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Abstract. In this paper, we present a measure of quantum correlation for
a multipartite system, defined as the sum of the correlations for all possible
partitions. Our measure can be defined for quantum discord (QD), geometric
quantum discord or even for entanglement of formation (EOF). For tripartite
pure states, we show that the multipartite measures for the QD and the EOF are
equivalent, which allows direct comparison of the distribution and the robustness
of these correlations in open quantum systems. We study dissipative dynamics
for two distinct families of entanglement: a W state and a GHZ state. We show
that, for the W state, the QD is more robust than the entanglement, while for
the GHZ state, this is not true. It turns out that the initial genuine multipartite
entanglement present in the GHZ state makes the EOF more robust than the QD.
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1. Introduction

Entanglement in composite quantum systems leads to many puzzling paradoxes in quantum
theory [1–4]. The importance of entanglement is universally recognized, but it is well known
that even separable quantum states possess correlations that cannot be simulated by classical
systems—for instance, the nonclassical correlations captured by quantum discord (QD) [5]. For
bipartite states, many attempts have been made to detect and measure QD [6, 7] and to find the
connection between it and entanglement [8–10]. Furthermore, attention is also being paid to the
measurement of quantum correlation in multipartite systems [11, 12]. Such measures help us to
understand the distribution of quantum correlations and provide a way of studying dissipative
dynamics in many-part quantum systems.

Although it is claimed that the QD is more robust than the entanglement in open quantum
systems, little concrete evidence has been published to corroborate this claim as far as
multipartite systems are concerned. Actually, for two qubits, there is a good deal of evidence
that this is true [13], but can we extend this rule to multipartite quantum systems? For three
qubits, for example, there exist two distinct families of entanglement [14]; how robust, then, is
the QD for members of each family? Could entanglement be more robust than discord, against
noise arising from the environment, in multipartite systems? Little has been written on these
questions in the literature [15] and that is the focus of this paper.

To investigate the robustness of the quantum correlations in open quantum systems for
tripartite states, we define a multipartite measure of quantum correlation slightly different from
that employed by Rulli and Sarandy [11]. Those authors define a measure of global multipartite
QD as the maximum of the quantum correlations that exist among all possible bipartitions.
Here, to attain an average measure, we define global QD as the sum of correlations for all
possible bipartitions. Despite being only subtly different, our measure now accounts for how
the quantum correlation is distributed in the tripartite system and certainly gives a better insight
into the robustness of these correlations in open quantum systems.

This paper is organized as follows. In section 2, we present the formal definition of the
entanglement of formation (EOF), the usual QD and the geometric measure of quantum discord
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(GQD). In section 3, we define our multipartite measure of quantum correlations (MMQC)
based on the sum of correlations for all possible bipartitions. In section 4, we present an
analytical solution to the MMQC for a three-qubit pure state and we show that for a general
tripartite pure state the MMQC based on the usual QD and on the EOF are equivalent. In
section 5, we extend our analysis to a tripartite mixed state, taking the dissipative dynamics
of three qubits into account, and in section 6, we summarize our results.

2. Quantum correlations

In this paper, we consider three well-known measures of quantum correlations: EOF, usual QD
and GQD. Here, we present the formal definition of each of these measurements.

2.1. Entanglement of formation

EOF is a measure of entanglement defined more than 15 years ago by Bennett et al [16].
Although very different from QD, EOF is connected with the latter by a monogamic
relation [8, 17] and has a nice operational interpretation. It is defined as follows. Given a bipartite
system A and B, consider all possible pure-state decompositions of the density matrix ρAB , that
is, all ensembles of states |9i〉with probability pi such that ρAB =

∑
i pi |9i〉〈9i |. For each pure

state, the entanglement is defined as the von Neumann entropy of either of the two subsystems A
and B, such that E(9)= SA = SB , where SA := S(ρA)=−Tr(ρA log ρA), ρA being the partial
trace over B, and there is an analogous expression for SB . The EOF for a mixed state is the
average entanglement of the pure states minimized over all possible decompositions, i.e.

