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SÃO PAULO STATE UNIVERSITY
SCHOOL OF ENGINEERING

ILHA SOLTEIRA

JONATHAN PABLO AYALA MARCELO

MULTISTAGE PLANNING FOR ACTIVE DISTRIBUTION SYSTEMS UNDER

UNCERTAINTY: A COMPREHENSIVE APPROACH

Ilha Solteira

2023



JONATHAN PABLO AYALA MARCELO

MULTISTAGE PLANNING FOR ACTIVE DISTRIBUTION SYSTEMS UNDER

UNCERTAINTY: A COMPREHENSIVE APPROACH

Thesis submitted to the School of Engineering of
Ilha Solteira – UNESP in partial fulfillment of the
requirements for the degree of Doctor of Philosophy
in Electrical Engineering.

Concentration Area: Electrical Engineering
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Potencial impact of this research

This research reduces the gap between the academic development and the practical applicability

of solution approaches for the planning of electrical power distribution systems (a realistic and

practical model together with a novel solution technique are proposed). Also, it is committed to

sustainable development, proposing necessary actions to achieve optimal results while reducing

carbon emissions.

Impacto potencial desta pesquisa

Neste trabalho de pesquisa propõe-se uma redução entre o desenvolvimento acadêmico e a

aplicabilidade prática das abordagens de solução para o planejamento de sistemas de distribuição

de energia elétrica (é proposto um modelo realista e prático juntamente com uma nova técnica

de solução). Além disso, está comprometida com o desenvolvimento sustentável, propondo as

ações necessárias para alcançar ótimos resultados e, ao mesmo tempo, reduzir as emissões de

carbono.

Impacto potencial de esta investigación

Esta investigación reduce la brecha entre el desarrollo académico y la aplicabilidad práctica de

los enfoques de solución para la planificación de sistemas de distribución de energı́a eléctrica (se

propone un modelo realista y práctico junto con una técnica de solución novedosa). Además,

apuesta por el desarrollo sostenible, proponiendo acciones necesarias para lograr resultados

óptimos mientras se reducen las emisiones de carbono.
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RESUMO

Neste trabalho propõe-se um novo modelo estocástico de dois estágios baseado em cenários para o 
planejamento multiestágio de sistemas ativos de distribuição de energia elétrica considerando um 
tratamento adequado das incertezas. O problema de planejamento é formulado como um modelo 
de programação quadrática inteira mista e resolvido mediante uma nova técnica matheurı́stica 
que pode obter soluç ̃oes de alta qualidade garantindo sua factibilidade em relação ao problema 
original (não linear e não convexo). Como o planejamento ótimo depende tanto da qualidade 
dos dados quanto da modelagem e da técnica de solução, os dados (parâmetros operacionais) e 
as incertezas são modeladas detalhadamente, considerando incertezas de curto e longo prazo. 
Propõe-se também um novo método para estimar as cargas dos veı́culos elétricos com base em 
distribuiç ̃oes de probabilidades. Para capturar a diversidade dos cenários de operação a partir 
das incertezas de demanda e recursos energéticos, preservando a transição temporal da operação 
do sistema (útil para a modelagem dos sistemas de armazenamento de energia elétrica), são 
utilizados cenários representativos de operação de duração diária e resolução horária. Para isso, é 
proposto um novo método para determinar cenários representativos robustos que permitem ênfase 
em cenários crı́ticos, como aqueles de demandas máxima e mı́nima. Um grande portfólio de 
aç ̃oes de planejamento é considerado visando obter o melhor plano de investimento com base nos 
recursos tecnológicos atuais, bem como investigar seus impactos na operação do sistema. Essas 
ações incluem repotencialização das subestaç ̃oes, instalação de comutadores de tap sob carga 
(OLTCs), sistemas de geração distribuı́da, sistemas de armazenamento de energia elétrica, bancos 
de capacitores fixos e chaveados, compensadores estáticos de reativos (SVCs), reguladores de 
tensão e recondutoramento. Adicionalmente, o modelo garante reduções periódicas de CO2, 
para atender o compromisso de limitar o aquecimento global. Para ponderar adequadamente 
estas emissões, são contabilizadas as emissões de CO2 provenientes da operação do sistema de 
distribuição e dos veı́culos a combustão, considerando a redução de emissões resultante da adoção 
dos veı́culos elétricos. Após o planejamento, a confiabilidade dos planos de i nvestimento é 
analisada quantitativamente, mostrando as vantagens de considerar adequadamente as incertezas 
no processamento dos dados. Para demonstrar a eficácia do modelo proposto, são realizados 
testes em um sistema de distribuição de 69 nós e em um sistema real de 135 nós, considerando 
três estudos de casos com diferentes tratamentos de incerteza e diferentes seleç ̃oes de cenários 
representativos.

Palavras-chave: Sistemas ativos de distribuição; incertezas; prosumidores; veı́culos elétricos; 
avaliação da confiabilidade do planejamento; matheurı́stica.



