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Using the QCD sum rules approach, we study the mass and the decay widths of the Yð3940Þ state,
assuming that it can be described by a mixed charmonium-molecule scalar state, i.e., a mixture between the
χc0 charmonium and D�D̄� molecule. Using a current with JPC ¼ 0þþ, we estimate for the mixing angle,
θ ¼ ð76.0� 5.0Þ°, resulting in a mass value of MY ¼ ð3.95� 0.11Þ GeV, which is in reasonable
agreement with the experimental mass of the Yð3940Þ state. For the decay width, we evaluate the
channels Y → J=ψω and Y → γγ. We find the values ΓY→J=ψω ≈ ð1.7� 0.6Þ MeV and
ΓY→γγ ≈ ð1.6� 1.3Þ KeV, respectively. We also study the decay process of this state into channels
containing DD̄ mesons in the final state. The result for the order of magnitude of the product
ΓY→γγ × ΓY→J=ψω ∼Oð103Þ KeV2 is also in reasonable agreement with the experimental data. We thus
conclude that the present description of the Yð3940Þ as a mixed charmonium-molecule state is a possible
scenario to explain the structure of such a state.
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I. INTRODUCTION

In the last years, several states in the region of mass of
about 3940 MeV have been observed in different processes
of production and decay. The first one was the Yð3940Þ,
observed by BELLE Collaboration in the decay
B → ðJ=ψωÞK, with a mass m ¼ 3943� 11ðstatÞ �
13ðsystÞ MeV and decay width Γ ¼ 87� 22ðstatÞ �
26ðsystÞ MeV [1]. Soon after, this state has been also
observed in the process B → ðJ=ψωÞK by BABAR
Collaboration, with a slightly smaller mass of m ¼
3914.6þ3.9

−3.4ðstatÞ � 2.0ðsystÞ MeV and width Γ ¼
34þ12

−8 ðstatÞ � 5.0ðsystÞ MeV [2]. Between these two
observations, BELLE Collaboration has reported the
observation of a state in the process γγ → DD̄, that is
generally linked to the charmonium state χc2ð2PÞ [3,4].
BELLE has called this state “Zð3930Þ,” and the results
for the mass and width are m ¼ ð3929� 5ðstatÞ�
2ðsysÞÞ MeV, Γ¼ð29�10ðstatÞ�2ðsysÞÞMeV. Finally
the state Xð3915Þ was observed by BELLE Collaboration
in the process γγ → J=ψω [5], with a mass m ¼
ð3915� 3� 2Þ MeV and total width Γ ¼ ð17� 10�
3Þ MeV. These values are consistent with those of the
Yð3940Þ, which is seen in the J=ψω final state [1,2],
and close to those of the Zð3930Þ, which is seen in
γγ → DD̄ [3,4].

The proximity of the masses could indicate that all these
states are connected to the same particle observed in
different processes. There is evidence, however, that the
two reported states, Yð3940Þ and Xð3915Þ, could be
interpreted as molecular states. The Xð3915Þ state has a
larger product of the two-photon width times the decay
branching fraction than usually expected for charmonium
states, as noted in Ref. [6]. Regarding the Yð3940Þ, the
lower limit for the decay channel J=ψω has been estimated
to be Γ > 1 MeV, which is large for a channel that is OZI
suppressed for conventional charmonium states [7,8].
These facts suggests that these states cannot be interpreted
as a conventional cc̄ state. In Ref. [9] these two states were
interpreted as the same state, and it was called Xð3915Þ.
However, the Particle Data Group [10] associates the
label “Xð3915Þ” with the charmonium state χc0ð2PÞ.
Therefore, to avoid misinterpretation, here we use the label
“Yð3940Þ” to identify the state observed in the decay
mode J=ψω.
In Ref. [11], it was proposed that the Yð3940Þ can be a

molecular state D�D̄�, with quantum numbers JPC ¼ 0þþ
or 2þþ. It was also concluded that the Yð3940Þ must be the
molecular partner of the state Yð4140Þ, a D�

sD̄�
s molecule.

