COMPORTAMENTO DE BAIXAS DOSES DE HER BIC IDAS NA CUL TURA DA SOJA (Glyci ne max

(L.) Merril). I I-Efeitos sobre o controle das plantas daninhas, des envolvimento e absorção de nutrientes pela cultura * * *.

J.C. DURIGAN* & R. VICTORIA FILHO**

- * Professor Assistente-Doutor da F C A V UNESP. 14.870 Jaboticabal, SP.
- ** Professor Adjunto da ESALQ-USP. 13.400 Piracicaba, SP.
- *** Parte da Tese de Doutoramento do primeiro autor.

RESUMO

Foi estudada a possibilidade de redução nas doses recomendadas de herbicidas, isolados ou em misturas, sem afetar algumas características das plantas de soja (Santa Rosa), tais como o acúmulo total de matéria seca da parte aérea (caule + ramos, folhas e vagens), índice de Area Foliar (IAF) e teores de macro e micronutrientes (Diagnose Foliar e nos grãos).

O experimento foi instalado em Solo Latossol Vermelho Escuro — fase arenosa, município de Jaboticabal, Estado de São Paulo, Brasil. O delineamento experimental foi o de blocos ao acaso, em vinte tratamentos e três repetições, testando-se a dose total recomendada e reduções de 25% e 50% dela, para o trifluralin, alachlor e metribuzin, isolados e em misturas. As doses recomendadas foram 0,86; 1,72 e 0,28 kg/ha de trifluralin, alachlor e metribuzin, respectivamente.

As 'misturas com doses reduzidas, de trifluralin + metribuzin (0,65 + 0,21 kg/ha) e al achlor + metribuzin (1,44 + 0,21 kg/ha), apresentaram controle geral das plantas daninhas acima de 90% até o 60.° dia após a semeadura, sem apresentar fitotoxicidade ou efeitos deletérios nas plantas de soja. Além disso apresentaram os melhores resultados relativos ao acúmulo de matéria seca na parte aérea, juntamente com as mesmas misturas nas doses padrões e testemunha capinada. A absorção de nutrientes também sempre foi maior nestes tratamentos, com maiores teores nas folhas, na matéria seca geral e nos grãos. O IAF alto e a sua manutenção por um período maior, nestes tratamentos, podem ter tido influência decisiva, com maior eficiência fotossintética das plantas.

Palavras-chave: controle, plantas daninhas, herbicidas, doses baixas, soja, nutrientes.

SUMMARY

BEHAVIOR OF LOW-RATES OF HERBICIDES, IN THE SOYBEAN (Glycine max (L.) Merril) CROP. II — Effects on the weed control, development and nutrients uptake by the crop.

The feasibility of reducing the recommended herbicide rate, single or in mixtures, without affecting any desirable features of soybean ('Santa Rosa'), was studied such as the total dry weight of aerial parts (stem + shoots, leaves and pods), Leaf Area Index (LAI) and levels of macro and micronutrients (Foliar Diagnosis and in the grains).

A field trial was settled in a Dark-Red Latossol-sandy phase, at Jaboticabal, São Paulo State, Brazil. The experimental design used was the randomized blocks, with 20 treatments repplicated 3 times, testing the full recommended rate, 25% and 50% reduction of full rate of trifluralin, alachlor and metribuzin, alone and in mixtures. The recommended rates were 0,86; 1,72 and 0,28 kg/ha of trifluralin, alachlor and metribuzin, respectivelly.

The mixture with low rates, of triflural in + metribuzin $(0.65 + 0.21 \ kg/ha)$ and alachlor + metribuzin $(1.44 + 0.21 \ kg/ha)$, presented control rate higher than 90% up to the 60^{th} day after sowing, without any phytotoxicity or deleterious effects to the soyeban plants. It also achieved the best results relating to dry matter content of aerial parts, together with the same mixtures in the recommended rates and weed-free check. The nutrients uptake was also greater in this treatments, with higher

INTRODUÇÃO

A finalidade principal do herbicida aplicado na cultura é diminuir a densidade ou biomassa das plantas daninhas infestantes da área a um nível tal que não venham a trazer danos, por competição, ao desenvolvimento e consequentemente, à produção desta.

A base da racionalidade do controle químico consiste na recomendação de doses suficientes para impedir a competição em sua fase crítica, proporcionando um desenvolvimento pleno à cultura em questão. Não adianta, portanto, os trabalhos ecológicos determinarem período total de competição não superior a 50 dias (4,5) se as indicações de doses continuam sendo feitas para um período maior, chegando, às vezes, até 120 dias de controle.