ABSTRACT

This work proposes a new scenario-based two-stage stochastic model for the multistage planning 
of active distribution systems considering a proper handling of the uncertainties. The planning 
problem is formulated as a Mixed Integer Quadratic Programming (MIQP) model and solved 
through a matheuristic technique that can attain high-quality solutions guaranteeing their fea-

sibility regarding the original non-linear and non-convex problem. Since an optimal planning 
depends on both data quality and modeling, due importance is given to data analysis (about 
operating parameters) and the uncertainties are modeled in detail, considering short and long 
term uncertainties. Also, a new method to estimate the Electrical Vehicle (EV) loads based on 
probability distributions is proposed. In order to capture the diversity of operation scenarios 
from demand and energy resource uncertainties while preserving the temporal transition of 
the system operation (useful for Electrical Energy Storage (EES) modeling), Representative 
Operating Scenarios (ROSs) of daily duration and hourly resolution are used. For that, a new 
method to determine robust ROSs is proposed, which allows to emphasize in critical scenarios, 
as those of maximum and minimum demand. A large portfolio of planning actions is considered 
with the aim of improving the system planning and investigating its impacts on system operation. 
These actions include substation replacement, installation of On Load Tap Changers (OLTCs), 
Distributed Generation (DG) systems, EES systems, fixed and switchable Capacitor Banks (CBs), 
Static VAr Compensators (SVCs), Voltage Regulators (VRs) and reconductoring. Moreover, the 
model guarantees periodical CO2 reductions in order to be on track to limit global warming. To 
properly weight up these emissions, CO2 emissions from distribution system operation and CO2 

emission reduction from EV adoption are accounted for. After planning, the reliability of the 
obtained investment plans are addressed and measured and the advantages of considering prop-

erly the uncertainties in data processing are shown. To show the effectiveness of the proposed 
model, tests are carried out in a 69-node distribution test system and a real 135-node distribution 
system, considering three case studies with different uncertainty handling and different selection 
of representative scenarios.

Keywords: Active distribution systems; uncertainties; prosumers; electrical vehicles; planning 
reliability assestment; matheuristics.
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pr,i
t,y,d,h Active/Reactive power generated by prosumers (kW/kVAr).

˜socin
d , ˜soc f i

d EV battery SOC at the charging start/at the end of charging .



x̃d EV charging decision.

z̃s,i,h
cd,p, z̃

s,i,h
cd,q Short-term uncertainty related to hourly active/reactive demand.

z̃ℓ,tcd Long-term uncertainty related to demand growth.

z̃ev Uncertainty related to the date of maximum EV penetration.

∆h̃d Charging duration (h).

τ̃ev,i, τ̃ pr,i EV/Prosumer peak penetration date (years).

Operators and symbols

E(x) Expected value of the random variable x.

⌊n⌉ Rounding of n to the nearest integer.

⟨s⟩ Logical value (0,1) of statement s.

∂ Customized metric used in K-means.

:= Equal by definition.

∥x∥∗ Euclidean norm column by column of matrix x.

[x]
Ω1,..Ωn

Array indexed by the ordered sets Ω1, ..Ωn.



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2 OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3 CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.4 DOCUMENT STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 SYSTEM OPERATING PARAMETERS UNDER UNCERTAINTIES . . . 30

2.1 CONVENTIONAL DEMAND . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 ELECTRICAL VEHICLE LOADS . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1 EV quantity by charging level . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.2 Charging habits of EV owners . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 DISTRIBUTED GENERATION MODELING . . . . . . . . . . . . . . . . 35

2.3.1 Energy production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.2 Prosumer participation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 GENERATION OF SYSTEM OPERATING SCENARIOS . . . . . . . . . 37

3 PROBLEM FORMULATION . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 DETERMINATION OF ROSs . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 Robust ROSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 OBJECTIVE FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 CONSTRAINTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Kirchhoff’s first law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.2 Kirchhoff’s second law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.3 Power, voltage and current relationship . . . . . . . . . . . . . . . . . . . 46

3.3.4 Substation operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.5 Installation and operating limits of DG systems . . . . . . . . . . . . . . 47

3.3.6 Voltage and current limits . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.7 Reconductoring constraints . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.8 Reactive compensation modeling . . . . . . . . . . . . . . . . . . . . . . 50

3.3.9 VR modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.10 EES system constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.11 Reduction of CO2 emissions . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 SOLUTION TECHNIQUE . . . . . . . . . . . . . . . . . . . . . . . . . . 54



4.1 MATHEMATICAL JUSTIFICATION . . . . . . . . . . . . . . . . . . . . . 54

4.2 METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Relaxed stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2 Integral stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.3 Feasibility fix stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.4 Error coefficient update . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 CASE STUDY AND RESULTS . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 TEST SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 PLANNING DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 SIMULATION OF THE OPERATING CONDITIONS . . . . . . . . . . . . 64