This interpretation has been tested in several approaches,
such as phenomenological Lagrangians [12] and vector-
meson dominance [13]. In Ref. [14], the Y state was studied
with the QCD sum rules (QCDSR) method [15–17] as a
D�D̄� molecule with quantum numbers 0þþ and the mass
obtained was mD�D̄� ¼ ð4.13� 0.10Þ MeV, failing to
reproduce the experimental mass of the state.
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In the present work we revisit the study of the Yð3940Þ
within the QCDSR approach, using a mixed charmonium-
molecule current. The prescription of a mixture of two- and
four-quark states has been successfully implemented for
other states in the framework of sum rules. Following the
work of Ref. [18] that was applied in the light quark sector,
the authors in Refs. [19–21] described the Xð3872Þ state as
a molecule-charmonium state, implementing the mixing of
the current and extending it to the charm sector. In these
works the mass and decay width for the channels J=ψ þ
ð2π; 3π; γÞ and the production in B-meson decays were
estimated in good agreement with the experimental values.
Another state that was studied as a mixture was the
Yð4260Þ. In Ref. [22], the Yð4260Þ was described as a
tetraquark-charmonium mixed state, and the mass and
decay width estimated were also consistent with the
experimental values.
In the following sections we use the QCDSR approach to

describe the Yð3940Þ as a mixing between the χc0 char-
monium and the D�D̄� molecule, with JPC ¼ 0þþ. We
obtain the mass for this state and the decay width in the
channel Y → J=ψω.

II. MIXED HADRONIC CURRENT

In order to evaluate the sum rule for the Yð3940Þ state as
a mixed ðχc0Þ − ðD�D̄�Þ state, with JPC ¼ 0þþ, one
employs the following hadronic current,

j ¼ a cos θjχc0 þ sin θjD�D� ; (1)

where θ is an arbitrary mixing angle. The meson and
molecule currents are, respectively, given by

jχc0 ¼ c̄kck (2)

jD�D� ¼ ðq̄iγμciÞðc̄jγμqjÞ: (3)

Notice that the normalization factor a is introduced in
Eq. (3) for ensuring that the mixed current can be evaluated
at the same Fock space. Usually, one sets [18–21]

a ¼ −
hq̄qiffiffiffi

2
p : (4)

Then, evaluating the two- and three-point correlation
functions altogether with Eq. (1), one can estimate the
mass and decay width of the mixed ðχc0Þ − ðD�D̄�Þ state.

III. TWO-POINT CORRELATION FUNCTION

To obtain the mass of a hadronic state using the QCDSR
approach, one has to evaluate the two-point correlation
function

ΠðqÞ ¼ i
Z

d4xeiq·xh0jT½jðxÞj†ð0Þ�j0i: (5)

According to the quark-hadron duality principle, Eq. (5)
can be evaluated in two ways: the phenomenological side
and the QCD side. The phenomenological side is calculated
by inserting, in Eq. (5), a complete set of intermediate
states, Y, which couple to the hadronic current in Eq. (1).
Parametrizing this coupling through a generic parameter λY,
one defines

h0jjjYi ¼ λY: (6)

Using Eq. (6) and after some algebraic manipulation, one
can write the phenomenological side of Eq. (5) as

Π PHENðqÞ ¼ λ2Y
M2

Y − q2
þ
Z

∞

0

ds
ρcontðsÞ
s − q2

; (7)

where MY is the mixed ðχc0Þ − ðD�D̄�Þ ground state mass,
and the second term in the rhs of Eq. (7) denotes the
continuum (or higher resonance) contributions. As usual in
a QCDSR approach, it is assumed that the continuum
contribution to the spectral density, ρcontðsÞ in Eq. (7),
vanishes below a certain threshold s0. Above this threshold,
it is assumed that the result coincides with the one obtained
in the OPE side. Therefore, one uses the ansatz [23]

ρcontðsÞ ¼ ρOPEðsÞΘðs − s0Þ; (8)

where Θðs − s0Þ is the Heaviside step function.
In the OPE side, one calculates the correlation function

in terms of quark and gluon fields using the Wilson’s
operator product expansion (OPE). This is also called the
OPE side. Then, inserting Eq. (1) into the above equation,
one obtains

ΠOPEðqÞ ¼ i
Z

d4xeiq·x
�
1

2
hq̄qi2cos2θΠχc0 þ sin2θΠD�D�

−
hq̄qiffiffiffi

2
p sin θ cos θ½Πmix þ Π�

mix�
�
; (9)

where the Πχc0ðxÞ and ΠD�D� ðxÞ functions are, respectively,
the correlation functions of the χc0 meson and the
D�D�ð0þþÞ molecular state, which have been calculated
in other works [14,16]. Thus, one only has to calculate the
ΠmixðxÞ and Π�

mixðxÞ functions defined as follows:

ΠmixðxÞ ¼ h0jT½jχc0ðxÞj†D�D� ð0Þ�j0i
¼ −Tr½Sqjið0ÞγμScikð−xÞSckjðxÞγμ� (10)

Π�
mixðxÞ ¼ h0jT½jD�D� ðxÞj†χc0ð0Þ�j0i

¼ −Tr½Sqjið0ÞγμScikðxÞSckjð−xÞγμ�; (11)
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where ScðxÞ and SqðxÞ are the charm- and light-quark
propagators, respectively. The next step is to write the
correlation function in terms of a dispersion relation, such
that