Pode-se citar como indicadores dos efeitos da competição sobre o desenvolvimento das plantas de soja, o índice de Area Foliar (IAF), a Taxa de Crescimento Relativo (TCR), a Taxa Assimilatória Liquida (TAL) e a Taxa de Produção de Matéria Seca (TPMS) (11, 14, 20, 21, 22); assim como o peso da matéria seca da parte aérea e os teores de nutrientes (2, 11, 18, 19, 22).

Segundo Oliver et al (21), densidades da *lpomoea purpurea* (*L.*) Roth., de uma planta por 61 cm, e de uma por 15 cm de linha de hoja, proporcionaram reduções de 43 e 66% na produção, 31 e 60% no IAF e 33 e 60% na TPMS, da cultura, respectivamente, quando a competição se estendeu pelo ciclo todo. Para *Abutilon theophrasti* Medic., densidades de 2,5 a 40 plantas por m² causaram reduções no peso seco das folhas, caules, raízes, vagens e sementes, além do IAF (12). Resultados semelhantes foram obtidos com densidades de 3 a 16 plantas/m² de *Datura stramonium* L. (13) e três plantas/m² de *Xanthium pensylvanicum* Wallr. (11).

Desta forma, no presente experimento procurou-se determinar, para o culti var Santa Rosa, em solo Latossol Vermelho Escuro - fase arenosa, se existe a possibilidade de redução das doses atual-

mente indicadas de alguns herbicidas padrões, isolados ou em misturas, sem se incorrer em alterações maléficas a alguns parâmetros de crescimento das plantas, devido à competição imposta por plantas remanescentes ao controle proporcionado.

MATERIAIS E MÉTODOS

O solo escolhido foi o Latossol Vermelho Escuro - fase arenosa (6) Série Santa Tereza (1) com pH 5,9; 2% de matéria orgânica; 29,8% de argila; Da de 1,4 g/cm³; classe textural barro-argiloarenoso. O cultivar foi Santa Rosa, semeado em 27/11/1980.

O delineamento experimental adotado foi o de blocos ao acaso, com vinte tra tam entos e três repetições. Os tra tamentos constaram de doses padrões recom end adas, reduções de 25%, da dos e padrão, para os herbicidas isolados ou em mistura. Além disso, foram mantidas duas testemunhas (com e sem capina o ciclo todo).

O estabelecimento das doses padrões se bas earam nas informações contidas nos boletins da Secretaria da Defesa Sanitária Vegetal Divisão **Produtos** de Fitossanitários (DIPROF) do Ministério da Agricultura, onde constam as doses indicadas para a cultura em questão na época do registro do respectivo produto. Também foram baseadas nos boletins técnicos distribuídos pelas próprias firmas produtoras. As indicações das doses padrões foram feitas para solo com textura média e 1,5-3,0% de m.o.

Os herbicidas testados com suas respectivas dos es e sub-dos es, além dos tipos de aplicações, encontram-se especificados no quadro 1.

A aplicação dos herbicidas foi feita com pulverizador costal à pressão (CO2) constante de 2,8 kg/cm², munido de bicos de jato plano ("leque"), com ângulo de abertura do jato de 110°, espaçados em 0,5 m na barra e com um gasto de 450 litros de calda por ha.

Quadro 1 — Herbicidas	utilizados, com	suas respectivas	doses e sub -doses,	e tipo de aplicação.
Jaboticabal.	1980.	_		

Símbolo usado	Herbicidas	Doses (kg/ha)	Reduções nas doses (%)	Tipo de Aplicação
T1(a)	trifluralin(x)	0,86	0	ppi
T¾(b)	trifluralin	0,65	25	ppi
T½(c)	trifluralin	0,43	50	ppi
A1	alachlor(y)	1,72	0	pré
A34	alachlor	1,29	25	pré 1
A1/2	alachlor	0,86	50	pré
M1	metribuzin(z)	0,28	0	ppi
M¾	metribuzin	0,21	25	ppi
M½	metribuzin	0,14	50	ppi
MY1	metribuzin	0,28	0	pré
MY¾	metribuzin	0,21	25	pré
MY½	metribuzin	0,14	50	pré
TM1	trifluralin + metribuzin	0,86 + 0,28	0 87	ppi
TM¾	trifluralin + metribuzin	0,65 + 0,21	25	ppi
TM½	trifluralin + metribuzin	0,43 + 0,14	50	ppi
AM1	alachlor + metribuzin	1,72 + 0,28	0	pré
AM¾	alachlor + metribuzin	1,29 + 0,21	25	pré
AM1/2	alachlor + metribuzin	0,86 + 0,14	50	pré
0	Testemunha sem capina			durage de
10	Testemunha com capina			AI on a to

⁽a) Dose padrão (b) 3/4 da dose padrão (c) 1/2 da dose padrão (x) Treflan 480 g/1 — Concentrado Emulsionável, Elanco Química Ltda.