5.4 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4.1 Solution overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4.2 Investment plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4.3 Network operation analysis . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.4 Performance of the proposed model and solution technique . . . . . . . 73

5.4.5 Planning reliability assessment . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.6 Solution overview for the real 135-node distribution system . . . . . . . 77

6 CONCLUSIONS AND FUTURE WORKS . . . . . . . . . . . . . . . . . 79

6.1 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 FUTURE WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

APPENDIX A - Expected quantity of EVs . . . . . . . . . . . . . . . . . . . . . 86

APPENDIX B - Scientific Production . . . . . . . . . . . . . . . . . . . . . . . . 87

ANNEX A - Test System of 69 Nodes . . . . . . . . . . . . . . . . . . . . . . . 88

ANNEX B - Real System of 135 Nodes . . . . . . . . . . . . . . . . . . . . . . . 91

ANNEX C - Energy prices and CO2 intensity . . . . . . . . . . . . . . . . . . . 96

ANNEX D - Investment and O&M costs related to planning actions . . . . . 98



20

1 INTRODUCTION

The operation of distribution systems is facing significant changes due to the increas-

ing participation of Distributed Energy Resources (DERs), as DG and EES systems (owned

by prosumers, independent agents or Distribution Companies (DISCOs)), and the increasing

adoption of EVs. These changes include the presence of bidirectional power flows, increased

demand variability (usually translated into duck curves) and increased operating uncertainty.

In this context, the traditional distribution systems are turning into active distribution systems

for both taking advantage of the DER capabilities and dealing with their adverse effects. Here,

note that active distribution systems are those that include in their infrastructure systems capable

of controlling their distributed energy resources (ADAMO et al., 2011), and also other system

assets, as OLTCs, CBs, SVCs and VRs. On the one hand, this feature allows the system to be

operated more flexibly and efficiently and it points to investment plans that lead to cheaper

distribution and energy costs compared with that for traditional systems. On the other hand,

determining the optimal investment plan becomes a more challenging task, since more variables

are involved in the planing problem while uncertain operating conditions need to be handled.

Planning actions, typically, have involved the allocation of capacitor banks for reactive

compensation (SUNDHARARAJAN; PAHWA, 1994), the installation of voltage regulators

at critical points of the network for voltage regulation (SAFIGIANNI; SALIS, 2000), and

reconductoring to upgrade the power capacity of selected lines while reducing both power losses

and voltage drops (FRANCO et al., 2013). Subsequently, with the emergence and adoption of DG,

the planning problem shifted its focus to the optimal allocation and sizing of DG systems within

the grid (GEORGILAKIS; HATZIARGYRIOU, 2013), as well as to an integrated planning,

considering also the typical planning actions previously mentioned (SHAHEEN; EL-SEHIEMY,

2021). The participation of prosumers has been studied in the field of smart grids with the aim

of managing DG systems units and other DERs owned by prosumers (normally through an

agregator) to reduce their electricity bills while improving system operational flexibility (HU

et al., 2021). However, prosumer participation has not been yet considered in the context of

distribution system planning. Since prosumers are increasing rapidly to levels capable to affect

the normal system operation, their participation is considered in this work.

Regarding system planning objectives, traditionally they consisted of minimizing in-

vestment and operating costs as well as improving efficiency and reliability (VAHIDINASAB;

MEMBER; TABARZADI, 2020). In recent years, due to the urgent need to reduce the global

warming and promoted by Kyoto Protocol (1997) and Paris Agreement (2015), reducing CO2

emission has become a novel and significant objective of the planning problem (ZENG et al.,
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2014). This has led to several actions, such as, increased participation of renewable DG (mainly

PV and wind) (MELGAR-DOMINGUEZ; POURAKBARI-KASMAEI; MANTOVANI, 2019);

the development and application of emission abatement polices, such as cap and trade, and carbon

taxes (POURAKBARI-KASMAEI et al., 2020); the modeling and integration of EVs into the

distribution network (SHA; FOTUHI-FIRUZABAD, 2013); and a greater interest in determining

and increasing renewable DG hosting capacity (CAPITANESCU et al., 2015). About the last

point, note that the integration of EES systems into the grid stands out as a plausible solution,

which also improves the flexibility and reliability of system operation (JAYASEKARA et al.,

2016).

The distribution planning, in short, involves currently the following planning actions:

construction or upgrade of substations, installation of OLTCs to regulate the substations voltages,

allocation of fixed and switchable CBs as well as SVCs for reactive compensation, installation of

voltage regulators at critical points of the network, reconductoring to upgrade the power capacity

of selected lines while reducing both power losses and voltage drops, allocation and sizing of DG

systems and installation of EES systems to increase the DG hosting capacity while improving

system flexibility (XIE et al., 2018; MELGAR-DOMINGUEZ; POURAKBARI-KASMAEI;

MANTOVANI, 2019; MEJIA et al., 2022). In order to obtain the optimal investment plan, ideally,

all the available planning actions should be considered in the problem modeling, however, since

this involves a high computational burden for the traditional solution approaches, it has not yet

been addressed in the existing literature. Thus, the present work aims to cover this gap.

