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Abstract

Reducing tire rolling resistance and energy loss is a topic of interest to the tire industry.

Understanding and modeling these phenomena are essential to approach this problem

and propose robust solutions. This work suggests a model based on the Bouc-Wen model

to simulate internal variables from viscoelastic constitutive laws. Furthermore, sensitivity

analysis is performed on the Bouc-Wen model parameters to evaluate their influence on the

system response and capture the full range of possible values that improve the predictive

ability of the suggested model. This task calculates the Sobol’ indices estimated from

a Polynomial-Chaos expansion based on the Bouc-Wen parameters. Once the range of

feasible model solutions is established, the proposed model is calibrated through Bayesian

inference. Finally, the uncertainties are propagated, and the model is validated using

data of viscoelastic internal variables from the finite element approximation of a steady-

rolling tire provided by Michelin. Satisfactory results are obtained, as the proposed model

can simulate viscoelastic internal variables with a reduced computational cost for some

branches of interest. Its outputs are in agreement with the finite element approximation

data.

Keywords: viscoelastic internal variables; hysteresis; Bouc-Wen model; Sobol’ indices;

Bayesian inference; propagation of uncertainties.



Resumo

Reduzir a resistência ao rolamento e as perdas de energia em pneus é um tema de in-

teresse industrial. Compreender e modelar esses fenômenos são essenciais para abordar

esse problema e propor soluções robustas. Este trabalho sugere um modelo baseado no

modelo de Bouc-Wen para simular variáveis internas a partir de leis constitutivas vis-

coelásticas. Além disso, a análise de sensibilidade é realizada nos parâmetros do modelo

Bouc-Wen para avaliar sua influência na resposta do sistema e também capturar toda a

gama de valores viáveis que melhoram a capacidade preditiva do modelo sugerido. Esta

tarefa é realizada calculando os ı́ndices de Sobol estimados a partir de uma expansão em

Caos Polinomial com base nos parâmetros de Bouc-Wen. Uma vez estabelecida a gama de

soluções viáveis do modelo, o modelo proposto é calibrado através da inferência Bayesiana.

Finalmente, as incertezas são propagadas e o modelo é validado usando dados de variáveis

internas viscoelásticas da aproximação por elementos finitos de um pneu em rolamento

em contato cont́ınuo fornecido pela Michelin. Resultados satisfatórios são obtidos, pois

o modelo proposto pode simular as variáveis internas viscoelásticas com custo computa-

cional reduzido para alguns ramos de interesse e suas respostas estão de acordo com os

dados da aproximação por elementos finitos.

Palavras-chave: variáveis internas viscoelásticas; histerese; modelo de Bouc-Wen; ı́ndices

de Sobol; inferência bayesiana; propagação de incertezas.
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MOTIVATION

Due to the rise of a sustainability mindset in businesses, state regulations, and con-

sumer requirements, the automobile industry has sought to develop technologies to im-

prove vehicle performance, minimize fuel consumption, and reduce pollutant emissions.

Nowadays, improving sustainable practices in both academic and productive sectors is

more necessary to reduce environmental impacts. In the same way, with the expansion

of the electric vehicle fleet, the generation of particulate matter by vehicle parts such

as brakes and tires has become important (OROUMIYEH; ZHU, 2021; TONEGAWA;

SASAKI, 2021). In both contexts, improving tire performance is desirable.

In a rolling tire, the mechanisms of energy loss have been known for a long time: the

friction inherent in the contact between the tire and the road, the drag force of the air,

and the hysteresis within the viscoelastic material (WALTER; CONANT, 1974). These

energy loss mechanisms contribute to the rolling resistance, which can be considered a

force that opposes the vehicle’s movement. The rolling resistance is responsible for a

significant amount of energy consumption (HALL; MORELAND, 2001), and most of it

results from hysteretic loss. This loss is influenced by the characteristics of the tire,

such as its dimensions and material, and by external variables such as the vehicle speed,

wheel load, and inflation pressure (WALTER; CONANT, 1974). The tire industry is still

working on new solutions to reduce the rolling resistance and improve tire performance

simultaneously, e.g., by improving handling, grip, comfort, and durability and reducing

the wearing noise. To achieve this goal, it is necessary to design new tires and change

the variables that affect the rolling resistance. However, there is no point in doing a

few tests for each new tire design. Hence, the importance of modeling a tire. Moreover,

some of these variables are uncertain, and a robust model could help investigate how the

uncertainties in tire properties affect rolling resistance.

There are several approaches to model a tire in the literature: from experimental data

only, using similarity methods, or through physical models (PACEJKA, 2012). These ap-

proaches are different in accuracy and complexity. Among them, the finite element method

considers material and physical complexities and is commonly adopted by the tire industry

for modeling rolling tires (GHOREYSHI, 2008). In a steady-state rolling tire, the finite

element approximation depends on the viscoelasticity. Viscoelasticity can be described by

a set of constitutive laws, which are a function of internal variables. Nonlinear differential

equations govern the evolution of internal variables (TALLEC; RAHLER, 1994). It is still

challenging to characterize the viscoelastic material considering its complexities, such as

time-varying properties and energy dissipation. Despite the good accuracy of the results,

the finite element method becomes time-consuming when these complexities are consid-

ered. Furthermore, the high computational cost motivates the investigation of alternative



modeling methods, e.g., an analytical model was developed based on a hysteresis model

to quantify the dissipated energy (BRANCATI; STRANO; TIMPONE, 2011).

Due to the model complexity and the presence of nonlinearities in structural dynamics

problems such as the viscoelasticity in a steady-rolling tire, it is worth analyzing the con-

struction of reduced-order models. A reduced-order model is an alternative to a defined

full-order model. Its advantage is to reduce computational cost while retaining model

accuracy (SULLIVAN; YAMASHITA; SUGIYAMA, 2022). Unlike the surrogate models

based on the definition of a response surface (ALIZADEH; ALLEN; MISTREE, 2020),

the reduced-order model is based on physical simplifications of the full-order model and

depends on parameters that translate these simplifications. Doing so reduces the com-

putational time, and some physical aspects of the complete model are preserved. In the

same context, the present work is motivated by the progress in the field of simple models

applied to steady-state rolling tire problems. To get around the description of nonlineari-

ties using a finite element model, as is commonly done in the tire industry, an alternative

model is suggested to simulate the viscoelastic internal variables. Such a model can be

constructed from a complex model consisting of a set of constitutive equations that de-

scribes the viscoelasticity in the finite element approximation. In addition, the hysteresis

within the viscoelastic material can be an alternative for constructing this alternative

model. To describe the viscoelasticity by solving a less computationally expensive model

with minor loss of information, the parameters of the suggested model can be inferred

thanks to a dataset provided by Michelin for this work.

OBJECTIVES

Generally speaking, this work proposes a set of models to simulate the viscoelastic

internal variables that describe the behavior of steady-state rolling tires. For this purpose,

the following objectives are defined:

• To formulate a model based on the set of constitutive laws governing the incom-

pressible viscoelastic material and the hysteresis;

• To implement a model calibration procedure using data generated during the com-

putation of a finite element approximation of steady-state rolling tire.

This work also aims to contribute to the alternative treatment of the nonlinearities in-

herent to the modeling of the viscoelastic material: the viscoelastic internal variables are

computed by less computationally expensive and suitably accurate models compared to

the finite element approximation.



MAIN CONTRIBUTIONS

The main contributions of this work are:

• The formulation of a model to simulate viscoelastic internal variables based on the

generalized Maxwell and Bouc-Wen models;

• The determination of the influential parameters of the Bouc-Wen model through

global sensitivity analysis. The global sensitivity analysis is performed by evaluating

the Sobol’ indices from a surrogate model based on Polynomial-Chaos expansion;

• The implementation of a model calibration strategy combining optimization and sta-

tistical inference techniques: an optimization problem is solved by the Cross-Entropy

method, and the influential parameters are further estimated using Bayesian infer-

ence;

• The propagation of the uncertainties of the proposed model parameters through the

responses.

OUTLINE

This work is organized into the following chapters:

• Chapter 1 - BOUC-WEN MODEL initially relates the complete model and Miche-

lin’s dataset to the Bouc-Wen model through the hysteresis phenomenon. Then,

from this relation, this chapter formulates the proposed model;

• Chapter 2 - A MODEL CALIBRATION STRATEGY describes the implemented

model calibration strategy: initially, this chapter defines an error metric; then, it de-

scribes global sensitivity analysis, Sobol’ indices, and Polynomial-Chaos expansion;

likewise, this chapter describes the Cross-Entropy method and Bayesian inference;

• Chapter 3 - RESULTS AND DISCUSSION critically discusses the results obtained

from the calibration of the set of proposed models;

• Chapter 4 - FINAL REMARKS presents the conclusion and suggests directions to

further advance this research.



19

1 BOUC-WEN MODEL

This chapter details the development of the suggested model. To this end, part of a

finite element model is addressed first. Next, a data selection procedure is defined. Then,

the suggested model is then formulated based on hysteresis.