ΠOPEðq2Þ ¼
Z

∞

4m2
c

ds
ρOPEðsÞ
s − q2

; (12)

where ρOPEðsÞ is given by the imaginary part of the
correlation function: πρOPEðsÞ ¼ Im½ΠOPEðq2 ¼ sÞ�.
According to Eq. (9), the expression for the spectral
density is

ρOPEðsÞ ¼ 1

2
hq̄qi2cos2θρχc0ðsÞ þ sin2θρD�D� ðsÞ

−
hq̄qiffiffiffi

2
p sin θ cos θρmixðsÞ: (13)

One calculates the sum rule at leading order in αs in the
operators and considers the contributions from the con-
densates up to dimension eight in the OPE. The expressions
for the spectral density are given in Appendix A.
To improve the matching between the two sides of the

sum rule, one performs the Borel transform. After trans-
ferring the continuum contributions to the OPE side, the
sum rule for the scalar charmonium-molecule, considered
as a mixed scalar ðχc0Þ − ðD�D̄�Þ state, can be written as

λ2Ye
−M2

Y=M
2
B ¼

Z
s0

4m2
c

dse−s=M
2
BρOPEðsÞ: (14)

Therefore, one can estimate the ground state mass from the
following ratio,

R ¼
R s0
4m2

c
dsse−s=M

2
BρOPEðsÞR s0

4m2
c
dse−s=M

2
BρOPEðsÞ ; (15)

where at the M2
B-stability point, one obtains MY ≃ ffiffiffiffiffi

R
p

.

A. Numerical analysis

The numerical values for the quark masses and con-
densates are listed in Table I. These values are consistent

with the ones used in Refs. [20–22] for the QCDSR
analysis on other mixed hadronic states.
For reliable results in a sum rule calculation, one must

establish a valid Borel window which guarantees the
existence of a region with M2

B stability, a good OPE
convergence, and pole dominance over continuum contri-
butions. Nevertheless, another crucial point is the optimal
choice of the continuum threshold s0 and the mixing
angle θ.
We start our analysis discussing the possible values

of both parameters. Considering that we are interested in
a mixed state with a mass MY ∼ 3.9 GeV, a reasonable
initial value for the continuum threshold would beffiffiffiffiffi
s0

p ¼ 4.40 GeV. In principle, the choice of the mixing
angle seems to be arbitrary. Hence, for a fixed value of θ,
we search for a continuum threshold which allows us to
determine the best M2

B stability inside of a valid Borel
window. After lengthy numerical calculations, we find that
the optimal choice is

ffiffiffiffiffi
s0

p ¼ ð4.40� 0.10Þ GeV (16)

θ ¼ ð76.0� 5.0Þ°: (17)

We notice that the OPE does not converge for θ values
outside this range. Using these values, we analyze the
relative contributions of the terms in the OPE, for

ffiffiffiffiffi
s0

p ¼
4.40 GeV and θ ¼ 76.0°. As one can see in Fig. 1, the
contribution of the dimension-eight condensate is smaller
than 20% of the total contribution for values of
M2

B ≥ 2.40 GeV2, which indicates the starting point for
a good OPE convergence. In order to determine the
maximum value of the Borel mass parameter, we must

TABLE I. QCD input parameters.

Parameters Values

m̄c ð1.23 − 1.47Þ GeV
hq̄qi −ð0.23� 0.03Þ3 GeV3

hg2sG2i ð0.88� 0.25Þ GeV4

hg3sG3i ð0.58� 0.18ÞGeV6

m2
0 ≡ hq̄Gqi=hq̄qi ð0.8� 0.1Þ GeV2

ρ≡ hq̄qq̄qi=hq̄qi2 ð0.5 − 2.0Þ

2.0 2.5 3.0 3.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

MB
2 GeV2

O
PE

Pert
qq
G2

qGq
qq 2 G3

qq qGq

FIG. 1 (color online). OPE convergence in the region
1.7 ≤ M2

B ≤ 3.8 GeV2 for
ffiffiffiffiffi
s0

p ¼ 4.40 GeV and θ ¼ 76.0°.
One plots the relative contributions starting with the perturbative
contribution (line with circles), and each other line represents the
relative contribution after adding of one extra condensate in the
expansion: + hq̄qi (dashed line), þhG2i (dotted line), þhq̄Gqi
(dot-dashed line), þhq̄qi2 þ hG3i (line with triangles), and
hq̄qi · hq̄Gqi (solid line).
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analyze the pole contribution. Since the QCDSR approach
extracts information only from the ground state, we have to
ensure that the pole contribution is greater than the
continuum contribution. Thus, we fix the maximum value
of the Borel mass parameter as the value for which the pole
is greater than or equal to the continuum contribution. From
Fig. 2, we can see that this condition is satisfied when
M2