E(ρAB)=min
∑

i

pi E(9i). (1)

Although this is very hard to calculate for a general bipartite system, for two qubits there is an
analytical solution given in the seminal Wootters [18] paper.

2.2. Usual quantum discord

QD is a well-known measure of quantum correlation defined by Ollivier and Zurek [5] about 10
years ago. It is defined as

δ←AB = IAB − J←AB, (2)

where IAB = SA + SB − SAB is the mutual information and J←AB is the classical correlation [19].
Explicitly,

J←AB =max
{5k}

[
SA−

∑
k

pk S(ρA|k)

]
, (3)

where ρA|k = TrB(5kρAB5k)/TrAB(5kρAB5k) is the local post-measurement state after
obtaining the outcome k in B with probability pk . QD measures the amount of mutual
information that is not accessible locally [20, 21] and generally is not symmetric, i.e. δ←AB 6= δ←B A.
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2.3. Geometric measure of quantum discord

Intuitively, QD can be viewed as a measure of the minimum loss of correlation due to
measurements in the sense of quantum mutual information. A state with zero discord, i.e.
δ←AB = 0, is a state whose information is not disturbed by local measurements; it is known as
a classical-quantum (CQ) state. A CQ state is of the form [5]

χ =

m∑
k=1

pk|k〉〈k| ⊗ ρB
k , (4)

where {pk} is a probability distribution, |k〉 an arbitrary orthonormal basis in subsystem A and
ρB

k a set of arbitrary density matrices in subsystem B.
Denoting the set of all CQ states on HA⊗ HB as �0, it is natural to think that the farther a

state ρ is from �0, the higher is its QD. Indeed, we can use the distance from ρ to the nearest
state in �0 as a measure of discord for state ρ, and this is the idea behind GQD [22]. Thus, GQD
was introduced as

D(ρ)= min
χ∈�0

||ρ−χ ||2, (5)

where �0 denotes the set of zero-discord states and ||X − Y ||2 = tr(X − Y )2 stands for the
squared Hilbert–Schmidt norm. Note that the maximum value reached by the GQD is 1/2 for
two-qubit states, so it is appropriate to consider 2D as a measure of GQD hereafter, in order to
compare it with other measures of correlation [23].

Interestingly, an explicit expression for GQD in a general two-qubit state can be
written [22]. In the Bloch representation, any two-qubit state ρ can be represented as follows:

ρ =
1

4

I⊗ I+ 3∑
i=1

xiσ
i
⊗ I+

3∑
i=1

yiI⊗ σ i +
3∑

i, j=1

ti jσ
i
⊗ σ j

 , (6)

where I is the identity matrix, σ i (i = 1, 2, 3) are the three Pauli matrices, xi = tr(σ i
⊗ I)ρ

and yi = tr(I⊗ σ i)ρ are the components of the local Bloch vectors Ex and Ey, respectively, and
ti j = tr(σ i

⊗ σ j)ρ are components of the correlation matrix T . Then the GQD of ρ is given by

D(ρ)=
1

4

(
||Ex ||2 + ||T ||2− λmax

)
, (7)

λmax being the largest eigenvalue of the matrix K = Ex Ex t + T T t and ||T ||2 = tr(T T t). The
superscript t denotes the transpose of vectors or matrices. Furthermore, it is important to mention
that an analytical solution for a bipartite system of dimension 2× N has been given in [24].

3. Multipartite measure of quantum correlations (MMQC)

Definition 1. For an arbitrary N-partite state ρ̂1,...,N , the multipartite measure of quantum
correlation Q(ρ̂1,...,N ) is defined as follows.