1.1 THE COMPLETE MODEL

First of all, it is important to stress that the complete development of the finite element

model of the tire under analysis is beyond the scope of this work. Confidentiality terms

protect further details about the material properties, dimensions, and geometry. The

elapsed time for evaluating the finite element model is also unknown. Nevertheless, this

section is intended to provide information about the dataset generated from the covered

finite element model. From this information, it is expected to address the complete model

and detail the basis of the suggested model formulation.

The dataset is generated during the computation of a finite element approximation of

a steady-state rolling tire. This approximation couples the constitutive laws governing the

behavior of the incompressible viscoelastic material behavior and the equilibrium equa-

tions governing the steady-state rolling motion (TALLEC; RAHLER, 1994). A standard

finite element procedure is adopted to approximate this problem. It is worth noting that

the finite element method is widely adopted by the tire industry for modeling steady-

state rolling tires (GHOREYSHI, 2008). In addition, a finite element model can take into

account different physical complexities: a finite element approximation can couple the

Kelvin-Voigt rheological model and an axisymmetric body in a 2D analysis (TALLEC;

RAHLER, 1994); or the Mooney-Rivlin model and more complex tire model in a 3D

analysis (LIU; HOFSTETTER; MANG, 1994). The more reliable the approximation, the

more accurate the model responses. However, physical complexities such as the internal

variables influence the computational cost.

During the standard finite element procedure, convenient choices of internal variables

must be made because nonlinear differential equations govern their dynamic behavior.

Assuming a general formulation, the elastic and viscous potentials that compose the con-

stitutive laws could be derived from a generalized Kelvin-Maxwell model (FANCELLO;

PONTHOT; STAINIER, 2006). Or else, the viscoelasticity could be described by choos-
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ing a specific free energy potential that is a function of the states variables: temperature,

right Cauchy-Green deformation tensor, and viscoelastic internal variables (TALLEC;

RAHLER, 1994). The dataset covered here consists of data of the components of the

right Cauchy-Green deformation tensor and viscoelastic internal variables from a gener-

alized Maxwell model. The generalized Maxwell model describes the viscoelastic internal

variables at the nodes of the finite element approximation of the tire. The viscoelastic

internal variables are rank 2 symmetric positive-definite tensors (TALLEC; RAHLER,

1994).

The theoretical representation of the generalized Maxwell model consists of the par-

allel association of several Maxwell branches. Each Maxwell branch consists of a series

association of elastic and viscous elements. Figure 1 is a representation of the rheological

model, in which C is a component of the right Cauchy-Green tensor and Ab the viscoelas-

tic internal variable at the Maxwell branch b. The complete rheological model contains

10 Maxwell branches.

Figure 1: Generalized Maxwell model.

 

 
 

 

 
 

 

 
 

 

Source: Author’s own elaboration.

A component C of the right Cauchy-Green deformation tensor affects each one of the

Maxwell branches in Figure 1. How a particular branch responds depends on its properties.

The dynamic behavior of the viscoelastic internal variable Ab is expected to be a function

of the elastic and viscous elements of the Maxwell branch b. Assuming that the elastic

element is described by a coefficient of elasticity coefficient kb and the viscous element by

a damping coefficient cb, a model candidate could be:

C(t) = kb Ab(t) + cb Ȧb(t). (1)

However, this formulation does not consider nonlinear effects such as the hysteresis

loop examples that are presented later in Figure 5. Looking for new information that can

be used to formulate a simple model, it is interesting to observe the dynamic behavior of

the variables C(t) and Ab(t) through the dataset.
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1.1.1 Michelin’s dataset

To conduct this work, Michelin provided a dataset composed of many components C

of the right Cauchy-Green deformation tensor and the respective viscoelastic internal vari-

ables A in all Maxwell branches of Figure 1. Overall, the dataset contains 96 components

of the right Cauchy-Green deformation tensor, structured in 16 tensors of 6 components

each.

Some observations can be made from the examples of components of the right Cauchy-

Green tensor in Figure 2. The first one is the cyclic motion of the tire: a node describes

a complete revolution in just over 0.2 seconds. Then, it returns to its initial condition.

The second one is the contact between the tire and the soil: between 0.1 and 0.2 seconds,

there are significant variations in C. The dynamic behavior in this interval characterizes

the passage of a node through the contact region.

Figure 2: Examples of the components of the right Cauchy-Green tensor from the dataset.

Source: Author’s own elaboration.

As stated earlier, each of these components affects the Maxwell branches of the gener-

alized Maxwell model in Figure 1. Figure 3 shows the corresponding viscoelastic internal

variables for Maxwell branches 1, 4, 5 and 10. This figure shows that the viscoelastic

internal variables attenuate in the higher branches until there is no dynamic behavior
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in Maxwell branch 10. However, the present work proposes to simulate the viscoelastic

internal variables that exhibit dynamic behavior. From this, the branches of interest are

defined: Branch 1, 2, 3, and 4. They correspond to the first 4 Maxwell branches in Fig-

ure 1. In the sequence, the complete model is simply a cutout of the generalized Maxwell

model that contains only the branches of interest, and it is shown in Figure 4.

Figure 3: Corresponding viscoelastic internal variables for Maxwell branches 1, 4, 5 and
10 from the dataset. There is no dynamic behavior in the higher branches.

Source: Author’s own elaboration.

After this reduction in the quantity of data to be analyzed by defining the complete

model, it is interesting to observe the behavior of the components of the right Cauchy-

Green deformation tensor in the function of the viscoelastic internal variables. Considering

only the Branch 1, Figure 5 shows the hysteretic behavior between them. Complementing

Equation 1, the following section formulates the suggested model by adding a hysteresis

model.
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Figure 4: The complete model is defined containing the first 4 Maxwell branches of the
generalized Maxwell model. Branches of interest: Branch 1, 2, 3 and 4.

 

 
 

 

 
 

 

Source: Author’s own elaboration.

Figure 5: Examples of hysteresis loops in Branch 1. The Bouc-Wen model is considered
to model the hysteretic behavior between the components of the right Cauchy-Green
deformation tensor and viscoelastic internal variables.

Source: Author’s own elaboration.
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1.2 THE BOUC-WEN MODEL

For one branch of interest in Figure 4, the component C = C(t) of the right Cauchy-

Green deformation tensor and its corresponding viscoelastic internal variable A = A(t)
are both time series. Complementing Equation 1, it is assumed that C(t) is the sum of

three terms: a linear elastic given by k A(t) in which k is a coefficient of elasticity; a

viscous c Ȧ(t) in which c is a damping coefficient; and a hysteretic output Z(A, Ȧ):

C(t) = k A(t) + c Ȧ(t) + Z(A, Ȧ). (2)

The hysteresis phenomenon is recurrent in many areas of science. In dynamic struc-

tural systems, the hysteresis occurs as a natural response of the material against the move-

ment. The hysteresis is related to the memory effect of inelastic behavior. It depends

not only on the instantaneous deformation but also on its history (ISMAIL; IKHOUANE;

RODELLAR, 2009).

Different models can describe the hysteresis. In (BRANCATI; STRANO; TIMPONE,

2011), the Dahl’s model is used to model the restoring force-strain relation. The au-

thors proposed a strain-restoring force model corresponding to the sum of linear elastic,

viscous and nonlinear hysteretic terms. Instead of using the Dahl’s model, the adopted

approach in this work is to model the hysteresis with the Bouc-Wen model. The latter can

describe different nonlinear dissipation mechanisms through a first-order nonlinear differ-

ential equation. The Bouc-Wen model is prevalent in many applications because it can

fit real hysteresis loops by choosing the parameters appropriately. That is why the Bouc-

Wen model is often related to parameter estimation problems. A survey on the Bouc-wen

model can be found in (ISMAIL; IKHOUANE; RODELLAR, 2009). Equation 3 defines

the hysteretic output Z(A, Ȧ):

Ż(A, Ȧ) = α Ȧ(t) − γ |Ȧ(t)||Z|ν−1Z − δ Ȧ(t)|Z|ν , (3)

where α, γ, δ and ν are the parameters of the Bouc-Wen model. After algebraic manip-

ulation of Equations 2 and 3, the suggested model is defined by the following system of

first-order nonlinear differential equations:
Ȧ(t) = 1

c

(
C(t) − k A(t) − Z(A, Ȧ)

)
Ż = α Ȧ− γ |Ȧ||Z|ν−1Z − δ Ȧ|Z|ν .

(4)

In Equation 4, the input C(t) is completely determined from the dataset1. For certain

1This parameter is assumed to be an input variable in the model and is therefore known for the whole
range of analysis
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initial conditions A|t=0 = A0 and Z|t=0 = Z0
2, the output responses A(θ) and Z depend

only on the set of parameters θ = {c, k, α, γ, δ, ν}. Equation 4 can be solved numerically

by a classic Runge-Kutta method.

