this end, we investigated eccentricities,
and observables such as two-particle correlation, flow harmonics, linear and nonlinear response coef-
ficients, among others. These studies have been mostly carried out by employing a peripheral tube
model. The latter was proposed to provide an intuitive explanation on many features of the observed
data, such as elliptic flow, the ridge structures of two-particle correlation, event plane correlations, and
the centrality dependence of di-hadron correlations in previous work. In particular, we show that the
two-particle correlations obtained by event-by-event hydrodynamical simulations using appropriately
devised IC of the peripheral tube model are consistent with experimental data. The latter is further
shown to be in qualitative agreement with those by using the analytic result of a simplified model
with the parameters extracted from flow coefficients and multiplicity fluctuations. This indicates that
the peripheral tube model is a reasonable approach for the interpretation of the observed features of

the two-particle correlations in nuclear collisions.

The hydrodynamical approach is shown to be a success for the description of many experimen-
tal data of relativistic heavy ion collisions. In particular, it provides a reasonable description for the
observed two-particle correlations. One distinct feature of the observables in question, as we under-
stand, is that they usually involve an event-average procedure, and thus may not necessarily carry all
the information on genuine nonlinear nature of hydrodynamics. In other words, although the event
averaged harmonic coefficients display a strong linear relation to those averaged initial state eccen-
tricities (NIEMT efall, DOT7), some essential characteristics associated with the nonlinearity may still
be hidden and failed to be captured through averaged values. Subsequently, the distinction between
different approaches may become less visible. It is also interesting to note that the transport models
such as AMPT or PHSD have shown to have similar properties as viscous hydrodynamic calcula-
tions (MA; WANG, 20171; XU;: KO, 2011, SOUZA: KOIDE; KODAMA, 2016). However, when
one looks closely on an event-by-event basis, a state close to the local thermal equilibrium only corre-
sponds to a tiny space-time domain during the entire dynamical evolution as in Ref. (SOUZA; KOIDE:
KODAMA, DOT6; XTI ef all, 20T7). To clarify up to what extent the genuine event-by-event hydrody-
namics is valid, it may require a set of observables which are sensitive to the non-linear evolution of

the system. Then, it motivates our current work.

Moreover, we devised an anisotropic Gaussian model to match the eccentricity probability distri-
bution of the peripheral tube model. By doing this, we carried out a back-to-back comparison between
the two models regarding the mapping between the event-by-event IC fluctuations and flow harmon-
ics. In particular, we studied the linear as well as the nonlinear response of the system in terms of
flow harmonic coefficients, di-hadron correlations, symmetric cumulants, mixed harmonics, among
others. Although the di-hadron correlations seem similar in their shapes, the distinction between the
two models can be revealed by more detailed observables. In particular, the discrepancies in the

normalized probability distributions of €, and v, can be readily understood in terms of the physical
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nature of the peripheral tube model. Furthermore, the calculated symmetric cumulant and normalized
symmetric cumulant, the so-called Pearson correlation coefficient regarding higher-order harmonics
also demonstrated a substantial difference between the two models. In this context, it might be inter-
esting to follow this train of thought by proposing observables, which may quantify the nonlinearity
to a greater extent. Further studies concerning this topic, such as principal component analysis are in

progress.
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APPENDIX A - BOXMULLER METHOD

Supposing two independent standard normal distributions x ~ (0,1) and y ~ (0, 1), the joint

probability density function is

(09) =p(e) ply) = ——e % et
x,y) =p(z) - = e 2 - e
p\r,y p ply N N
1 z2+y2
- > 1
5.-¢ ey
Taking the polar coordinate transformation
x = Rcosb, ()
y = Rsin#, 3)
then ) .
22442 2
g P =g, @)

we can understand Eq.(8) as the product of the two probability distribution density functions

0~ (0, 271') = 27TUQ, U2 = (O, 1), (5)
and
R2
P(R)=¢ 2. (6)
The correspoding cumulative distribution function (CDF) and the CDF’s inverse function are as fol-
lows,
ro_e 22" 2
P(R<r)= [ e 2pdp:—e20:—e 7 +1 o

F~Y(u) = \/—2log(1 — u)

Since w is uniformly distributed, therefore 1 — w is uniformly distributed.

Therefore, the Box-Muller method for generating random numbers conforming to Gaussian dis-
tribution can be realized as follows.

First, Generating two random numbers Uy, Us ~ (0, 1). Then, we take advantage of them to create
the radius R = \/—21log U, and the angle § = 27U,. Last, Converting (R, ) from polar to Cartesian

coordinates (R cos, Rsin6).

Z = Rcos = \/—2log U, cos(2mUs). (8)

The Z can generate a Gaussian distribution.
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APPENDIX B - SIMPSON’S RULE

Simpson’s rule is a numerical integration method that approaches the original function with a
quadratic curve to obtain a numerical approximate solution of the definite integral. The integral of a

function f(x) between a and b is approximated as follows,

[ e 25 i@+ s (S50) +50). 1)

If the interval of integration [z, x3] is small, by using three points (z1,y1), (%2,%2), (x3,y3),

where z, = £ we obtained

/ Fla)de ~ B2~

X
- L (yy + 4o + 1) , )

it will be adequate approximate to the exact integral.

For a large interval of integration [L, R|, we divide interval [L, R] into n subintervals, then

—L
2R

T =T9 — Ty = ($4 - l'2> = (l'n - xn—Q)a (3)

where 2o = L, x, = R. Then Simpson’s rules are applied to each subinterval, and the results are

added to obtain an integral approximation for the entire interval.

/LRf(x)dx = / f(z dx—/ f(z dx+/ f(z)dx + - / f(z

To — X

Q

O (yo + dy1 + ) + 22 (g + dys + ya) + o (g + dys + ) + -

= 3. Yo+ Yn +2(y2+ya+ -+ Yn2) 41 +ys + - + Y1) 4)
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Table 8 — The PHENIX data (AFANASIEV ef all, 2009), v5{2} as a function of py in centrality 20% —

60%.

Pt

0.251

0.349

0.448

0.548

0.648

0.748

0.848

0.948

(%)

0.00778

0.03793

0.05476

0.06374

0.07303

0.08283

0.09301

0.10247

De

1.091

1.290

1.489

1.689

1.890

2.198

2.700

3.348

(%)

0.11444

0.13201

0.14884

0.16226

0.17456

0.19027

0.20415

0.21363
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