Let ρ be an N-partite state, and µ and ν be any subsets among all possible partitions. The
MMQC is defined as the sum of the quantum correlations for all possible bipartitions,

Q
(
ρ̂1,...,N

)
=

N∑
µ 6=ν=1

Mµ(ν), (8)
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where Mµ(ν) is a measure of quantum correlation that can be given by the GQD, the usual QD
or the EOF. Here, the subset between (·) is the measured one in the case of GQD or QD and can
be ignored for the EOF. It can be seen that the measure defined in equation (8) is symmetrical
and, more importantly, it is zero if the state has just classical–classical correlations.

To elucidate the MMQC defined above, let us consider the case of a tripartite state.
Explicitly,

Q
(
ρ̂ABC

)
= MA(B) + MB(A) + MA(C) + MC(A)

+ MB(C) + MC(B) + MA(BC) + MBC(A)

+ MB(AC) + MAC(B) + MC(AB) + MAB(C). (9)

4. MMQC analytical solution for three-qubit pure states

Our starting point is an analytical solution to the MMQC for three-qubit pure states. For
the case of GQD, an analytical solution can be found with the help of the result presented
in [24]. Actually, from that result, an analytical solution can be obtained for GQD even for
three-qubit mixed states. The analytical solution for three qubits can also be obtained for the
usual EOF. With the help of concurrence, each entanglement measurement involving two sets
of one subsystem (e.g. EB(C)) can be obtained trivially by calculating the Wootters formula [18].
Furthermore, for tripartite pure states, we note that the entanglement measure involving a set of
one subsystem and a set of two (e.g. E A(BC)) is given by the von Neumann entropy of one of the
partitions. For example, E A(BC) = SA = SBC .

Finally, to calculate the MMQC for the usual QD, we note the result given in [21], where
the authors show that the sum of the QD for all possible bipartitions involving sets of one
subsystem is equal to the sum of the EOF for all possible bipartitions,

E A(B) + EB(A) + E A(C) + EC(A) + EB(C) + EC(B)

= δ←A(B) + δ←B(A) + δ←A(C) + δ←C(A) + δ←B(C) + δ←C(B). (10)

Moreover, since we are considering pure states, the QD measure involving a set of one and a
set of two subsystems is given by the entropy of one of the partitions, exactly as the EOF. For
example, E A(BC) = δ←A(BC) = δ←BC(A) = SA = SBC .

Thus, for general tripartite pure states, the MMQC defined in equation (9) is identical for
the QD and the EOF, resulting in an analytical solution for the MMQC for three-qubit pure
states, for the QD as well. To confirm this, we note the result given in equation (10), which is
valid irrespective of the system dimension of the subsystems. On the other hand, for general
tripartite states (not three-qubit), an analytical solution does not exist, either for the EOF or for
the QD.

5. MMQC for three-qubit mixed states

To calculate the MMQC for three-qubit mixed states, we limit ourselves to studying a rank-2
density matrix. In this case, as we show below, a simple strategy can be used to calculate all
terms of equation (9). Since we are considering three qubits, to calculate the MMQC for sets
of one subsystem (E A(B), E A(C), δ←A(B), δ←A(C), etc) is trivial. Since in this case the terms are
composed of two qubits, the EOF can be calculated analytically by means of concurrence [18],
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and the QD can be calculated numerically by using positive-operator valued measurements
(POVMs)6. So, the question is: how can we calculate, for a three-qubit mixed state, the MMQC
for the terms that involve a set of one subsystem and a set of two, i.e. E A(BC), EB(AC), δ←A(BC),
δ←B(AC), etc? In this case, in contrast to that of pure states, the von Neumann entropy cannot be
used to calculate these terms. As we will show below, the answer to the above question is given
by the monogamic relation between EOF and QD [8, 17].