As for prior knowledge about the parameters, both the damping coefficient c and

the coefficient of elasticity k are strictly positive. It is worth noting that the Bouc-Wen

model is a phenomenological model: α, γ, δ, and ν do not necessarily have a physical

meaning. Some conditions on the Bouc-Wen model parameters are indicated for physical

and mathematical consistency in (ISMAIL; IKHOUANE; RODELLAR, 2009), e.g., the

Bouc-Wen model fulfills the second law of Thermodynamics if and only if ν > 0, γ > 0
and −γ ≤ δ ≤ γ. Moreover, the Bouc-Wen model is bounded input-bounded output

stable and consistent with the motion of physical systems if α > 0, γ + δ > 0 and

γ − δ ≥ 0. To ensure model consistency, such parameter conditions are adopted in the

calibration strategy. Chapter 2 presents an overview of the methods that are combined

to infer such parameters.

1.3 A data selection procedure

It is essential to highlight that, while the 96 (16 times 6) components of right Cauchy-

Green deformation from the dataset are the same for all branches, each branch of the

complete model will respond internally in a different way. For a single branch of the

complete model in Figure 4, there are 16 right Cauchy-Green deformation tensors. Each

right Cauchy-Green deformation tensor has 6 components. Similarly, for the same branch,

there are 16 viscoelastic internal variables. The viscoelastic internal variables are rank 2

symmetric positive-definite tensors, and each one has 6 components.

A component of the right Cauchy-Green deformation tensor is a time series. This

component may be different from the others (maxima and minima values, derivatives,

etc.) as shown in the examples in Figure 2. Similarly, the respective viscoelastic internal

variable is also a time series, and one may be different from the others. A hysteresis loop

is described by this component of the right Cauchy-Green deformation tensor and the

respective viscoelastic internal variable. Therefore, in the dataset, there are 96 (16 times

6) hysteresis loops per branch in the complete model. To be rigorous, each branch would

comprise 96 models to simulate all possible viscoelastic internal variables.

There are similar components of the right Cauchy-Green deformation tensor in the

dataset. These similarities can be explained by the symmetric construction of the tire

approximation used in this work. A selection procedure was defined based on the data

2In the numerical simulations, A0 is the first point of the viscoelastic internal variable from the dataset
and Z0 = 0.
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visualization: different patterns of components of right Cauchy-Green deformation were

identified. A single representative from each pattern was retained. After eliminating the

redundancies, the number of selected components of the right Cauchy-Green deformation

tensor is reduced to 16 inputs. However, instead of 16 models, the calibration strategy de-

fines an error metric that considers the differences in the inputs. The calibration strategy

evaluates the parameters of the suggested model in which the error metric is globally min-

imum. In other words, the suggested model best simulates viscoelastic internal variables

considering a reduced number of inputs.

Then, from numerical simulations, it was observed that dividing the inputs into two

groups improved performance. The 16 inputs were then visually separated based on

patterns between the components of the right Cauchy-Green deformation tensors. For

this reason, each branch in Figure 4 can be represented by two different models. Each

model is calibrated by considering only 8 inputs.

1.4 CONCLUDING REMARKS

The suggested model is a system of first-order nonlinear differential equations that

can be solved by a classic Runge-Kutta method. This chapter formulated the suggested

model to simulate viscoelastic internal variables to describe the viscoelasticity in steady-

state rolling tires. Although the information about the finite element model is limited, the

complete model was defined based on a cutout of the generalized Maxwell model. Thanks

to the dataset, it was possible to visualize the hysteretic behavior between the components

of the right Cauchy-Green tensors and the viscoelastic internal variables. The Bouc-Wen

model is able to describe this behavior.

Regarding future steps, some descriptions of this chapter are essential:

1. Through the literature on the Bouc-Wen model, it was possible to get prior knowl-

edge of the parameters of the suggested model. This prior knowledge is essential in

the calibration strategy;

2. Observing the dataset’s structure allowed the number of inputs to be reduced. In

the calibration strategy, this corresponds to a decrease in the computational time

required to infer the parameters of the suggested model.



27

2 A MODEL CALIBRATION STRATEGY

This chapter describes the methodology adopted in this work to calibrate the sug-

gested model. To begin, an error metric is defined to evaluate the discrepancy between

the suggested model responses and the data. Next, global sensitivity analysis, Sobol’s

indices, and Polynomial-Chaos expansion are described. The global sensitivity analysis

is intended to evaluate the parameters’ influence on the error metric’s variability. Then,

the Cross-Entropy method and Bayesian inference are also described. These methods

infer, respectively, the optimal set of parameters and the distributions of the parameters

based on the data of viscoelastic internal variables. Finally, the parameter distributions

can propagate the uncertainties and extend the suggested model into a stochastic one.

Figure 6 shows an overview of the current calibration strategy:

Figure 6: An overview of the calibration strategy: Global sensitivity analysis by valuating
the Sobol’ indices; Optimization through the Cross-Entropy methdod; Bayesian inference
to estimate the parameters distributions; Propagation of uncertainties.

Source: Author’s own elaboration.
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2.1 ERROR METRIC DEFINITION

As described in the previous chapter, a representative set containing several inputs is

selected from the dataset. Due to the formulation of the right Cauchy-Green tensor, the

same set is applied to all branches of interest of the full-order model. Into this single set,

the inputs differ in maxima and minima values, derivatives, etc. Figure 2 shows different

inputs from this set and Figure 5 the respective hysteresis loops in Branch 1. A logical

approach is identifying a model for each input in a branch of interest. However, this

would substantially increase the complexity of the problem and the number of parameters

to be identified. Therefore, the strategy adopted by this work lies in defining a unique

model that best forecasts viscoelastic internal variables for a branch of interest considering

the whole set of different inputs. To compare the discrepancies between the responses of

the suggested model with the internal viscoelastic variables independently of the input

differences, the following error metric is defined:

E(θ) = 1
Nout

Nout∑
j=1

∣∣∣∣∣∣ADS
j − Aj(θ)

∣∣∣∣∣∣
1

Nout−1
∑Nout

j=2

∣∣∣∣∣∣ADS
j − ADS

j−1

∣∣∣∣∣∣ . (5)

Equation 5 is the Mean Absolute Scaled Error (MASE). This error metric evaluates

the difference between the response of the suggested model A(θ) and the viscoelastic

internal variable ADS from the dataset at Nout points of the time series. The denominator

is a scaling factor that allows us to compare different error metrics independently of the

maximum and minimum values of the responses, their derivatives, etc. The MASE is the

best available error metric of forecast accuracy in situations with very different scales,

including close to zero or negative data (HYNDMAN; KOEHLER, 2006).

Equation 6 is simply the mean between the Nin evaluations of the error metric Ei(θ):

Ē(θ) = 1
Nin

Nin∑
i=1

Ei(θ). (6)

This equation also defines the loss function of an optimization problem, in which θ̂ is the

optimal set of parameters in the set of the feasible solutions B:

θ̂ = arg min
B
Ē(θ), (7)

and Ê = Ē(θ̂) is the minimum error between the suggested model responses and the

viscoelastic internal variables from the dataset. It is worth mentioning that other error

metrics can be investigated. Alternatively, one can suggest the error metric as a Pear-

son correlation coefficient with a classical Tikhonov regularization term (DANTAS et al.,

2019).
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After introducing a metric capable of assessing the performance of the suggested

model, the next section introduces the global sensitivity analysis for evaluating the model

parameters.

2.2 GLOBAL SENSITIVITY ANALYSIS

Global sensitivity analysis refers to a set of mathematical techniques that quantifies

input parameters’ influence on a system’s response of interest. Among other techniques,

global sensitivity analysis can be defined by the variance decomposition method, which

aims to decompose the output variance as the sum of contributions or combinations of

the input variable. Sobol’ indices is a variance decomposition method (SOBOL, 1993)

that has been recently explored by engineers. Its central idea is to expand a model into

the sum of increasing dimension terms and then determine the ratio between the partial

variances of these terms and the model’s total variance.

2.2.1 Sobol’ indices

Adopting a generic notation, let M be a model and X a random input vector gathering

n independent input parameters. M describes a scalar output of interest Y of a physical

system:

Y = M(X), X = {X1, X2, . . . , Xn}. (8)

Y can also be defined as the sum of increasing dimension terms (SOBOL, 1993). The

following description assumes that the input parameters are uniformly distributed and

DX = [0, 1]n is the support of X. Therefore, Y can be written as:

Y = M0 +
n∑

i=1
Mi(Xi) +

n∑
i<j

Mij(Xi, Xj) + · · · + M1,...,n(X1, . . . , Xn). (9)

The terms of this expansion can be computed through integrals. The first one M0 is

constant and equal to the expected value:

M0 =
∫

DX

M(X) dX, (10)

and the others Mi(Xi) and Mij(Xi, Xj) are the conditional mean values for parameters

i and ij | i ̸= j, respectively:

Mi(Xi) =
∫ 1

0
· · ·

∫ 1

0
M(X) dX∼i − M0, (11)
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Mij(Xi, Xj) =
∫ 1

0
· · ·

∫ 1

0
M(X) dX∼ij − M0 − Mi(Xi) − Mj(Xj). (12)

The notation ∼ i indicates that parameterXi is excluded. Equation 9 has the property

of orthogonality in terms of conditional means (HOMMA; SALTELLI, 1996), and it is

possible to define the Sobol’ decomposition in terms of conditional variances (SOBOL,

1993). Thus, one can compute the first-order Sobol’ indices that quantify the additive

effect of each input parameter separately concerning the total variance:

Si = V ar[Mi(Xi)]
V ar[M(X)] , (13)

and the second-order Sobol’ indices that quantify the interaction effects between two input

parameters:

Sij = V ar[Mij(Xi, Xj)]
V ar[M(X)] . (14)

Higher-order Sobol’ indices are equally defined and take into account the interaction

effects of various input parameters.