B ¼ 2.70 GeV2. Therefore, the Borel window is set
as 2.40 ≤ M2

B ≤ 2.70 GeV2.
In Fig. 3, we plot the ground state mass as a function of

M2
B, considering three different values of

ffiffiffiffiffi
s0

p
. We conclude

that there is a good M2
B stability in the determined Borel

window.
Varying the value of the continuum threshold in the

range
ffiffiffiffiffi
s0

p ¼ ð4.40� 0.10Þ GeV, the mixing angle in the
range θ ¼ ð76.0� 5.0Þ°, and the other parameters as
indicated in Table I, we get

MY ¼ ð3.95� 0.11Þ GeV: (18)

This mass is compatible with the experimental mass of the
Yð3940Þ state observed by BELLE Collaboration [1].
Therefore, from a QCD sum rule point of view, a mixed
scalar ðχc0Þ − ðD�D̄�Þ state could be a good candidate to
explain the Yð3940Þ state.
After the determination of the mass, we can use this

result in Eq. (14) to estimate the coupling parameter,
defined in Eq. (6). Therefore, considering the same values
of s0, θ and the Borel window used for the mass calculation,
we obtain

λY ¼ ð2.1� 0.6Þ × 10−2 GeV5: (19)

IV. THE Yð3940Þ → J=ψω DECAY WIDTH

In order to provide more evidence to support the
conclusion reached at the end of the previous section, that
the Yð3940Þ can be explained as a scalar mixed state, we
now use the QCDSR to compute the form factor associated
with the vertex YJ=ψω and to estimate the width of the
channel Yð3940Þ → J=ψω. For this purpose, we start
writing the three-point function defined as

Πμνðp; p0; qÞ ¼
Z

d4xd4yeip
0·xeiq·yΠμνðx; yÞ; (20)

where p ¼ p0 þ q and Πμνðx; yÞ is given by

Πμνðx; yÞ ¼ h0jTfjψμ ðxÞjων ðyÞj†ð0Þgj0i: (21)

The interpolating currents for the J=ψ meson and the mixed
ðχc0Þ − ðD�D̄�Þ state used in Eq. (21) are defined in Sec. II,
while the interpolating current associated with the ωmeson
is defined by

jων ¼ 1

6
ðūaγνua þ d̄aγνdaÞ: (22)

In the same manner that it was done for the two-point
correlation function, we again invoke the quark-hadron
duality principle to calculate the three-point function in two
ways. We match both sides after performing the Borel
transform. In the phenomenological side, one has to insert
the intermediate states for the J=ψ , ω and Yð3940Þ mesons
in Eq. (20). Using the following relations,

h0jjψμ jJ=ψðp0Þi ¼ Mψfψϵμðp0Þ;
h0jjων jωðqÞi ¼ MωfωϵνðqÞ;
hYðpÞjjj0i ¼ λY; (23)

we obtain the expression

Π PHEN
μν ðp; p0; qÞ ¼ λYMψfψMωfωgYψωðq2Þ

ðp2 −M2
YÞðp02 −M2

ψ Þðq2 −M2
ωÞ

× ½qμp0
ν − ðp0 · qÞgμν� þ � � � ; (24)
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uu
m

Pole
Continuum

FIG. 2 (color online). The pole (solid line) and continuum
(dotted line) contributions for

ffiffiffiffiffi
s0

p ¼ 4.40 GeV and θ ¼ 76.0°.
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eV

s0 4.50 GeV
s0 4.40 GeV
s0 4.30 GeV

FIG. 3 (color online). The mass as a function of the sum rule
parameter M2

B for
ffiffiffiffiffi
s0

p ¼ 4.30 GeV (dotted line),
ffiffiffiffiffi
s0

p ¼
4.40 GeV (solid line) and

ffiffiffiffiffi
s0

p ¼ 4.50 GeV (dashed line). The
respective parentheses indicate the valid Borel window.
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where the dots stand for the contribution of all possible
excited states. The form factor, gYψωðq2Þ, is defined by the
generalization of the on-shell mass matrix element,
hJ=ψωjYi, for an off-shell ω meson,

hJ=ψωjYi ¼ gYψωðq2Þ½ðp0 · ϵ�ðqÞÞðq · ϵ�ðp0ÞÞ
− ðp0 · qÞðϵ�ðp0Þ · ϵ�ðqÞÞ�; (25)

which can be extracted from the effective Lagrangian that
describes the coupling between two vector mesons and one
scalar meson,