In the dissipative dynamics that we will study below, at all times ρABC is a rank-2 density
matrix. As a consequence, the extra subsystem that purifies ρABC is a two-level subsystem that
we define here as E . Then, to calculate the MMQC, for the terms that involve a set of one
subsystem and a set of two, the strategy is to calculate the quadripartite pure state ρABC E that
involves four qubits and, in sequence, use the monogamic relation. The monogamic relation
implies that the EOF between two partitions is connected with the QD between one of the
partitions and the third one that purifies the pair,

E A(BC) = δ←A(E) + SA|E . (11)

To purify ABC , the first step is to write ρABC in its diagonal form,

ρABC = λ1|81〉〈81|+ λ2|82〉〈82|, (12)

where λi and |8i〉 are, respectively, the density matrix eigenvalues and eigenvectors, for i = 1, 2.
The pure state is then written as

|9ABC E〉 =
√

λ1|81〉|0〉+
√

λ2|82〉|1〉, (13)

where the states |0〉 and |1〉 pertain to the two-level system Hilbert space of E . It is easy to
verify that TrE{|9ABC E〉〈9ABC E |} = ρABC .

Given the purification procedure, below we present in detail the strategy used to calculate
the QD and the EOF for the rank-2 tripartite mixed state ρABC . Here, we show how to calculate
just the terms E A(BC), δ←A(BC) and δ←BC(A), but the strategy is analogous for all the other terms in
equation (9) involving a set of one subsystem and a set of two. To calculate the EOF, we use
the monogamic relation given by equation (11) where, as pointed out above, A(E) involves a
two-qubit system since ABC is of rank 2. In this case, to calculate E A(BC), we compute δ←A(E)

numerically and SA|E analytically. To calculate the QD, on the other hand, the result can be
reached analytically by the expression

δ←A(BC) = E A(E) + SA|E , (14)

where E A(E) can be computed by means of Wootter’s concurrence. So, the remaining question
is: how can we calculate δ←BC(A)? Once more, we use the monogamic relation. First we note that

δ←BC(A) = EBC(E) + SBC |E , (15)

which relates the QD with the entanglement between BC and E . To calculate EBC(E), we recall
that the EOF is symmetric, i.e. EBC(E) = EE(BC), and use the monogamic relation

EE(BC) = δ←E(A) + SE |A. (16)

6 It is important to observe that to calculate QD for the two-qubit state, in the maximization of equation (3), it is
necessary to use general POVMs rather than projection measurements to evaluate the maximum of the classical
correlation. However, as well noted in [25], in this case, the difference is tiny.
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Figure 1. The red curve (solid) shows the EOF dynamics, while the blue curve
(dotted) shows QD and the cyan curve (traced) the GQD: initial W state subjected
to independent amplitude-damping channels.

Thus, substituting the equation above in equation (15) and noting that SBC E = SA, we obtain

δ←BC(A) = δ←E(A) + SA|E , (17)

which connects δ←BC(A) with δ←E(A). Note that the latter term involves two qubits and can be
calculated numerically. Thus, following the recipe above, it is straightforward to calculate the
quantum correlations for all terms of equation (9).

6. MMQC in open quantum systems

To study the MMQC in open quantum systems, we analyze two special situations: firstly, a three-
qubit W state subjected to independent amplitude-damping channels and secondly, the GHZ
state with independent phase damping. The reason for this specific choice is that, throughout
the whole dissipative process, we have a rank-2 density matrix [26]. In this case, we can use the
strategy explained in section 5 to calculate the MMQC for the usual QD and the EOF.

For these specific channels, the dissipative dynamics can be calculated straightforwardly
by means of Kraus operators [27]. Since we assume independent environments for each qubit,
given an initial state for three qubits ρ(0), its evolution can be written as

ρ(t)=
∑
α,β,γ

Eα,β,γ ρ(0)E†
α,β,γ , (18)

where the so-called Kraus operators Eα,β,γ ≡ Eα⊗ Eβ ⊗ Eγ satisfy
∑

α,β,γ E†
α,β,γ Eα,β,γ = I for

all t . The operators E{α} describe the one-qubit quantum channel effects. We first consider a
W state subjected to independent amplitude damping. This damping describes the exchange
of energy between the system and the environment and is described by the Kraus operators
E0 =