Currently, to address the planning problem, three different techniques can be used:

Mathematical programming, metaheuristics and matheuristics (BOSCHETTI; MANIEZZO,

2022). In general, the planning problem can be accurately formulated as a non-convex Mixed

Integer Non-Linear Programming (MINLP) model, but this model correspond to a NP-hard

problem, even undecidable for some cases, and extremely difficult and computationally expensive

to solve in practice (BELOTTI et al., 2013). Thus, to get around these issues, the mathematical

programming approaches use convex relaxations or approximations to model the problem. Hence,

conic relaxation and Piece-Wise Linearization (PWL) are widely used, leading to Mixed Integer

Second Order Cone Programming (MISOCP) and Mixed Integer Linear Programming (MILP)

models, respectively (HAGHIGHAT; ZENG, 2018; TABARES et al., 2016). The main feature of

these techniques is their ability to obtain the global optimum of their models. However, they can

not guarantee that their solutions are feasible for the original planning problem. Additionally,

these techniques are usually too computationally expensive (and sometimes not suitable) for

large-scale problems. On the other hand, metaheuristics are a good option to provide feasible

solutions in relative short times, what makes them appropriate for large problems (ARASTEH et

al., 2016); but they neither recognize global optimality nor provide a measure to indicate the

proximity to the optimal solution of the problem. Finally, matheuristic is a relative new term that
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refers to heuristic algorithms based on mathematical programming. Generally, this technique

solves a series of sub-problems formulated according to a given metaheuristic via mathematical

programming (BOSCHETTI; MANIEZZO, 2022; HOME-ORTIZ et al., 2020). Matheuristics

are supposed to be computationally less expensive than mathematical programming and has the

advantage over metaheuristics that it can guarantee the optimality of the addressed sub-problems,

thus, the obtained solution is likely to be a high-quality local optimal. Hence, in order to attain

feasible and high-quality solutions in a reasonable computational time, the present work proposes

a novel solution technique based on a matheuristic approach.

Distribution system planning aims at allowing safe and sustainable operation of the

system under different operating conditions at minimum cost. Compared with traditional net-

work operation, the variability of the operating conditions of modern distribution systems has

increased significantly mainly due to the increasing penetration of prosumers and EVs. Thus,

the variability and uncertainty from PV generation (prosumers) and EV loads are more and

more noticeable in the load profiles. Additionally, medium and large renewable DG systems

owned by independent agents or DISCO makes the operation system dependent to some degree

of the energy resources variations (solar irradiation and wind). In this context, the modeling

of the variation and uncertainty from demand (conventional and EVs) and renewable energy

resources are of special interest for the planning of modern distribution networks, and even more

if the planning is long-term because it adds forecast uncertainty to the modeling. In order to

address the planning problem considering the variable and uncertain operation of the system,

optimization-under-uncertainty methods are used in the literature (ROALD et al., 2023). Due

to the large quantity of random variables involved in the system operation and the large-scale

nature of the planning problem, this work use the two-stage stochastic optimization method on a

finite set of representative scenarios.

The random variables associated to system operation are of continues type, therefore,

the number of their realizations is infinite. Thus, in order to get a solvable model in the context

of scenario-based two-stage stochastic optimization, a finite set of representative realizations

is required (ROALD et al., 2023). From this point it follows that the quality of the solution is

strongly related to the selection of that representative realizations (scenarios). In this way, there

is no use finding the global optimal of a problem based on no-representative scenarios. Therefore,

the data analysis and selection is as important as the formulation and solution technique of the

planning problem. The two-stage stochastic optimization method is widely used in distribution

system planning, but most of the works from literature only consider the historical data and

their expected forecasts leaving aside the associated uncertainty (EHSAN; YANG, 2020a; XIE

et al., 2018; LIMA et al., 2022; MEJIA et al., 2022), which can lead to get representative

scenarios that do not really represent all (of most of) the possible realizations of uncertainties.

The impact of this fact can be visualized with a simple example: consider that two different
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instances of a variable are represented by normally random variables, e.g., nt1 ∼ N (4,4) and

nt2 ∼ N (7,9). If K-means clustering with K = 2 is performed over those variable instances,

the obtained representative values are 3.56 and 8.48. In contrast, if the random nature of the

variables is ignored the result will correspond to their expected values (4 and 7), losing data

variability, which is an important feature for planning purposes. Thus, this work models in detail

the uncertainty from operating parameters and obtains the representative scenarios on a large set

of realizations of that uncertainty.

In this work, a novel multistage planning model for active distribution systems under

uncertainty is proposed. The work addresses properly the operating uncertainty and proposes

a customized K-means clustering especially designed for planning purposes (in the context

of scenario-based two-stage stochastic programming). Also, a post-planning stage to address

and measure the planning reliability is proposed. Additionally, this work considers important

practical planning and operating aspects not addressed before in the existing literature (to the best

of the author’s knowledge), such as the elapsed life of the existing system assets (as substations,

conductors and supports), the increasing penetration of both prosumers and EVs and the losses

in substation transformers.