2.2.2 Polynomial-Chaos expansion

Monte Carlo simulation can be used to compute Sobol’ indices, although its high

computational cost is due to the low convergence rate. An alternative way to calculate

Sobol’ indices is by constructing a surrogate model based on polynomial chaos expansion

(PCE). Surrogate modeling consists of techniques that approximate a model in order to

reduce computational cost while maintaining model accuracy. Sobol’ indices are computed

using PCE in (CRESTAUX; MAÎTRE; MARTINEZ, 2009; PALAR et al., 2018).

PCE was developed by (WIENER, 1938). In engineering, PCE can be applied to

the spectral analysis of stochastic finite elements (GHANEM, 2011). A non-intrusive

method represents an uncertain quantity of interest through an expansion composed of

deterministic coefficients and orthogonal polynomials. This paper is a review of global

sensitivity analysis using PCE (SUDRET, 2008).

Based on PCE expression, the scalar output of interest Y can be rewritten as:

Y ≈
∑
α∈A

yαψα(X). (15)

In Equation 15, ψα are multivariate polynomials that are orthonormal in relation to

a joint probability density function fX , yα are unknown deterministic coefficients and A
is a truncation criterion, where A ⊂ NM is the set of selected multi-indices of multivari-
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ate polynomials. The coefficients can be determined through the least angle regression

method.

The statistics of an uncertain output response Y can be determined using PCE. There-

fore, the mean and the variance are defined, respectively, by:

M0 = y0 and V̂ ar[Y ] =
∑
α∈A
α̸=0

y2
α. (16)

Therefore, the PCE coefficients can directly determine the Sobol’ indices with minor

computational effort. Thus, the first and second-order Sobol’ indices are, respectively:

SPCE
i =

∑
α∈Ai

α ̸=0

y2
α

/∑
α∈A
α ̸=0

y2
α, (17)

SPCE
ij =

∑
α∈Aij

α ̸=0

y2
α

/∑
α∈A
α ̸=0

y2
α. (18)

In this work, a global sensitivity analysis is performed. The Sobol’ indices are com-

puted through the coefficients of a PCE-based surrogate model to verify the influence of

the parameters of the Bouc-Wen model on the error measure.

2.3 THE CROSS-ENTROPY METHOD

The cross-entropy (CE) method translates an optimization problem into a rare event

estimation problem, and this method can be treated as a two-step iterative process:

• First, random samples are generated according to a given probability distribution

is determined feasible region;

• Then, the statistics, i.e., the mean and variance of a set composed of the best

performing samples, are used to refine the probability distribution parameters.

Among other applications, the CE method can be used to solve continuous and com-

binatorial optimization problems (BOER et al., 2005). Additional information about its

theoretical framework and practical considerations about the optimization method can be

found in (RUBINSTEIN; KROESE, 2011).

The central idea of the CE method is based on importance sampling technique and

variance minimization. First, let X ∼ f be a random variable with probability density
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function (PDF) f and let H(X) be a function. The expected value of H(X) is:

µf = Ef{H(X)} =
∫

B
H(x)f(x)dx. (19)

Let g be other PDF. The expected value of H(X)f(X)
g(X) is:

µg = Eg

{
H(X)f(X)

g(X)

}
=
∫

B
H(x)f(x)

g(x) g(x)dx, (20)

and the importance sampling estimator µ̂g is:

µ̂g = 1
Nk

Nk∑
k=0

H(xk)f(xk)
g(xk) , X ∼ g, (21)

where the term on the right defines W (x) = f(x)
g(x) the likelihood ratio. The quality of the

estimator µ̂g depends on the PDF g. The optimal importance sampling PDF ĝ∗ is the

one in which the variance of µ̂g is minimal.

The Kullback-Leibler divergence denoted D(g, h) offers a measure of how different

a chosen PDF h is with respect to the reference PDF g. It is defined as follows in

Equation 22:

D(g, h) = Eg

{
ln g(X)
h(X)

}
. (22)

The PDF f(·; v) determined by the hyper-parameters vector v is chosen. As it is

shown in (KROESE; RUBINSTEIN; GLYNN, 2013), the minimization of D(ĝ∗, f(·,v))
leads to Equation 23, with ĝ∗ ∝ Hf(·; u):

v∗ = arg max
w

Ew

{
H(x)W (x; u,w) ln f(x; v)

}
(23)

Finally, for Xs ∼ f(·; w) and W (xs; u,w) = f(·;u)
f(·;w) , v̂ is the hyper-parameter vector

that approximates to the optimal importance estimator (minimal variance):

v̂ = arg max
w

1
Nk

Nk∑
k=0

H(xk)W (xk; u,w) ln f(xk; v). (24)

Some assumptions are made in the sequence about the function H(x). For rare event
simulation and optimization problems, H(x) = 1J(x)≥ϵ where 1J(x)≥ϵ is the indicator
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function and J(x) is an objetive function. Specifically, in this work:

H(θ) = 1Ē(θ)≥ϵ =

1 if Ē(θ) ≥ ϵ

0 if Ē(θ) < ϵ.
(25)

The expected value of the indicator function is the probability of the event Ē(θ) ≥ ϵ

to occur.

µ = E
{
1Ē(θ)≥ϵ

}
= P{Ē(θ) ≥ ϵ}, (26)

and its importance sampling estimator µ̂g is:

µ̂g = 1
Nk

Nk∑
k=0

1Ē(θ(k)))≥ϵ. (27)

(CUNHA, 2021) intuitively describes the computational algorithm of the CE method

through the following steps:

1. Initialize: Choose initial hyper-parameters values µ̂0 and σ̂
2
0, and v̂0 = {µ̂0, σ̂

2
0}. Set

level counter l = 1;

2. Sampling: Generate Nk independent and identically distributed (iid) samples from

the standard multivariate Gaussian distribution:

θ(1), . . . ,θ(Nk) ∼ N
(
µ̂l−1, σ̂

2
l−1

)
;

3. Select: Evaluate the objective function for each sample and sort the Nk results in

order:

Ē(θ(·)) ≤ · · · ≤ Ē(θ(·)).

The called elite sample set E gathers the NE < Nk samples that better performed;

4. Update: Compute estimators:

µ̃l = 1
NE

∑NE
s=1 θ(s), (28)

σ̂2
l = 1

NE

∑NE
s=1

(
θ(s) − µ̃l

)2
; (29)

5. Smooth: Apply the smooth updating schema:

µ̂l := a · µ̃l + (1 − a) · µ̂l−1; (30)

6. Return θ̂ = µ̂l if the stopping criteria σ̂2
l < ϵmax is reached. Otherwise, increase

level counter by 1 and return to the second step.
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Operationally, the hyper-parameters vector v̂ in Equation 24 can be estimated via

maximum likelihood estimation method. The use of the standard multivariate Gaussian

distribution (BOTEV, 2016) on the sampling step of the CE method simplifies the esti-

mation of v̂ and the hyper-parameters can be computed directly by Equations 28 and 29.

Despite its mathematical formulation, the CE method can be easily implemented, and

only few parameters that are pretty intuitive are needed: given the PDF f(·; v), the total
number of samples Ns, the number of samples NE in the elite sample set, a stopping

criterion ϵmax and the maximum of iteration level lmax.

To the sequence, Ê can be computed using Equation 7 and the parameters of the

Bouc-Wen model are considered as random quantities. Their distributions are inferred

via Bayesian inference.

2.4 BAYESIAN INFERENCE

Bayesian inference approach is a straightforward strategy to quantify uncertainties

(GELMAN et al., 2013). A set of parameter is considered as a random input vector x and

the methodology to infer its distribution is based on the Bayes’ theorem in Equation 31:

π(x|Ê) = π(Ê|x) π(x)
π(Ê)

, (31)

where π(x) is the prior distribution of the set of parameters x, π(Ê|x) is the likelihood

function of Ê given a set of parameters x at hand and π(x|Ê) is the posterior distribution
of the set of parameters x given Ê. The denominator π(Ê) is the marginal likelihood: it is

a normalized constant so the posterior distribution defines a probability density function

with integral equal to the unity. In this case, Equation 31 can be simplified into:

π(x|Ê) ∝ π(Ê|x) π(x). (32)

The prior distribution π(x) can be interpreted as the knowledge degree about x before

any evidence. It is classified based on its influence on the posterior distribution, and an

example of a diffuse – or non-informative – prior is a Uniform prior distribution. In this

case, Equation 32 can also be simplified into:

π(x|Ê) ∝ π(Ê|x). (33)

One assumes that Ê is the error measure Ē(θ) from the suggested model plus a
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discrepancy term ϵ that is the source of uncertainty:

Ê = Ē(θ) + ϵ, (34)

and it is supposed an additive Gaussian discrepancy with mean µϵ = 0 and unknown

variance σ2
ϵ . One can demonstrates that in cases where µϵ = 0 and σ2

ϵ is known, the

additive Gaussian discrepancy model corresponds to the MaxEnt3 principle (SOIZE, 2017).