√
p(σx + iσy)/2 and E1 = diag(1,

√
1− p), where p = 1− e−0t , 0 denoting the decay

rate, and σx and σy are Pauli matrices. In figure 1, we show the dissipative dynamics of the
MMQC for an initial state given by |W 〉 = (|100〉+ |010〉+ |001〉)/

√
3. We see that in this
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Figure 2. The red curve (solid) shows the EOF dynamics, whereas the blue curve
(dotted) shows QD and the cyan curve (traced) represents the GQD: initial GHZ
state subjected to independent phase-damping channels.

situation the QD is actually more robust than EOF and GQD. For a very short time, the EOF
resists, but it decays fast while QD maintains greater robustness. This result corroborates the
idea that the QD is more robust than the EOF in open quantum systems.

This peculiar situation occurs because of the conservative relation between the EOF and
the QD [8],

E A(BC) + E A(E) = δ←A(BC) + δ←A(E), (19)

where ABC E is a pure state with the three-qubit system represented by ABC and the
environment by E . For the W state subjected to the amplitude-damping channel, figure 1
shows that QD is sustained in the system since the QD MMQC becomes greater than the
entanglement MMQC. It means that, to maintain the conservative relation, the subsystems
become entangled with the environment but create less discord. In equation (19), for example,
if we have E A(BC) < δ←A(BC), i.e. the QD is greater than the EOF in the system ABC , necessarily
E A(E) > δ←A(E), i.e. the entanglement between parts of the system and the environment is greater.
Indeed, this property is valid for any bipartition present in the definition of equation (9), since it
is impossible to create or destroy some amount of EOF (QD) in the system without destroying
or creating the same amount of QD (EOF) with the environment.

In the second, and more important case, we consider an initial GHZ state subjected to
phase damping. The dephasing channel induces a loss of quantum coherence without any
energy exchange. In this case the Kraus operators are given by E0 = diag(1/

√
2,
√

1− p) and
E1 = diag(1/

√
2,
√

p). In figure 2 we show the dissipative dynamics of the MMQC for an initial
state given by |GHZ〉 = (|000〉+ |111〉)/

√
2. Here, we see a very interesting result. Contrary to

what is claimed in the literature, the EOF is in fact more robust than the QD for this kind
of initial condition and quantum channel. EOF is sustained for a longer time than QD. This
occurs because the phase-damping channel does not create any entanglement or discord between
two parts of the subsystem. In other words, for any given time, E A(B) = E A(C) = EB(C) = 0,
δ←A(B) = δ←A(C) = δ←B(C) = 0 and δ←B(A) = δ←C(A) = δ←C(B) = 0. With this peculiar property, in this case
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the MMQC for the EOF or the QD is given by

Q
(
ρ̂ABC

)
= MA(BC) + MBC(A) + MB(AC) + MAC(B) + MC(AB) + MAB(C). (20)

To calculate equation (20) for the QD, we use, as explained above, the monogamic relation
between the EOF and the QD. In this case, each of the six terms is given by

δ←A(BC) = δ←BC(A) = E A(E) + SA|E ,

δ←B(AC) = δ←AC(B) = EB(E) + SB|E , (21)

δ←C(AB) = δ←AB(C) = EC(E) + SC |E ,

where the QD is symmetric because in this situation SA = SBC , SB = SAC and SC = SAB .
Given the results in the equations above, what can we say about the entanglement of each

part of the system (A, B or C) with the environment E , when the quantum state is initially
in a GHZ state and is subjected to independent phase damping? In other words, are E A(E),
EB(E) and EC(E) different from zero during the dissipative dynamics process? To answer this
question, we calculate explicitly the density matrices ρAE , ρB E and ρC E . When an initial three-
qubit GHZ state is subjected to independent dephasing environments the global state (system
plus environment) is pure and is given by equation (13). In this situation, the eigenvalues are
λ1(t)= 1− e−30t and λ2(t)= 1 + e−30t and the eigenvectors are |81〉 = (|111〉− |000〉)/