⁽y) Laço 43% — Concentrado Emulsionável, Indústrias Monsanto S.A.

⁽z) Lexone 70% — Pó-molhável, DuPont do Brasil S.A.

ppi — pré-plantio incorporado.

pré — pré-emergência.

Mantiveram-se vinte plantas por metro linear e a partir de 25 dias após a semeadura com intervalos de quatorze dias, foram coletadas as partes aéreas de doze plantas por parcela, nas linhas já designadas para tal, até a maturidade fisiológica das sementes deste cultivar (9). As plantas sempre eram retiradas em sequência na linha para que as das últimas amostragens não fossem beneficiadas por uma menor competição intraespecífica até este período. Em cada amostragem também não eram colhidas plantas que iniciavam a linha novamente, após a lacuna da coleta anterior. Das plantas coletadas foram retirados vinte folíolos ao acaso que tiveram seus maiores comprimento e largura medidos. Para se conhecer a área real dos vinte folíolos, lançou-se mão da fórmula proposta por Wierma e Bailey (26). Com base na área e peso da matéria seca dos vinte folíolos, pode-se chegar à área e peso da matéria seca total dos folíolos das doze plantas coletadas na parcela. O peso da matéria seca total da parte aérea das doze plantas foi obtido a partir da soma dos pesos de caule, folíolos, vinte folíolos e vagens, pois eram separadas tais partes logo após a chegada das plantas no laboratório.

As contagens do número de plantas daninhas, por espécie botânica, foram realizadas aos 30 e 60 dias após a semeadura da soja. Em cada parce la foi lançado, ao acaso, por cinco vezes, um retângulo metálico de 0,4 x 0,8 m, totalizando área de amostragem de 1,6 m², ou 5,6% da área total da parcela.

Aos 67 dias após a semeadura, foram coletadas vinte folhas por parcela para que pudesse se realizar a diagnose foliar. Foram colhidas as terceiras folhas a partir do ápice da has te principal das plantas, como indicado pelo Instituto Agronômico de Campinas e citado por Bataglia et alii (3). As plantas coletadas aos 137 dias após a semeadura, e os grãos, na época da colheita, foram moídos e analisados para que se conhecesse o teor de macronutrientes na matéria seca total acumulada e nos grãos de soja, no final do ciclo. O material colhido nes-

tas amostragens anteriormente citadas, sem pre foi lavado, seco, moído e analisado para nitrogênio e fósforo, conforme metodologia descrita por Sarruge e Haag (1974). Para as determinações do cálcio, potás sio, magné sio, ferro, cobre, mangansê e zinco, utilizou-se a espectrofotometria de absorção atômica, conforme descrito por Jorgensen (15).

RESULTADOS E DISCUSSÃO

Os resultados de controle das principais plantas daninhas da área encontram-se nos quadros 2 e 3, para as avaliações realizadas aos 30 e 60 dias após a semeadura, da soja, respectivamente.

As misturas levam nítida vantagem no que diz respeito ao controle das plantas daninhas e em consequência disso, não permitem que a cultura sofra com a competição imposta pelas espécies não controladas como ocorre com os produtos aplicados isoladamente, sobretudo nas menores doses. Pode-se observar, pelos dados da primeira avaliação, que o dose tri flu ral in na pad rão controlou apenas 49,5% das plantas de gua nxuma e da mesma forma o metribuzin, aplicado na superfície do solo (MY1) controlou 66,7% do capim-colchão. A mistura de trifluralin + metribuzin na do se padrão (TM1) controlou, ne sta mesma época, 90,5 e 100,0% de guanx uma e capim-colchão, respectivamente. De sta forma, no tratamento em que se testou mistura na dose padrão ou com redução de 25% dela, praticamente não houve competição com as plantas daninhas que escaparam ao controle e isto pode trazer claros benefícios ao desenvolvimento e absorção de nutrientes pela soja.