In this case, ϵ ∼ N (0, σ2
ϵ ) and:

π
(
Ê|x = {θ, σ2

ϵ }
)

∼ N
(
Ê| Ē(θ), σ2

ϵ

)
. (35)

In the case of independent and identically distributed (iid) observations, the likelihood

function is defined as:

π
(
Ê|x

)
=

N∏
i=1

π
(
Êi|x

)
= 1√

2πσ2
ϵ

exp
(

− 1
2

N∑
i=1

(
Êi − Ē(θ)

)2

σ2
ϵ

)
, (36)

and after Equations 33 and 36, the posterior distribution can be finally defined as follows:

π(x|Ê) ∝ 1√
σ2

ϵ

exp
(

− 1
2

N∑
i=1

(
Êi − Ē(θ)

)2

σ2
ϵ

)
. (37)

2.4.1 Markov chain Monte Carlo

To determine the posterior distribution π(x|Ê) of parameters x given Ê is not always

trivial. Usually, Monte Carlo simulation is used to approximate the solutions. This book

is a review on Monte Carlo methods (KROESE; TAIMRE; BOTEV, 2011).

The Metropolis-Hastings algorithm is a Markov chain Monte Carlo (MCMC) method

based on the construction of a Markov chain such that the future state x(k+1) of the

chain depends only on its current state x(k) and a transition probability distribution

T
(
x(k+1)| x(k)

)
. In the presence of a sufficient number of unbiased samples, the sequence

of random variables X = {x(0),x(1),x(2), ...} represents the posterior distribution π(x|Ê):

π
(
x(k+1)|Ê

)
π
(
x(k)|Ê

) =
T
(
x(k+1)|x(k)

)
T
(
x(k)|x(k+1)

) . (38)

The procedure for generating the future state x(k+1) is a two-stage process: the first

stage is to generate a candidate x(∗) that depends only on the current state x(k) of the

Markov chain; the second stage is to accept or reject x(∗). To this end, it is necessary

3The MaxEnt principle establishes the distribution that maximizes the entropy, depending on the available
information (mean, variance, support, etc.) about a system.
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to compute the acceptance probability a according to Equation 39, where K
(
x(∗)|x(k)

)
is

the proposed probability distribution:

a = min

1,
π
(
x(∗)|Ê

)
K
(
x(∗)|x(k)

)
π
(
x(k)|Ê

)
K
(
x(k)|x(∗)

)
. (39)

Then, a random number u ∼ U(0, 1) is generated from a Uniform distribution with

parameters 0 and 1. If u < a, the candidate x(∗) is accepted and x(k+1) = x(∗). Otherwise,

if u ≥ a, x(∗) is rejected and x(k+1) = x(k).

The random walk Metropolis algorithm is a particular case of the Metropolis-Hastings

algorithm. In it, a symmetric Gaussian distribution with variance σ2 is proposed to

generate the candidate x(∗) (SAADI; YKHLEF; GUESSOUM, 2011) yielding:

a = min

1, π(x(∗)|Ê)
π(x(k)|Ê)

. (40)

The following steps summarizes the random walk Metropolis algorithm:

1. Initialize the counter and assign initial value x(0);

2. Generate a candidate x(∗) ∼ N (x(k), σ2);

3. Compute the acceptance probability a
(
x(∗),x(k)

)
and generate a random number

u ∼ U(0, 1);

4. Does u < a? If positive, accept the candidate and x(k+1) = x(∗). If negative, reject

and x(k+1) = x(k);

5. Increment the counter and return to the second step.

This article adopted some strategies while implementing the Metropolis-Hastings algo-

rithm to accelerate the convergence of the Markov chain (SAADI; YKHLEF; GUESSOUM,

2011). A first feature is the total number of generated samples: the Markov chain must be

large enough to adequately represent the distributions of the parameters respecting the

law of large numbers. The second one is the acceptance probability rate ā = Na

Nk

that is

the ratio between the number of accepted samples Na and the total number of generated

samples Nk. ā is controlled by the random walk step σ: on the one hand, if the jump from

one sample to the other is too large, ā is small, and the chain keeps static; on the other

hand, if the jump from one sample to the other is too small, ā is big, and the chain needs

more time to go through the parameters space. One considers the optimal ā between 40%
– 50% (SAADI; YKHLEF; GUESSOUM, 2011). The last feature is the burn-in: eliminat-
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ing a defined number of initials samples from the final result. This feature is essential to

eliminate biased results.

2.5 CONCLUDING REMARKS

This chapter’s central importance is registering the theoretical background of the

adopted calibration strategy. At the beginning, an error metric is defined to quantify

the differences between the responses of the formulated model and the data. Adopting

a practical point of view, the prior global sensitivity analysis aims to determine which

parameters of the Bouc-Wen model influence the variability of the error metric. The

parameters whose Sobol’ indices are negligible can be considered as constant quantities

to save processing time during the model calibration. The Cross-Entropy method aims to

compute the optimal set of parameters from which the error metric is minimal. In addition,

the optimal parameters provide complementary information for determining the prior

distributions of the Bayesian inference. This latter aims to determine the distributions

of the parameters through the posterior distribution of parameters given the data of

viscoelastic internal variables. These distributions can propagate the uncertainties in the

error metric and the suggested model responses. The construction of a model that takes

into account the uncertainties in its formulation can contribute to the development of

more robust tires. Figure 7 is a schematic that describes the steps in this work, including

the model calibration strategy:

Instead of applying complex techniques to construct and then calibrate the Bouc-Wen

model, the insights of this methodology are:

1. Even treating a complex nonlinear problem such as viscoelasticity, the suggested

model consists of a simple system of nonlinear differential equations. This system

can be solved numerically with reduced computational cost;

2. Sobol’ indices evaluate the importance of the parameters, in combination or individ-

ually, on the variability of the responses and justify the necessity to calibrate or not

a parameter. In this way, this methodology determines which parameters should be

calibrated. In addition, Sobol’ indices can be evaluated with little computational

costs from the coefficients of a PCE-surrogate model;

3. The cross-entropy method guarantees convergence;

4. Both the cross-entropy method and the Bayesian inference can be easily imple-

mented. In addition, Sobol’ indices can be evaluated using open-sources libraries

such as UQLab (MARELLI; SUDRET, 2014);
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Figure 7: A schematic of the different steps in this work, including the model calibration
strategy.

 

Source: Author’s own elaboration.

5. The suggested model is calibrated using data that originated from a finite element

model, the standard model in the tire industry;

6. The same approach could be used to solve other structural dynamics problems, e.g.,

friction models with a population of sliders such as the Iwan model (SEGALMAN,

2005)).
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3 RESULTS AND DISCUSSION

By adopting the model calibration strategy from Chapter 2, this chapter calibrates

a set of Bouc-Wen models and presents results that justify that the methods that com-

pose the model calibration strategy were adequately used: initially, a preliminary global

sensitivity analysis is conducted by evaluating the Sobol’ indices from the coefficients of

a PCE-based surrogate model; next, the minimum error metric is computed using the

Cross-Entropy Method. The model parameters that give the minimum error metric are

considered optimal; then, Bayesian inference is used to determine the distributions of the

influential parameters of the suggested model.

As stated in Chapter 1, the complete model is formed by the first 4 Maxwell branches

of the generalised Maxwell model. In these branches, the viscoelastic internal variables

present dynamic behavior. Figure 8 recalls the complete model:

Figure 8: A recall of the complete model. Branches of interest: Branches 1, 2, 3 and 4.

 

 
 

 

 
 

 

Source: Author’s own elaboration.

Through numerical simulations, it was observed that better results were archived when

the inputs were divided into 2 groups: Group 1 and 2. Thus, the total work to be done

consists of calibrating 8 models (Branches 1, 2, 3 and 4 × Group 1 and 2). As the same

model calibration strategy was applied to them, to avoid repetition, the results related

to the calibration procedure are presented to Branch 1, Group 1 only. Otherwise, the

results associated with determining the distributions of error metrics are presented to the

8 models.
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3.1 BOUC-WEN MODEL CALIBRATION

The MATLAB scripts used in numerical simulations are available in the following

GitHub repository: https://github.com/rafaelraqueti/UQ_Bouc-Wen_calibration.

git. As the dataset belongs to Michelin, it is unavailable in this repository.

It is assumed that the parameters of a Bouc-Wen model follow a Uniform distribu-

tion U(a, b) with support a and b, which are respectively the minimum and maximum

values. This assumption was made because any event in a Uniform distribution is equally

likely to be chosen. Table 1 shows the minimum and maximum values used in the prior

global sensitivity analysis. The bounds a and b were chosen respecting the physical and

mathematical consistency of the Bouc-Wen model.