1.1 LITERATURE REVIEW

Developing an optimal planning for distribution systems is of utmost interest to all

involved agents, such as consumers, DISCOs and society. This is because a proper planning

results in reduced investments and operational costs, leading to lower electricity rates, as well as

in improved energy efficiency and reduced greenhouse gas emissions. Therefore, the distribution

system planning problem is an important topic in both industry and academia, and it has been

widely discussed in the specialized literature considering different approaches in terms of

mathematical models, objectives and solution techniques. Thus, relevant works about distribution

system planning are discussed below, with focus on those related to multistage planning for

active distribution systems under uncertainty.

Pereira, Cossi and Mantovani (2013) propose a multi-objective short-term model for the

planning of electric power distribution systems. The model corresponds to a MINLP model and it

is solved through the metaheuristic Non-Dominated Sorting Genetic Algorithm (NSGA-II). The

problem objective is minimize the investment and operating costs as well as the voltage magnitude

deviations in the network buses. For that, the installation of CBs, VRs and reconductoring are

considered as planning actions. This work shows that nonlinearities from the objective and

constraints of the model can be successfully handle through metaheuristics to obtain feasible

solutions. However, it can not be informed how close is the solution from the global optimal.
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Tabares et al. (2016) propose a multistage long-term expansion planning of electrical

distribution systems considering multiple planning actions. The planning problem is modeled as

a MILP model based on PWL technique. The planning actions include increasing the capacity of

existing substations, constructing new substations, allocating capacitor banks, voltage regulators,

DG systems , constructing or reinforcing circuits, and modifying the system topology. The work

presents six case studies that include, independently and then jointly, the participation of CBs,

VRs and DGs. However, the variation and uncertainty from the operating parameters within each

planning period are not considered.

Xie et al. (2018) propose a multi-objective and scenario-based stochastic programming

model. The model uses uncertain random network theory in order to take into account the

uncertainty associated with the reliability and stability of distribution lines. For the operating

parameters, demand and renewable-based energy resources, the uncertainty is modeled through

representative scenarios obtained as the combinations of individual representative values of each

parameter. Thus, the temporal correlation among the operating parameters is not preserved. The

model includes the installation of OLTCs for voltage regulation in substations and SVCs for

reactive power compensation. The model is formulated using a conic relaxation as a MISOCP

model. Then, the accuracy of the results regarding the original MINLP model is evaluated. It is

shown that, due to the negligible errors obtained in the conic relaxation for the employed test

system, the solution found with the MISOCP model corresponds to the solution of the original

MINLP model, corresponding therefore to the global optimal. Thus, the MISOCP can led to

global optimality occasionally, but in fact, this is unusual in the context of modern distribution

system planning.

Arias et al. (2018) propose a chance-constraint MILP model for the expansion planning

that guarantees that substations do not operate above their nominal capacity within a specified

confidence level. For that, the uncertainties from conventional and EV demand are considered

and modeled as normally distributed variables. The MILP model is obtained through the PWL of

the squares of the active and reactive powers present in the operating constraints. Also, the model

considers the increasing penetration of EVs and the installation of Electric Vehicle Charging

Stations (EVCSs) over the planning horizon. However, the participation of prosumers is not

considered. Finally, the compliance of the preset confidence level is verified through Monte

Carlo simulations.

Melgar-Dominguez, Pourakbari-Kasmaei and Mantovani (2019) present a two-stage

robust optimization model for the short-term planning. The system parameters are modeled using

a representative day for each season, which allows to model properly the EES transition, but

since it does not take into account the correlation among the operating parameters, the obtained

representativeness is not necessarily the best. The uncertainties of demand and renewable power
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output factors are modeled through uncertainty intervals built based on normal probability

distributions within a confidence level of 95%. The two-stage robust model is formulated as

a bilevel optimization model that then is recast to a single-level MILP model through Karush-

Kuhn-Tucker (KKT) optimality conditions. Since the joint use of PWL and KKT conditions is

not appropriate for optimality, a linearization based on Taylor series is proposed. Finally, the

problem is solved applying the Column-and-Constraint Generation (C&CG) algorithm.

Home-Ortiz et al. (2020) propose a matheuristic approach based on a Mixed Integer

Conic Programming (MICP) model to address the expansion planning. The proposal shows

that a matheuristic approach can perform better than solving the original MICP problem via

mathematical programming. However, it is worth indicating that since the model is based on

a conic relaxation, the feasibility of the original MINLP planning problem is not guaranteed.

To handle the uncertainties, the model is formulated as a scenario-based two-stage stochastic

programming model and the uncertainties from demand, solar irradiation and wind speed are

addressed trough representative scenarios obtained via k-means clustering on historical data. The

matheuristic approach used to solve the problem consist of the joint application of MICP and the

philosophy of the meta-heuristic Variable Neighborhood Descent (VND).