L ¼ i
2
gYψωVαβΨαβY; (26)

where Vαβ ¼ ∂αωβ − ∂βωα and Ψαβ ¼ ∂αψβ − ∂βψα are
the tensor fields of the ω and ψ fields, respectively.
In the OPE side, we calculate the correlation function at

leading order in αs and we consider condensates up to
dimension seven. Notice that the three-point function
includes a number of different Lorentz structures and the
most suitable one for our purposes seems to be the qμp0

ν.
The reasons for the choice of this structure are (a) it has the
larger number of momenta and (b) the OPE leading term
decreases as 1=Q2 as Q2 → ∞, which is an expected
behavior for QCD form factors. In general, for any given
structure, the sum rule method is inapplicable at large Q2,
where the power corrections become large and uncontrol-
lable. At small Q2, the situation is even worse since when
approaching the physical region the operator expansion
stops working. In this sense, one has to consider that the
sum rule is valid up to a rather small Q2, and the
extrapolation from the values of Q2 to the physical region
can be obtained with good accuracy.
Matching both sides of the sum rule, taking the approxi-

mation p2 ≃ p02 ¼ −P2 and doing the Borel transform to
P2 → M2

B, we get the following expression in the qμp0
ν

structure,

λYMωfωMψfψgYψωðQ2Þ
ðM2

Y −M2
ψ ÞðQ2 þM2

ωÞ
ðe−M2

Y=M
2
B − e−M

2
ψ=M2

BÞ

þHðQ2Þe−s0=M2
B ¼ ΠOPEðM2

B;Q
2Þ; (27)

where Q2 ¼ −q2, and HðQ2Þ function represents the
contribution to the pole-continuum transitions
[19,24–26]. The ΠOPEðM2

B;Q
2Þ function is

ΠOPEðM2
B;Q

2Þ ¼ sin θ
Z þ∞

4m2
c

dse−s=M
2
Bρðs;Q2Þ; (28)

and ρ ¼ ρpert þ ρhq̄qi þ ρhG2i þ ρhq̄Gqi þ ρhq̄qihG2i is given
explicitly by

ρpertðs;Q2Þ ¼ ρhq̄qiðs;Q2Þ ¼ 0; (29)

ρhG2iðs;Q2Þ ¼ −
hg2sG2i

32 · 210π4

Z
1

0

dαδ

�
s −

m2
c

αð1 − αÞ
�

× ð3 − 3αþ α2Þ; (30)

ρhq̄Gqiðs;Q2Þ ¼ mchq̄Gqi
72π2Q2

Z
1

0

dαδ

�
s −

m2
c

αð1 − αÞ
�
;

ρhq̄qihG2iðs;Q2Þ ¼ mchq̄qihg2sG2i
33 · 25π2Q4

Z
1

0

dαδ

�
s −

m2
c

αð1 − αÞ
�

×
ð1 − 3αð1 − αÞÞ

αð1 − αÞ : (31)

As observed in previous works [19–22], the charmonium
part of the mixed current defined in Eq. (1) contributes to
the three-point function uniquely with disconnected dia-
gram. Hence, only the molecule part contributes to the
decay channel Yð3940Þ → J=ψω. This fact is evident due
to the presence of the sine function in Eq. (28).
We follow the usual procedure in order to extract the

value of the coupling constant associated with the
Y → J=ψω process. First, we must determine the form
factor of the YJ=ψω vertex, which can be done by isolating
the function gYψωðQ2Þ in Eq. (27), then we divide Eq. (27)
by its derivative with respect to 1=M2

B in order to eliminate
the unknown function HðQ2Þ. Therefore, we are left with a
function for the form factor gYψωðQ2Þ to be determined
numerically.
In the numerical analysis we use the experimental values

of the meson masses and decay constants (in GeV):
Mψ ¼ 3.10, fψ ¼ 0.405, Mω ¼ 0.782, fω ¼ 0.046 . For
the Y mass, we use the experimental value in Ref. [1] and
the meson-current parameter λY, which has been evaluated
in the previous section [see Eq. (19)].
In Fig. 4, we show a plot of the form factor gYψωðQ2Þ as a

function of M2
B and Q2. Note that a reliable sum rule must

be independent of the choice of Borel mass parameter. As
one can see, we obtain a good stability in the Borel mass
parameter atM2

B ≥ 1.8 GeV2. Here we work at the interval
1.8 GeV2 ≤ M2

B ≤ 4.0 GeV2. The form factor dependence
in Q2 can be evaluated by taking the average of the M2

B
values inside this stability region. The results are shown
in Fig. 5.
As mentioned above, the sum rule is not reliable at very

large and very small values of Q2. Here we find that the
results are reliable for 1.2 ≤ Q2 ≤ 2.4 GeV2.
Once we have determined the form factor behavior, we

can now extract the coupling constant by using the
momentum value at the ω meson pole, Q2 ¼ −M2