Table 1: Uniform distributions of the parameters of the Bouc-Wen model used in the prior
global sensitivity analysis.

U(a, b) c k α γ δ ν
a 0 0.999 0 1,000 -1,000 1
b 0.01 1.001 1 10,000 1,000 3

Source: Author’s own elaboration.

The prior global sensitivity analysis was performed to verify which parameters of the

proposed model are influential. To do so, a PCE-based surrogate model Ẽ(θ) was built

as an alternative to evaluate the error metric Ē(θ). The coefficients of the PCE-based

surrogate model were computed using the UQLab metamodeling module (MARELLI;

LÜTHEN; SUDRET, 2022). Table 2 contains information about the PCE-based surrogate

model: the PCE degree was selected by the UQLab module by verifying which surrogate

model with the PCE degree between 1 and 15 performed the best.

Table 2: Information about the PCE-based surrogate model.

PCE degree qNorm Exp. Design LOO error Time [min]
13 0.75 1, 000 1.7 · 10−2 25

Source: Author’s own elaboration.

Figure 9 compares the error metrics Ē(θ) and Ẽ(θ): the closer to the black diagonal

line, the more reliable the PCE-based surrogate model is. In Figure 9, both Ē(θ) and

Ẽ(θ) were evaluated using 100 cross-validation samples, i.e., samples that were not used

to built the PCE-based surrogate model. It is worth mentioning that the model is not yet

calibrated. That is why it is normal to observe in Figure 9 values of the error measure

higher than the unity.

https://github.com/rafaelraqueti/UQ_Bouc-Wen_calibration.git
https://github.com/rafaelraqueti/UQ_Bouc-Wen_calibration.git
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Figure 9: Branch 1, Group 1 – Comparison between error metrics Ē(θ) and Ẽ(θ). The
disposition of the 100 cross-validation samples + indicates that the PCE-based surrogate
model is adequate.

Source: Author’s own elaboration.

Once the PCE-based surrogate model was built and validated, the Sobol’ indices

were computed from its coefficients with minor computational effort using the UQLab

sensitivity analysis module (MARELLI et al., 2022). This global sensitivity analysis allows

conclusions about the Bouc-Wen model parameters before inferring their distributions.

Figure 10 shows the total and first-order Sobol’ indices. These values are compared with

the Sobol’ indices computed using Monte Carlo simulation in Figure 11 (a maximum of

100 model evaluations). The Sobol’ indices based on PCE were considered adequate.

Figure 10: Branch 1, Group 1 – Prior global sensitivity analysis. Total and first-order
Sobol’ indices of parameters γ and δ are negligible. Therefore, γ and δ can be considered
as completely determined quantities.

Source: Author’s own elaboration.
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Figure 11: Comparison between Sobol’ indices based on Monte Carlo estimation and
polynomial chaos expansion.

Source: Author’s own elaboration.

On the one side, the total and first-order Sobol’ indices of parameters γ and δ indicate

little influence on the error metric. In this sense, having less or more variability on these

parameters does not mean that the suggested model simulates viscoelastic internal vari-

ables more accurately. For this reason, they were considered as completely determined

quantities and their values were set to γ = 1000 and δ = 1000 so γ
γ+δ

= 0.5, a limit condi-

tion for uniqueness of the solution (ISMAIL; IKHOUANE; RODELLAR, 2009). However,

the total Sobol’ index of parameter γ is not negligible. This indicates that the parameter

γ can influence the error metric when combined with other parameters. On the other

side, parameters c, α, k, and ν have considerable influence, and their variability requires

attention, so they were considered unknowns. It is worth mentioning that total, and first-

order Sobol’ indices of parameters c, k and α are close (for k it is the more evident). This

indicates that the higher-order indices are relatively small, and the influences of these

parameters, when combined, are less significant than the individual influences. The same

conclusions were assumed for the other models.

After the prior global sensitivity analysis, the error metric was considered as an op-

timization problem and the solution of Equation 7 was computed using the CE method.

The parameters of the CE method of this step were: Ns = 100 samples, NE = 4 samples,

lmax = 500 iterations and ϵmax = 10−6. A smooth updating schema of a = 0.8 was also

used. The same configuration was adopted to the other models. Table 3 shows the elapsed

time to estimate the optimal parameters values:

After solving the optimization problem through the CE method, Ê = 0.3171 for

Branch 1, Group 1, which is less than the values in Figure 9. The optimal values in

Table 3 can be used to simulate viscoelastic internal variables. However, it is desirable to

verify how the uncertainties propagate in the response of the suggested model. For this,

the parameters c, k, α, ν and the variance of the discrepancy σ2
ϵ were calibrated using
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Table 3: Branch 1 – Cross-Entropy method. Elapsed time and optimal values of the
influential parameters of the Bouc-Wen model.

Group ĉ k̂ α̂ ν̂ Ê Time [min]
Group 1 0.0018 1.0000 0.1152 1.0220 0.3171 63
Group 2 0.0035 1.0000 0.0418 1.8039 0.3655 39

Source: Author’s own elaboration.

Bayesian inference according to the following procedure:

1. The bounds a and b of the Uniform prior distribution U(a, b) are redefined according

to Tables 4 and 5, depending on the branch of interest;

2. Initially, a Markov chain containing a total of Nk = 103 samples were generated.

The random walk step size σ was manually adjusted, and this step was repeated

until the acceptance rate was ā ≈ 40 − 50%;

3. Then, a Markov chain containing Nk = 105 samples was generated. In this condition,

ā did not change its value significantly. These samples were used to study the

convergence of the Markov chain;

4. Finally, 2 other Markov chains containing a reduced number of samples were gener-

ated to verify the chain stability.

Table 4: Branches 1, 2 and 3 – Bayesian inference. Uniform prior distribution of the
parameters of the Bouc-Wen model and the variance of the discrepancy.

U(a, b) c k α ν σ2
ϵ

a 0 0.999 0 1 0
b 0.01 1.001 1 3 0.1

Source: Author’s own elaboration.

Table 5: Branch 4 – Bayesian inference. Uniform prior distribution of the parameters of
the Bouc-Wen model and the variance of the discrepancy.

U(a, b) c k α ν σ2
ϵ

a 0 0.999 0 1 0
b 0.03 1.001 2 3 0.1

Source: Author’s own elaboration.

To illustrate this procedure, Figure 12 to 16 show, for Branch 1, Group 1: 1) the trace

plot of the proposed model parameters c, k, α and ν; 2) the trace plot of the variance

of the discrepancy σ2
ϵ ; 3) at the left, the convergence study of the first central moment
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(mean); 4) at the right, the convergence study of the second central moment (variance).

For these and the next figures, ”Samples” in the legend refer to the samples that compose

a Markov chain. Visually, both first and second central moments converged considering

Nk = 105 samples. Furthermore, Figure 15 indicates the minimum number of Nk = 2×104

samples for which the first and second central moments converged.

Figure 12: Branch 1, Group 1 – Bayesian inference. Convergence study of parameter c:
first (Mean) and second central moments (Variance). The acceptance rate is ā ≈ 43%
and no burn-in samples were considered.

Source: Author’s own elaboration.

Figure 13: Branch 1, Group 1 – Bayesian inference. Convergence study of parameter k:
first (Mean) and second central moments (Variance). The acceptance rate is ā ≈ 43%
and no burn-in samples were considered.

Source: Author’s own elaboration.

Then, two other Markov chains containing the minimum number of Nk = 2 × 104

samples were generated using different random number generator seeds. In Figure 17,

the 3 Markov chains are equally distributed in the space defined by support a and b. In

addition, there was no need to eliminate burn-in samples.
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Figure 14: Branch 1, Group 1 – Bayesian inference. Convergence study of parameter α:
first (Mean) and second central moments (Variance). The acceptance rate is ā ≈ 43%
and no burn-in samples were considered.

Source: Author’s own elaboration.

Figure 15: Branch 1, Group 1 – Bayesian inference. Convergence study of parameter ν:
first (Mean) and second central moments (Variance). The acceptance rate is ā ≈ 43% and
no burn-in samples were considered. Number of samples to reach convergence is 2 × 104

samples (indicated by the magenta vertical line).

Source: Author’s own elaboration.
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Figure 16: Branch 1, Group 1 – Bayesian inference. Convergence study of the variance
of the discrepancy: first (Mean) and second central moments (Variance). The acceptance
rate is ā ≈ 43% and no burn-in samples were considered.

Source: Author’s own elaboration.

The adopted procedure in the Bayesian inference step is essential because it guarantees

the convergence and stability of the Markov chain. In addition, it allows them to establish

a pattern to calibrate the other models. Because the Monte Carlo simulation is the

most computationally expensive step from the model calibration strategy, determining

the minimum number of samples and excluding burn-in samples reduces computational

effort. The Markov chains were then used to estimate the distributions of the influential

parameters of the Bouc-Wen model. The elapsed time to evaluate the values of the

significant parameters is indicated in Table 6.