Ehsan and Yang (2020a), Ehsan and Yang (2020b) propose a scenario-based stochastic

model formulated as a MILP model for the multistage joint reinforcement planning of distribution

systems and EVCSs. The work uses a Markov-based approach to model the EV charging demand

and the Heuristic Moment Matching (HMM) method to generate representative scenarios based

on historical data of wind and PV generation, conventional demand and expected EV demand.

The HMM method aims at preserving the first four stochastic moments of historical scenarios,

i.e., expectation, standard deviation, skewness and kurtosis. Thus, reliable representative sce-

narios regarding the historical data are expected to be obtained. However, since uncertainties

are not considered, some information could be missing. Additionally, the work evaluates the

expansion planning solution in terms of failure rate of substation capacities through Monte Carlo

simulations.

Lima et al. (2022) present a scenario-based stochastic MILP model for the long-term

expansion planning. This work proposes a method to estimate and generate EV load profiles for

one year range. Representative scenarios are obtain through the application of k-means clustering

on historical data of demand, solar irradiation and wind speed, in addition to the EV load profiles

previously generated. The model considers the installation of EES systems as planning action.

Since their current prices do not favor their participation on the investment plans, a sensitivity

analysis for different EES system prices is performed in order to investigate the instances in

which installing EES systems will be required (being the best option). The reactive power is

supplied only by substations and DG systems. Thus, reactive compensation equipment are not
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considered. Additionally, in this work is stated that the investment plans obtained by the proposed

MILP model are the same of those obtained by solving the original MINLP problem (possibly

by a non-linear solver).

Mejia et al. (2022) propose a scenario-based stochastic MILP model to address the

multistage planning of active distribution systems. The model includes EVCS installation,

several planning actions and voltage-dependent load behavior. The EV charging demand is

estimated by zones based on real travel patterns and assumptions about when and where EVs

should be charged. The work considers five uncertain parameters: demand, wind speed, solar

irradiation, energy prices, and EVCS loads. Representative scenarios are obtained from historical

data. This data is classified in sub-groups by season and day/night, then the algorithm k-means++

is applied to each sub-group. The model assumes that there is an environmental policy that

penalizes excess of CO2 emissions from the distribution system. Thus, CO2 emission limits are

imposed in order to prevent penalties for excess emissions. However, the CO2 emission reduction

from EV adoption (through the replacement of combustion vehicles) is not considered.

Finally, it is worth indicating that important aspects about the planning and operation of

distribution systems have not yet been addressed in the existing literature, such as the elapsed life

of the existing system assets (as substations, conductors and supports), the mechanical correlation

between conductors and supports and the losses of substation transformers. Also, the increasing

penetration of prosumers has not been considered in the long-term planning. Another important

point is that the works that use scenario-based two-stage stochastic programming only take into

account expected values of the operating parameters, overlooking their associated short-term and

long-term uncertainty. Additionally, about the solution approaches used to solve the planning

problem, it is observed that most of the existing works do not take care of guaranteeing the

feasibility of solution regarding the original MINLP problem, which can lead to pseudo-solutions

with significant errors as shown in (MARCELO et al., 2023).

1.2 OBJECTIVES

The main goal of this work is obtaining a realistic planning model for active distribution

systems in order to determine the investment plan to be executed in the short-term (knowing the

possible future operating scenarios) and anticipate the future investment actions and the network

operation to prevent possible issues or improve certain operating or policy aspects. Aiming to

fulfill this goal the following objectives are established.

• Propose a multistage planning model for active distribution systems considering the

operating uncertainty.
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• Propose a solution technique to solve the planning problem aiming to obtain the global

optimal solution or high-quality local solutions guaranteeing the feasibility regarding

the original problem (non-linear and non-convex). This solution technique must solve

the planning problem in adequate computational times for practical purposes and must

perform well for large problems involving a high number of discrete variables.

• Model the operating uncertainty in a proper and detail way in such a manner that it

allows generating realistic operating scenarios as the realizations of that uncertainties.

• Include important and realistic aspects about the planning and operation of distribution

systems in the optimization model in order to represent the system as realistically as

possible and convenient.

• Assess the reliability of the obtain investment plans in order to verify or, if necessary,

modify the investment decisions.

1.3 CONTRIBUTIONS

The main contributions of this work are summarized as follows. Additionally, the novel-

ties of this work regarding the state of the art are presented in Tables 1 and 2.

• A new scenario-based two-stage stochastic model for the multistage planning of active

distribution systems under uncertainty is proposed. The model considers the data

uncertainty and not only their expected forecast values as done in previous related

works. This leads to investment plans that better withstand uncertainty.

• A novel solution technique for the planning problem is proposed, which can obtain

high-quality local optimal solutions in relative short times guaranteeing its feasibility

regarding the original non-convex MINLP planning problem. The application of this

technique allows to solve the planning problem considering a large portfolio of planning

actions and several scenarios over a broad planning horizon.