ω. For
this purpose, we have to extrapolate the form factor to the
region of Q2 where the QCDSR is not valid. This
extrapolation can be done by parametrizing the QCDSR
results shown in Fig. 5 for gYψωðQ2Þ using a monopolar
function,
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gYψωðQ2Þ ¼ g1
g2 þQ2

; (32)

and the results for the fitting parameters are

g1 ¼ ð4.0� 1.0Þ GeV;
g2 ¼ ð7.4� 0.2Þ GeV2: (33)

Considering that the monopolar function could not be the
optimal choice, we have also used an exponential function
for fitting the data. It is noteworthy that both fits presented
basically equivalent results. Therefore, we have used these
two fits to estimate the error in the extrapolation.
The theoretical errors are evaluated considering errors

on the following parameters:
ffiffiffiffiffi
s0

p ¼ 4.40� 0.10 GeV,

θ ¼ 76:0° � 5.0°, and also the error on the meson coupling
parameter λY, given by Eq. (19). We notice that the results
do not depend much on the parameters

ffiffiffiffiffi
s0

p
and θ, while the

theoretical errors are mainly affected by the meson cou-
pling λY .
In order to see how well the parametrization works, the

solid line in Fig. 5 represents the Eq. (32) with values given
by Eq. (33). The coupling constant, gYψω, is given by using
the momentum value Q2 ¼ −M2

ω in Eq. (32). Then, we get

gYψω ¼ gYψωð−M2
ωÞ ¼ ð0.58� 0.14Þ GeV−1: (34)

The decay width for this process Yð3940Þ → J=ψω is
given by

ΓYð3940Þ→J=ψω¼
g2Yψω
3

pðMY;Mω;Mψ Þ
8πM2

Y

×

�
M2

ψM2
ωþ

1

2
ðM2

Y−M2
ψ −M2

ωÞ2
�
; (35)

where

pða; b; cÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ b4 þ c4 − 2a2b2 − 2a2c2 − 2b2c2

p

2a
:

(36)

Therefore, we obtain the decay width inserting the value
obtained for the coupling constant (34) in (35):

ΓYð3940Þ→J=ψω ¼ ð1.7� 0.6Þ MeV: (37)

This result is consistent with the experimental width of the
state and the lower limit for the process Y → J=ψω
[1,2,7,8]. It is also of the same order as other available
theoretical evaluations [12,13].

V. THE Yð3940Þ → DD̄ DECAY WIDTH

Establishing the Yð3940Þ as a mixed state, it seems that
the main decay channel would be intoDmesons, due to the
charmonium part of the current. However, the approach
used here does not allow us to evaluate such decay, since
one can only use the QCDSR approach to study properties
of the low-lying state. Therefore, a charmonium JPC ¼ 0þþ
current can only be used to study the decay of χc0ð1PÞ. If
one tries to use the charmonium current to study the
χc0ð2PÞ decay into DD̄, one would get promptly a number
different from zero, but this number is meaningless because
the approach can not be used to study this resonant state. In
addition we have verified that the molecular part of the
current is not allowed to decay into the channel containing
DD̄ mesons.

0
2

4
6MB

2 GeV2
1

2

3

4

Q2 GeV2

0

1

2

3

4

g Y
G

eV
1

FIG. 4 (color online). The form factor gYψωðQ2Þ as a function of
the momentum Q2 and Borel mass parameter M2
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FIG. 5 (color online). QCDSR results for the form factor
gYψωðQ2Þ, for ffiffiffiffiffi

s0
p ¼ 4.40 GeV (circles). The solid line gives

the parametrization of the QCDSR results through Eq. (32). The
cross is the value of the coupling constant.
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VI. THE Yð3940Þ → γγ DECAY WIDTH

As done in Sec. IV, we can estimate the decay width of
the channel Yð3940Þ → γγ, through the three-point func-
tion (20). For this vertex Yγγ, we must consider the
following function,

Πμνðx; yÞ ¼ h0jTfjγμðxÞjγνðyÞj†ð0Þgj0i; (38)

where the interpolating current for the photon is given by

jγμ ¼ 2

3
eðūaγμua þ c̄aγμcaÞ −

1

3
eðd̄aγμda þ s̄aγμsaÞ: (39)

In the phenomenological side, we have the expression

ΠPHEN
μν ðp; p0; qÞ ¼ −

e2λYgYγγðq2Þ
ðp2 −M2

YÞ
× ½qμp0

ν − ðp0 · qÞgμν� þ � � � ; (40)

where the p0 and q are the momenta related to the two-
photon vertex. The form factor gYγγðq2Þ is defined by the
transition matrix of the process Y → γγ [27,28],