Table 6: Branch 1, Group 1 - Bayesian inference. Elapsed time to estimate the values of
the parameters of the Bouc-Wen model and the variance of the discrepancy. Nk = 2×104

samples.

Branch Group σ2 ā [%] Time [min]
Branch 1 Group 1 0.09 43 311

Group 2 0.07 43 172

Source: Author’s own elaboration.

Figure 18 shows the densities and cumulative densities of each one of the calibrated

parameters, where the continuous black line is the probability density estimates (EPDF)

based on a normal kernel function, the black dashed line is the Uniform prior distribution,

and the marked red line is the empirical cumulative distribution function (ECDF).

From these distributions:

• It is possible to notice that the samples are centered around 0.002 and 1 for pa-

rameters c and k, respectively. The is a good agreement between the mean of their
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Figure 17: Branch 1, Group 1 – Bayesian inference. Trace plots of the parameters of the
Bouc-Wen model and the variance of the discrepancy: the samples were generated using
different random number generator seeds.

Source: Author’s own elaboration.
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Figure 18: Branch 1, Group 1 – Bayesian inference. Distributions of the parameters of
the Bouc-Wen model and variance of the discrepancy: Uniform prior (Prior), estimated
probability density functions (EPDF) and empirical cumulative distribution functions
(ECDF).

Source: Author’s own elaboration.
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distributions and the optimal value computed through the Cross-Entropy method

in Table 3;

• There is a higher tendency for parameter α to get values between 0 and 0.2. Equally,
there is a higher tendency for parameter ν to get values close to 1. The is also a

good agreement between their mean and the optimal value in Table 3.

Similarly, the same convergence study was done for the error metric of Branch 1,

Group 1. The error metric is defined in Equation 6. Figure 19 shows that both the mean

and variance converged considering the optimal number of samples. Figures 20 to 23

show the density and cumulative density function of the error metrics of all branches of

interest. In these figures, the continuous black line is the probability density estimates

(EPDF) based on a normal kernel function, and the marked red line is the empirical

cumulative distribution function (ECDF). The vertical dashed magenta line indicates the

optimal value Ê of the error metric determined by the CE method. It is worth mentioning

that Ê has low probability of occurrence. On the one hand, from their ECDF, there is

a high probability of having E(θ) ≤ 1 in Branches from 1 to 3. On the other hand,

Branch 4 optimal value Ê of the error metric is already higher than 1. By adopting this

criterion, this specific model is not suitable for simulating viscoelastic internal variables

from Branch 4.

Figure 19: Branch 1, Group 1 - Convergence study of the error metric: first (Mean) and
second central moments (Variance).

Source: Author’s own elaboration.

Finally, Figures 24 and 25 show some responses of the suggested model with uncer-

tainties for Branch 1 and 4, respectively. Both Group 1 were considered to compare the

responses from the same inputs C(t) and initial conditions A|t=0 used during the Bouc-

Wen model calibration procedure. The responses of Branch 1 were the best estimation

and the ones of Branch 4 the worst estimation scenario, where the error metric has its

higher value.
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Figure 20: Branch 1 - Distributions of the error metric: estimated probability density
function (EPDF) and empirical cumulative distribution function (ECDF). The minimum
values given by the CE method are Ê = 0.3171 (Group 1) and Ê = 0.3655 (Group 2).

Source: Author’s own elaboration.

Figure 21: Branch 2 – Distributions of the error metric: estimated probability density
function (EPDF) and empirical cumulative distribution function (ECDF). The minimum
values given by the CE method are Ê = 0.3942 (Group 1) and Ê = 0.4347 (Group 2).

Source: Author’s own elaboration.
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Figure 22: Branch 3 – Distribution of the error metric: estimated probability density
function (EPDF) and empirical cumulative distribution function (ECDF). The minimum
values given by the CE method are Ê = 0.5776 (Group 1) and Ê = 0.6857 (Group 2).

Source: Author’s own elaboration.

Figure 23: Branch 4 – Distribution of the error metric: estimated probability density
function (EPDF) and empirical cumulative distribution function (ECDF). The minimum
values given by the CE method are Ê = 1.0116 (Group 1) and Ê = 1.6672 (Group 2).

Source: Author’s own elaboration.
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Figure 24: Branch 1, Group 1 – Propagation of the uncertainties. Responses of the
stochastic model: 95% confidence interval (CI), its mean (Mean) and corresponding vis-
coelastic internal variables from the dataset (ADS). Best Group 1 estimation scenario.

Source: Author’s own elaboration.
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Figure 25: Branch 4, Group 1 – Propagation of the uncertainties. Responses of the
stochastic model: 95% confidence interval (CI), its mean (Mean) and corresponding vis-
coelastic internal variables from the dataset (ADS). Worst Group 1 estimation scenario.

Source: Author’s own elaboration.
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Tables 7 and 8 show the parameters of the CE method and of the Metropolis-Hastings

algorithm. It is worth mentioning that the elapsed time of the Bayesian inference was

one order of magnitude higher than the elapsed time of the CE method, and the absolute

and relative tolerances adopted in the Runge-Kutta method were an important factor

in the computation time: more lenient tolerances can reduce the elapsed time. These

simulations were performed on a notebook with an Intel(R) Core(TM) i7-4510U CPU

2.00GHz processor.

Table 7: Cross-Entropy method. Elapsed time to estimate the values of the parameters
of the Bouc-Wen model: Ns = 100 samples, NE = 4 samples, ϵmax = 10−6, lmax = 500
iterations and a = 0.8.

Branch Group Time [min]
Branch 1 Group 1 63

Group 2 39
Branch 2 Group 1 27

Group 2 22
Branch 3 Group 1 35

Group 2 26
Branch 4 Group 1 50

Group 2 12

Source: Author’s own elaboration.

Table 8: Bayesian inference. Elapsed time to estimate the values of the parameters of the
Bouc-Wen model and the variance of the discrepancy: Nk = 2 × 104 samples.

Branch Group σ2 ā [%] Time [min]
Branch 1 Group 1 0.09 43 311

Group 2 0.07 43 172
Branch 2 Group 1 0.09 44 241

Group 2 0.06 44 103
Branch 3 Group 1 0.09 46 149

Group 2 0.07 44 83
Branch 4 Group 1 0.05 42 173

Group 2 0.05 42 69

Source: Author’s own elaboration.

Table 9 shows the estimated values of the parameters of the Bouc-Wen model and the

variance of the discrepancy parameter in the Bayesian inference. Considering both the CE

method and the maximum a posteriori (MAP) estimation4, there was a correspondence

between the estimated values of parameters c and k. On the contrary, there was no

4The MAP estimation returns the set of parameters responsible for the highest probability of the posterior
distribution. The MAP estimate and the Maximum Likelihood Estimate (MLE) are equivalent when
noninformative prior distributions are adopted.
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clear correspondence between the estimated values of parameters α and ν. It is worth

mentioning that both estimators are equivalent for Branch 3, Group 2 and Branch 4,

Group 2. This is because the MAP initial iteration receives the CE values, and throughout

the Monte Carlo simulation, there was no other sample that generated a higher MAP value.

Table 9: Estimated values of the parameters of the Bouc-Wen model and the variance of
the discrepancy.

Branch Group Estimator c k α ν σ2
ϵ

Branch 1 Group 1 CE 0.0018 1.0000 0.1152 1.0220 n/a
MAP 0.0016 1.0000 0.0227 2.0326 0.0062

Group 2 CE 0.0035 1.0000 0.0418 1.8039 n/a
MAP 0.0034 1.0000 0.0551 2.4126 0.0069

Branch 2 Group 1 CE 0.0020 1.0000 0.0194 1.5031 n/a
MAP 0.0018 1.0001 0.1108 1.1788 0.0052

Group 2 CE 0.0043 1.0000 0.0511 2.3418 n/a
MAP 0.0042 1.0000 0.0433 2.1276 0.0040

Branch 3 Group 1 CE 0.0027 1.0000 0.1819 1.1381 n/a
MAP 0.0027 1.0000 0.2068 1.1640 0.0016

Group 2 CE 0.0072 1.0000 0.0738 1.9416 n/a
MAP 0.0072 1.0000 0.0738 1.9416 0.0100

Branch 4 Group 1 CE 0.0049 1.0001 1.0411 1.0418 n/a
MAP 0.0057 1.0001 0.6845 1.0911 0.0028

Group 2 CE 0.0154 1.0000 0.1077 1.8369 n/a
MAP 0.0154 1.0000 0.1077 1.8369 0.0100

Source: Author’s own elaboration.

Figures 26 and 27 compare some examples of deterministic responses of viscoelastic

internal variables. In them, the black dashed and marked (+) lines correspond to deter-

ministic responses of the suggested model adopting CE parameter values from Table 9.

In addition, the red dotted and marked (◦) lines correspond to deterministic responses of

the proposed model adopting MAP parameter values. Despite the differences in the pa-

rameter values in Table 9, Figures 26 and 27 indicate that both estimators provide similar

responses. That is verified for both Branch 1, the best Group 1 estimation scenario, and

Branch 4, the worst Group 1 estimation scenario.
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Figure 26: Branch 1, Group 1 – Deterministic responses of the Bouc-Wen model: CE
method, MAP and corresponding viscoelastic internal variables from the dataset (ADS).