• A detailed modeling of the operating parameters under uncertainty is proposed. The

modeling includes short-term uncertainties related to the realization of a random

variable in a given time and long-term uncertainties related to the growth forecast of

conventional demand, prosumers and EVs over the planning horizon.

• The planning modeling considers the elapsed life of existing assets in decision making,

which in practice is a determining factor to decide the optimal timing of assets replace-

ment or installation. To the best of the author’s knowledge this topic is addressed for

the first time in the existing literature.
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Table 1 – Comparison of this work with the state of art - part 1

Reference

System modeling Solution technique

Assets
elapsed

life
Prosumers EVs

EES
temporal
transition

CO2
reduction Approach

Solution quality1

Global
optimum

Local
optimum

Approximate
solution

Lower
bound

Upper
bound Feasible

Pereira, Cossi
and Mantovani (2013) ✕ ✕ ✕ ✕ ✕

Metaheuristic
(NSGA-II) ✕ ✕ ✕ ✕ ✓ ✓

Tabares et al. (2016) ✕ ✕ ✕ ✕ ✕
MP

(MILP) ✕ ✕ ✓ ✕ ✕ ✕

Xie et al. (2018) ✕ ✕ ✕ ✕ ✕
MP

(MISOCP2) ✕ ✕ ✓ ✓ ✕ ✕

Arias et al. (2018) ✕ ✕ ✓ ✕ ✕
MP

(MILP) ✕ ✕ ✓ ✕ ✕ ✕

Melgar-Dominguez,
Pourakbari-Kasmaei

and Mantovani (2019)
✕ ✕ ✕ ✓ ✕

MP
(C&CG
MILP)

✕ ✕ ✓ ✕ ✕ ✕

Home-Ortiz et al. (2020) ✕ ✕ ✕ ✕ ✓
MP

(MICP) ✕ ✕ ✓ ✕ ✕ ✕

Ehsan and Yang (2020a)
Ehsan e Yang (2020b) ✕ ✕ ✓ ✕ ✕

MP
(MILP) ✕ ✕ ✓ ✕ ✕ ✕

Lima et al. (2022) ✕ ✕ ✓ ✕ ✓
MP

(MILP) ✕ ✕ ✓ ✕ ✕ ✕

Mejia et al. (2022) ✕ ✕ ✓ ✕ ✓
MP

(MILP) ✕ ✕ ✓ ✕ ✕ ✕

This
work ✓ ✓ ✓ ✓ ✓

Matheuristic
(MIQP) ✕ ✓ ✕ ✕ ✓ ✓

1 regarding the original non-convex MINLP planning model, 2 occasionally can attain global optimality, but it can not recognize or prove it by itself
MP: Mathematical Programming, ✓: considered, ✕: not considered

Source: Elaborated by the author.

• A new methodology to estimate and generate EV load profiles is proposed, considering

different charging levels and preferences about charging schedules.

• The impact of using different representative scenarios on planning reliability is analyzed.

Also, it is proposed a new method to determine representative scenarios that aim to

improve the planning reliability.

1.4 DOCUMENT STRUCTURE

This work, in addition to its introductory chapter, is organized as follows:

In Chapter 2, the system operating parameters are modeled under uncertainty. This

includes the modeling of conventional demand, EV loads and DG systems (including prosumers).

Then, the integration of these parameters is done while presenting the generation of system

operating scenarios.

In Chapter 3, the formulation for the planning problem is proposed. At first, the use

of ROSs is addressed and a new method to determine them (in order to improve the planning

reliability) is proposed. Then, the objective function and the constraints of optimization model

(corresponding to the planning problem) are presented and justified.
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Table 2 – Comparison of this work with the state of art - part 2

Reference

Planning features

Uncertainty
approach

Planning actions Planning
reliability

assessment
Substation

update OLTC Re-
conductoring

CBs
SVC VR DG EES

Fixed Switchable

Pereira, Cossi
and Mantovani (2013) Deterministic ✕ ✕ ✓ ✓ ✓ ✕ ✓ ✕ ✕ ✕

Tabares et al. (2016) Deterministic ✓ ✕ ✓ ✕ ✓ ✕ ✓ ✓ ✕ ✕

Xie et al. (2018) Scenario-based
stochastic ✓ ✓ ✓ ✕ ✕ ✓ ✕ ✓ ✕ ✕

Arias et al. (2018) Chance
constraint ✓ ✕ ✓ ✓ ✕ ✕ ✕ ✓ ✕ ✓

Melgar-Dominguez,
Pourakbari-Kasmaei

and Mantovani (2019)

Two-stage
Robust ✕ ✕ ✓ ✓ ✓ ✕ ✓ ✓ ✓ ✓

Home-Ortiz et al. (2020) Scenario-based
stochastic ✓ ✕ ✓ ✕ ✕ ✕ ✕ ✓ ✓ ✓

Ehsan and Yang (2020a)
Ehsan e Yang (2020b)

Scenario-based
stochastic ✓ ✕ ✓ ✓ ✕ ✕ ✕ ✓ ✕ ✓

Lima et al. (2022) Scenario-based
stochastic ✓ ✕ ✓ ✕ ✕ ✕ ✕ ✓ ✓ ✕

Mejia et al. (2022) Scenario-based
stochastic ✕ ✕ ✓ ✓ ✕ ✕ ✓ ✓ ✓ ✕

This
work

Scenario-based
stochastic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓: considered, ✕: not considered

Source: Elaborated by the author.