Mμν ¼ e2gYγγðq2Þ½gμνðp0 · qÞ − qμp0
ν�: (41)

The matching of both sides of the sum rule is done in the
same way as for the channel J=ψω, and we get in the
structure qμp0

ν the following expression,

e2λYgYγγðQ2Þe−M2
Y=M

2
B þ FðQ2Þe−s0=M2

B

¼ ΠOPEðM2
B;Q

2Þ; (42)

and the FðQ2Þ function represents the contribution to the
pole-continuum transitions. For this decay channel, the
ΠOPEðM2

B;Q
2Þ function is given by

ΠOPEðM2
B;Q

2Þ ¼ 8

3
e2½ΠOPE

J=ψωðM2
B;Q

2Þ þ ΠOPE
γγ ðM2

B;Q
2Þ�;
(43)

where ΠOPE
J=ψωðM2

B;Q
2Þ is the same function obtained in the

J=ψω channel given in Eq. (28). The ΠOPE
γγ ðQ2;M2

BÞ
function can be found in the Appendix.
The numerical analysis of the sum rule (42) provides the

form factor gYγγðQ2Þ. In Fig. 6, we show a plot of the form
factor gYψωðQ2Þ as a function of M2

B and Q2. As one can
see, we obtain a good stability in Borel mass parameter
and we consider a confidence region at 4.0 GeV2 ≤
M2

B ≤ 7.0 GeV2. Using again the monopolar function
given in Eq. (32), we can extrapolate the QCDSR results
and estimate the coupling constant for the process Y → γγ.
Therefore, in Fig. 7 we present such extrapolation from
where we obtain, at Q2 ¼ 0:

gYγγ ¼ ð0.025� 0.010Þ GeV−1; (44)

and the results for the fitting parameters are given by g1 ¼
ð0.08� 0.05Þ GeV and g2 ¼ ð3.13� 0.22Þ GeV2.
The decay width into γγ can be evaluated by the

expression [28]

ΓYð3940Þ→γγ ¼
π

4
α2emM3

Yg
2
Yγγ; (45)

where αem ≃ 1=137 is the fine structure constant.
Replacing the value of the coupling constant given above
we then obtain

ΓYð3940Þ→γγ ¼ ð1.6� 1.3Þ KeV: (46)
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FIG. 7 (color online). QCDSR results for the form factor
gYγγðQ2Þ, for ffiffiffiffiffi

s0
p ¼ 4.40 GeV (circles). The solid line gives

the parametrization of the QCDSR results. The cross is the value
of the coupling constant, at Q2 ¼ 0.
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Based on this decay width value and the one obtained for
the channel J=ψω in Eq. (37), the product of the two partial
widths of the Yð3940Þ is given by

Γγγ × ΓJ=ψω ∼Oð103Þ KeV2: (47)

The result for this product is in reasonable agreement with
one predicted by BELLE and BABAR Collaborations in
Refs. [5,6].

VII. SUMMARY AND CONCLUSIONS

In summary, we have used the QCDSR approach to
study the two-point and three-point functions of the
Yð3940Þ state, by considering it as a mixed charmo-
nium-molecule state. We evaluated the mass working with
the two-point function at leading order in αs and consid-
ering the contributions from the condensates up to dimen-
sion seven in the OPE. We obtained a mass which is in
reasonable agreement with the experimental value for the
Yð3940Þ state, and we found a mixing angle around
θ ¼ ð76.0� 5.0Þ0.
To evaluate the decay width of the channel

Yð3940Þ → J=ψω, we worked with the three-point func-
tion also at leading order in αs, and we considered the
contributions from the condensates up to dimension
seven. The obtained value of the width is ΓJ=ψω ¼
ð1.7� 0.6Þ MeV, which is smaller than the total exper-
imental width [1,2], but is consistent with the lower limit
for this channel Γ > 1 MeV [12,13]. We also estimated the
decay width of Yð3940Þ into two photons as
Γγγ ¼ ð1.6� 1.3Þ KeV. These results allowed us to esti-
mate the order of magnitude of the product of the two
partial widths, Γγγ × ΓJ=ψω ∼Oð103Þ KeV2, which is also
in reasonable agreement with the experimental data.
Thus, according to the available experimental data, we

can conclude that a mixing between the χc0 charmonium
and the D�D̄� molecule, with JPC ¼ 0þþ quantum
numbers, could be a good candidate to explain the
Yð3940Þ state.
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APPENDIX A: SPECTRAL DENSITIES FOR THE
TWO-POINT CORRELATION FUNCTION