Source: Author’s own elaboration.
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Figure 27: Branch 4, Group 1 – Deterministic responses of the Bouc-Wen model: CE
method, MAP and corresponding viscoelastic internal variables from the dataset (ADS).

Source: Author’s own elaboration.
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3.2 PCE-BASED SURROGATE MODEL CALIBRATION

Both the UQLab Bayesian inference module (WAGNER et al., 2022) and PCE mod-

ule (MARELLI; LÜTHEN; SUDRET, 2022) were combined in this section to perform a

Bayesian inference using a PCE-based surrogate model: a PCE-based surrogate model

was built with univariate polynomials from the Uniform distributions in Table 4 and its

coefficients were computed. As in the previous section, Figure 28 compares the error

metrics Ē(θ) and Ẽ(θ). Table 10 contains additional information about the validation of

the PCE-based surrogate model.

Figure 28: Bayesian inference using a PCE-based surrogate model. Branch 1, Group 1
– Comparison between error metrics Ē(θ) and Ẽ(θ). The disposition of the 100 cross-
validation samples + indicates that the PCE-based surrogate model was adequate.

Source: Author’s own elaboration.

Table 10: Bayesian inference using a PCE-based surrogate model. Validation of the PCE-
based surrogate model.

PCE degree qNorm Exp. Design LOO error Time [min]
13 0.75 1, 000 2.9 · 10−3 12

Source: Author’s own elaboration.

Information about the configuration of the Bayesian inference in UQLab is not ad-

dressed in this section, but the elapsed time to generate Nk = 2 × 104 samples was only

2 min. Figure 29 shows the densities and cumulative densities of the parameters of the

Bouc-Wen model and of the variance of the discrepancy from the Bayesian inference us-

ing the PCE-based surrogate model: the continuous black line is the probability density

estimates (EPDF) based on a normal kernel function, the black dashed line is the Uni-

form prior distribution, and the marked red line is the empirical cumulative distribution

function (ECDF). From that, conclusions can be drawn:
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• It was possible to calibrate the suggested model using the PCE-based surrogate

model;

• The distributions of the parameters of the Bouc-Wen model and of the variance of

the discrepancy parameter were close to the ones from the previous section;

• The total elapsed time from this procedure was 14 min. This correspond to a

significant reduction compared to 311 min indicated in Table 8.
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Figure 29: Bayesian inference using a PCE-based surrogate model. Branch 1, Group 1 –
Distributions of the parameters of the Bouc-Wen model and variance of the discrepancy
parameter: Uniform prior (Prior), estimated probability density functions (EPDF) and
empirical cumulative distribution functions (ECDF).

Source: Author’s own elaboration.
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4 FINAL REMARKS

This chapter summarizes this work. It also addresses some points aiming to advance

this research further.

4.1 SUMMARY

This work deals with creating simple models for simulating viscoelastic internal vari-

ables that describe the viscoelasticity in steady-state rolling tires. In order to archive

this objective, Michelin furnished a dataset composed of components of right Cauchy-

Green deformation tensors and viscoelastic internal variables. These data were generated

from the finite element approximation of a steady-state rolling tire. The full-order model

is based on a generalized Maxwell model, in which the branches of interest are defined

according to the dynamic behavior of the viscoelastic internal variables.

The suggested model was formulated from this generalized Maxwell model: in a branch

of interest, the component of the right Cauchy-Green deformation tensor was related to the

corresponding viscoelastic internal variable and its time derivative by the series connection

of a spring and a dashpot element. In addition, the hysteresis in the branch was considered

through a hysteretic output given by the Bouc-Wen model. After algebraic manipulation,

the suggested model was defined as a system of nonlinear differential equations solved

numerically. After formulating the model, two procedures were defined:

• The first procedure consisted of visually analyzing the dataset to avoid redundant

data. After this procedure, a reduced number of components of the right Cauchy-

Green deformation tensors were selected and defined as inputs. These inputs were

considered adequate to represent all components of the right Cauchy-Green defor-

mation tensors of the dataset;

• The second procedure consisted of defining a model calibration strategy considering

the inputs. Afterward, it was verified through numerical simulations that better

results were obtained if each branch of interest was divided into two groups.

Concerning the calibration strategy, an error metric was defined to evaluate the dis-

crepancies between the suggested model’s response and data independent of the inputs’

differences. Then, the calibration strategy was proposed based on:
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1. Performing a global sensitivity analysis by evaluating Sobol’s indices from the coef-

ficients of a PCE-based surrogate model;

2. Obtaining the optimal set of influential parameters using the Cross-Entropy method;

3. Estimating the distributions of influential parameters through Bayesian inference.

After validating the PCE-based surrogate model, an evaluation of the Sobol indices

indicates that some parameters of the Bouc-Wen model do not significantly influence the

variability of the error metric. Therefore, these parameters were not considered in the

later steps of the calibration strategy saving computational time.

The solution to the optimization problem obtained by minimizing the error metric

offered preliminary information on the influential parameters of the Bouc-Wen model. In

addition, the Cross-Entropy method resulted in the best forecast prediction of the Bouc-

Wen model. By following an Uncertainty Quantification framework, the distributions of

the influential parameters of the Bouc-Wen model were estimated using Bayesian inference.

To be rigorous in performing Monte Carlo simulation, a procedure was established to

guarantee the convergence of first and second central moments and the stability of the

Markov Chain. These distributions were used to propagate the uncertainties through the

error metric and responses of the suggested model. The same calibration strategy was

adopted for each group of branches of interest, and some conclusions were drawn:

• Roughly, the distributions of the error metric allowed to define a response adequacy

criterion: the models in which the error metric distributions are located after the

unity do not adequately simulate the viscoelastic internal variables;

• The uncertainties were propagated through the responses of the suggested model.

The responses were among the data for the first three branches of interest.

Despite some efforts related to the calibration strategy, the latter allows for creat-

ing a simple model that predicts the best-fitting viscoelastic internal variables. After

this process, the suggested model was capable of simulating viscoelastic internal variables

considering uncertainties with reduced computational cost. A robust and cheaper compu-

tational model facilitates numerical simulations and research to obtain more robust tires.

For this reason, the results of this work also contribute to the advancement of research

on computational models that are more robust and have a reduced computational cost.

4.2 PERSPECTIVES OF FUTURE WORK

Some points for further advancing this research are addressed as follows:
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1. The selection procedure of the inputs (components of the right Cauchy-Green defor-

mation tensors) and corresponding viscoelastic internal variables is based solely on

visualizing the data. This topic deserves more attention because an excessive num-

ber of inputs does not necessarily improve the prediction. Moreover, it can make

this procedure time-consuming. An optimum number of inputs is not defined;

2. The implemented MATLAB scripts can be improved to reduce the computation time.

Notably, the use of narrower absolute and relative tolerances in the Runge-Kutta

method is responsible for an increase in computation time;

3. In the adopted calibration strategy, a PCE-based surrogate model is already built

for the global sensitivity analysis step. It can be interesting to perform the Bayesian

inference not using the Bouc-Wen model but the PCE-based surrogate model be-

cause the latter possibly run faster during the Monte Carlo simulation. Partial

results related to this item were briefly addressed;

4. The initial conditions of the viscoelastic internal variables can be considered random

variables to be calibrated. Some constraints can be investigated to ensure equality

between the distributions of the initial and final conditions of the viscoelastic internal

variables. By doing so, the behavior of these variables is consistent with the cyclic

motion of the steady-state rolling tire. It is important to respect this behavior if the

present model is to substitute the viscoelastic internal variables of the finite element

approximation;

5. The Bouc-Wen model on which the proposed model is based is phenomenological,

and its parameters do not have a physical meaning. It can be interesting to adopt

the same methodology in a further study using data of different finite element ap-

proximations, e.g., varying the material properties of the tire or varying dimensions.

From this analysis, the suggested model may be correlated to variations of the tire

properties and replace parts of the finite element model;

6. One of the advantages of this work is to obtain a simple and representative model

considering hysteresis in tires by adopting a Bayesian framework. Although this

work deals with steady-state rolling tire problems, the Bouc-Wen model and its

parameter calibration strategy can be extended to other dynamic systems. The

solutions in this work can be applied to problems that involve hysteresis and are

computationally expensive to run with finite element models, such as jointed struc-

tures (TELOLI et al., 2021; TELOLI et al., 2022; MIGUEL; TELOLI; da Silva,

2022) and bit-rock interaction of a drill (REAL et al., 2019).
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4.3 CONTRIBUTIONS TO THE LITERATURE

Some results of this work are in the following manuscript under review:

• Rafael da S. Raqueti, Rafael de O. Teloli, Samuel da Silva, Philippe Bussetta,

Americo Cunha Jr., ”On the use of stochastic Bouc-Wen model for simulating vis-

coelastic internal variables from a finite element approximation of steady-rolling

tire,” Journal of Vibration and Control.
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