In Chapter 4, the proposed solution technique is described. The mathematical justification

is presented first and then the proposed methodology is described in detail.

In Chapter 5, the case studies are presented and numerical results are analyzed and

discussed. Also, key information about planning data is presented and the planning reliability is

addressed and measured.

Finally, in Chapter 6, the conclusions are drawn and related future works are suggested.
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6 CONCLUSIONS AND FUTURE WORKS

In this work, a multistage planning model for active distribution systems under un-

certainty has been proposed. In order to handle the uncertainties a scenario-based two-stage

stochastic approach has been used. Unlike the traditional models based on two-stage stochastic

programming, the proposed model has modeled and used the uncertainties associated with the

operating parameters in order to get more realistic and reliable representative operating scenarios

(ROSs). Thus, the uncertainties from conventional demand, EVs, prosumers, and renewable

energy resources have been addressed.

6.1 CONCLUSIONS

The results show that considering the operating uncertainties leads to more robust

investment plans than the traditional approach where just the expected forecast values are

considered. Additionally, this work has implemented a novel robust k-means method to obtain

robust ROSs that leads to more robust investment plans compared with those obtained using

the traditional K-means. In general, it has been shown that the planning robustness, under a

scenario-based two-stage stochastic approach, can be increased through the proper selection of

ROSs.

Also, for the sake of applicability in the industry, important realistic aspects about

planning and operation of distribution systems have been considered in this work, as the elapsed

life of the existing assets and substation transformer losses. It has been shown that considering

the elapsed life of the existing assets modifies the replacement times and the selection of the

conductors. Also, its use leads to realistic information about the investments values, which is

important for DISCO’s accounting.

Additionally, the work has presented the most complete portfolio of planning actions so

far in order to obtain the best planning configuration and to draw conclusions about the interaction

of the different devices involved in the system operation. Thus, it has been concluded that the

joint operation of fixed CBs, switchable CBs and SVCs performs better than the individual

operation of that devices.

The results show a high performance of the proposed model and solution technique,

obtaining high-quality and feasible solutions for the planning problem in relative short times. Fea-

sibility has been guaranteed regarding the original non-convex MINLP problem. CO2 emission

reduction goals have been met, mainly, through the installation of PV, wind and EES systems.



80

Finally, a post-planning stage to address and measure the planning reliability in terms of

substation and conductor overload as well as voltage limits violation has been implemented. It

has been shown that this stage is important and necessary when using a scenario-based two-stage

stochastic approach, since a priory it can not be known how the system will react to unexpected

scenarios from uncertainty realizations.

6.2 FUTURE WORKS

Future works can consider the following topics:

1. The analysis and exploitation of the flexibility at the transmission/distribution interface

considering the increasing penetration of prosumers and distributed independent producers.

2. The implementation of robust and chance-constraint models for the planning of active dis-

tribution systems and the analysis of pros and cos of each uncertainty approach (stochastic,

robust and chance constraint).

3. The adequacy and specialization of the proposed solution technique for general OPF

problems considering different problem sizes (with focus on large-scale problems).

4. The developing of a planning model that minimizes the distribution system costs while

maximizing the profit of distributed independent producers.
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distribuição radiais utilizando o critério de queda de tensão. SBA Controle & Automação,
SBA, Campinas, v. 11, p. 150–159, Sep. 2000. Cited 3 times on pages 60, 62, and 95.

MARCELO, J. A.; MUÑOZ-DELGADO, G.; CONTRERAS, J.; MANTOVANI, J. R. S. A
novel solution technique for the expansion planning of modern distribution systems. In: IEEE
INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEER-
ING AND IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC
/ I&CPS EUROPE), 2023, Madrid. Proceedings [...]. Madrid: IEEE, 2023. Cited 2 times on
pages 26 and 58.

MARCELO, J. A.; RUPOLO, D.; MANTOVANI, J. R. A new approach to determine a distribu-
tion network usage fee for distributed generators. In: IEEE PES INNOVATIVE SMART GRID
TECHNOLOGIES EUROPE (ISGT EUROPE), 2021, Espoo. Proceedings [...]. Piscataway:
IEEE, 2021. Cited on page 68.

MEJIA, M. A.; FRANCO, J. F.; MACEDO, L. H.; MUÑOZ-DELGADO, G.; CONTRERAS,
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