Next, we list the spectral densities for the mixed scalar
ðχc0Þ − ðD�D̄�Þ state described by the current in Eq. (1).
We consider the OPE contributions up to dimension-eight
condensates and keep terms at leading order in αs. In order
to retain the heavy quark mass finite, we use the momen-
tum-space expression for the heavy quark propagator. We
calculate the light quark part of the correlation function in
the coordinate-space and use the Schwinger parametriza-
tion to evaluate the heavy quark part of the correlator. For

the d4x integration in Eq. (5), we use again the Schwinger
parametrization, after a Wick rotation. Finally, the result of
these integrals are given in terms of logarithmic functions
through which we extract the spectral densities. The same
technique can be used for evaluating the condensate
contributions.
For the χc0 meson contribution, the spectral densities are

written below [16],

ρpertχc0 ðsÞ ¼ −
3m2

c

8π2
v

�
4 −

1

x

�
;

ρhG
2i

χc0 ðsÞ ¼ hg2sG2i
25π2M2

B
v

�
2þ 2

x
−
m2

c=M2
B

x2

�

ρhG
3i

χc0 ðsÞ ¼ −
hg3sG3i

3 · 27π2M4
B

v
x

�
49þ 6

x
þ ðx −m2

cτÞ

×

�
28þ 49

x
þ 3

x2

��
: (A1)

For the D�D̄�ð0þþÞ molecular state [14],

ρpertD�D�ðsÞ¼ m8
c

5 ·212π6

�
v

�
480þ1460

x
−
274

x2
−
38

x3
þ 1

x4

�

þ120Lv

�
8x−1−6LogðxÞ−8

x
þ 2

x2

�
−1440Lþ

�

ρhq̄qiD�D�ðsÞ¼m5
chq̄qi
64π4

�
v

�
6−

5

x
−

1

x2

�
þ6Lv

�
2x−2þ1

x

��

ρhG
2i

D�D�ðsÞ¼m4
chg2sG2i
3 ·210π6

�
v

�
6−

5

x
−

1

x2

�
þ6Lv

�
2x−2þ1

x

��

ρhq̄GqiD�D� ðsÞ¼ 3m3
chq̄Gqi
128π4

�
v
x
−2Lv

�

ρhq̄qi
2

D�D�ðsÞ¼m2
cρhq̄qi2
4π2

v

ρhG
3i

D�D�ðsÞ¼m2
chg3sG3i
3 ·212π6

�
v

�
6−

25

x
þ 1

x2

�

þ6Lv

�
2xþ2þ1

x

��

ρh8iD�D�ðsÞ¼−
hq̄qihq̄Gqi

8π2
v

�
m4

c=M4
B

x

�
: (A2)

Finally, for the mixed term, we have

ρhq̄qimix ðsÞ ¼
m2

chq̄qi
4π2

v

�
4 −

1

x

�
;

ρhq̄Gqimix ðsÞ ¼ 0: (A3)

In all these expressions we have used the following
definitions:
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x ¼ m2
c=s (A4)

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x

p
(A5)

Lv ¼ Log

�
1þ v
1 − v

�
(A6)

Lþ ¼ Li2

�
1þ v
2

�
− Li2

�
1 − v
2

�
: (A7)

APPENDIX B: THE THREE-POINT
CORRELATION FUNCTION FOR

THE Yð3940Þ → γγ VERTEX

According to Eq. (43), the three-point correlation func-
tion for the channel into two photons can be written in
terms of the function related to the J=ψω channel. Thus, the
second term of the Eq. (43) is given by

ΠOPE
γγ ðM2

B;Q
2Þ ¼ sin θ

X
d

ΠÔd
γγ ðM2

B;Q
2Þ; (B1)

where Ôd are the local field operators with d dimension in
the OPE. Considering the OPE contributions up to dimen-
sion-seven condensates and keeping terms at leading order
in αs, we obtain the following expressions for the
ΠOPE

γγ ðM2
B;Q

2Þ function,

Πpert
γγ ðM2

B;Q
2Þ ¼Πhq̄qi

γγ ðM2
B;Q

2Þ ¼ 0;

ΠhG2i
γγ ðM2

B;Q
2Þ ¼−

hg2sG2i
32 · 210π4

�
1−

2m2
c=Q2

vQ
Log

�
vQþ 1

vQ− 1

��

Πhq̄Gqi
γγ ðM2

B;Q
2Þ ¼

mchq̄Gqi
72π2Q2

�
1−

2m2
c=Q2

vQ
Log

�
vQþ 1

vQ − 1

��

Πhq̄qihG2i
γγ ðM2

B;Q
2Þ ¼−

mchq̄qihg2sG2i
33 · 25π2M2

BQ
2

�
3− 2

�
vQ −

m2
c=Q2

vQ

�

×Log

�
vQþ 1

vQ− 1

��
; (B2)

where vQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

c=Q2
p

.
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