√
2 and

|82〉 = (|111〉+ |000〉)/
√

2. Thus,

|9ABC E(t)〉 =
√

λ1(t)

(
|111〉− |000〉
√

2

)
|0〉+

√
λ2(t)

(
|111〉+ |000〉
√

2

)
|1〉. (22)

Defining the density matrix ρABC E(t)= |9ABC E(t)〉〈9ABC E(t)| and tracing out the subsystems
B and C , the density matrix ρAE(t)= TrBC{ρABC E(t)} is given by

ρAE(t)=
1

2
|φ1(t)〉〈φ1(t)|+

1

2
|φ2(t)〉〈φ2(t)| (23)

with |φ1(t)〉 = |1〉(
√

λ1(t)|0〉+
√

λ2(t)|1〉) and |φ2(t)〉 = −|0〉(
√

λ1(t)|0〉−
√

λ2(t)|1〉). Thus,
since |φ1(t)〉 and |φ2(t)〉 are separable states for any time t , ρAE(t) is also separable.
Furthermore, tracing out the subsystems A and C or A and B from ρABC E(t) we note that
ρAE(t)= ρB E(t)= ρC E(t) which proves that E A(E) = EB(E) = EC(E) = 0. So, the proof above
shows that none of the subsystems of the GHZ state becomes entangled with the environment,
if each one is subjected to an independent phase-damping channel. In this case, the MMQC for
the QD can be calculated analytically by means of the conditional entropy. Indeed,

QQ D

(
ρ̂ABC

)
= 2(SA|E + SB|E + SC |E). (24)

For the EOF, on the other hand, the situation is a little different. In this case, the six terms are
given by

E A(BC) = EBC(A) = δ←A(E) + SA|E ,

EB(AC) = E AC(B) = δ←B(E) + SB|E , (25)

EC(AB) = E AB(C) = δ←C(E) + SC |E .

The crucial difference between equations (21) and (25) is that, while each part of the system
does not become entangled with the environment, it does create QD with it. In other words,
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the phase-damping channel, acting independently over each qubit, creates QD between the
subsystems and the environment. Furthermore, given the initial symmetry of the GHZ state,
we find that δ←A(E) = δ←B(E) = δ←C(E) 6= 0 and, consequently,

QE O F

(
ρ̂ABC

)
=QQ D

(
ρ̂ABC

)
+ 2

(
δ←A(E) + δ←B(E) + δ←C(E)

)
.

This is an important result and a direct consequence of the conservative relation between the
EOF and the QD where we are concerned with the quadripartite system ABC E (three qubits
plus environment). For the GHZ state subjected to phase damping, there is no entanglement
between each subsystem (A, B or C) and the environment (E) but there is QD. Thus, the QD
that is created with the environment needs to be compensated by the entanglement retained in
the system, making the EOF more robust than the QD in this particular situation. It must be
emphasized that this is a direct consequence of the GHZ being a genuine multipartite entangled
state, which means that the EOF between any set of two parts (E A(B), E A(E), EB(C), etc) is always
zero during dissipative dynamics.

7. Conclusion

In this paper, we have presented an alternative measure of multipartite quantum correlations.
Our measure gives a novel and intuitive means of comparing the robustness of entanglement
and discord in multipartite systems, against the detrimental interaction with the environment.
We analyze two distinct initial conditions, which involve different kinds of multipartite
entanglement. We show that the robustness of the EOF depends on the family of entanglement
present in the initial state, raising the question of whether it is greater than the robustness of QD
in open quantum systems. Actually, for a three-qubit W state, QD proves to be more robust, but
the same cannot be said about the GHZ state. We show that this behavior is related to the way
that the multipartite quantum state is quantum correlated with the environment. For the GHZ
state subjected to independent phase-damping channels, the individual qubits do not become
entangled with the environment, but to create QD with it. Thus entanglement is preserved for a
longer time than the QD. We believe that the discussion presented here may contribute further
to the understanding of the distribution of entanglement and discord in open quantum systems.
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