Nos quadros 4, 5, 6 e 7 encontramse, respectivamente, as médias do peso da matéria seca de folhas, ramos e caule, vagens e total da parte aérea, nas doze plantas de soja coletadas por parcela, em diferentes dias após a semeadura.

Nota-se que o peso da matéria seca das folhas (quadro 4) não foi um parâ-

Quadro 2 — Número de plantas e porcentagem de controle das principais espécies daninhas infestantes, monocotiledôneas e dicotiledôneas, na avaliação realizada aos 30 dias após a semeadura da soja. Jaboticabal, 1980.

								Princi	pais	piant	as d	aninh	ias									
Trat.				Monoco	tiledô	neas			To	otal				Dicoti	ledd	neas			To	tal	Total (Mon	Geral
*****	capc	arrap.	cap.	-pé-gal.	cap	colchão	capr	narmel.	Мо	noc.	anil	eira	guan	xuma	ca	ruru	poaia	branca	Di	cot.	Dic	ol.)
	N.º(a)	%(b)	N.º	%	N.º	%	N.º	%	N.º	%	N.º	%	N.º	%	N.	96	N.º	%	N.º	96	N.º	96
T1	2	98,6	0	100,0	0	100,0	5	91,1	7	98,3	42	65,0	48	49,5	22	72,5	12	76,0	124	64,1	131	82,5
T¾	10	93,2	3	96,2	7	94,2	8	85,7	28	93,1	36	70,0	51	46,3	18	77,5	16	68,0	121	64,9	149	80,1
T½	14	90,5	14	82,5	6	95,0	16	71,4	50	87,6	46	61,7	49	59,2	41	48,7	20	60,0	156	54,8	206	72,5
A1	6	96,0	2	97,5	1	99,2	22	60,7	31	92,3	34	71,7	38	60,0	13	83,7	8	84,0	93	73,0	124	83,4
A3/4	12	91,9	2	97,5	12	90,0	26	53,6	52	87,1	31	74,2	41	56,8	16	80,0	7	86,0	95	72,5	102	86,4
$A_{1/2}^{1/2}$	19	87,2	8	90,0	18	85,0	31	44,6	76	81,2	50	58,3	50	47,4	14	82,5	12	76,0	126	63,5	202	73,0
M1	46	68,9	36	55,0	51	57,5	18	67,9	151	62,6	8	93,3	6	93,7	3	96,2	6	88,0	23	93,3	174	76,8
M3⁄4	40	73,0	32	60,0	42	65,0	20	64,3	134	66,8	15	87,5	10	89,5	7	91,2	12	76,0	44	87,2	178	76,2
M ½	71	52,0	57	28,7	70	41,7	27	51,8	225	44,3	18	85,0	20	79,0	13	83,7	16	68,0	67	80,6	292	61,0
MY1	38	74,3	24	70,0	40	66,7	12	78,6	114	71,8	6	95,0	4	95,8	2	97,5	1	98,0	13	96,2	127	83,0
MY3/4	32	78,4	46	42,5	38	68,3	22	60,7	138	65,8	10	91,7	7	92,6	1	98,7	1	98,0	19	94,5	157	79,0
$MY\frac{1}{2}$	56	62,2	38	52,5	63	47,5	30	46,4	187	53,7	18	85,0	11	88,4	9	88,7	7	86,0	45	87,0	232	69,0
TM1	7	95,3	2	9 7,5	0	100,0	1	98,2	10	97,5	7	94,2	9	90,5	1	98,7	2	96,0	19	94,5	29	96,1
ГМ¾	15	89,9	5	93,7	7	94,2	8	85,7	35	91,3	4	96,7	6	93,7	4	95,0	1	98,0	15	95,7	50	93,3
ΓM⅓2	14	90,5	11	86,2	10	91,2	16	71,4	51	87,4	12	90,0	12	87,4	10	87,5	6	88,0	40	88,4	91	87,9
AM1	3	98,0	0	100,0	12	90,0	18	67,9	33	91,8	2	98,3	2	97,9	1	98,7	1	98,0	6	98,3	39	94,8
4M3/4	8	94,6	0	100,0	2	98,3	18	67,9	28	93,1	7	94,2	6	93,7	2	97,5	1	98,0	16	95,4	44	94,1
M ⅓2	18	87,8	7	91,2	13	89,2	23	58,9	61	84,9	14	88,3	13	86,3	8	90,0	10	80,0	45	87,0	106	85,8
0	_	_	_	_	_	_		-	_	_	_		_	_	_	_	_	_	_	_	_	_
0	148	_	80	_	120	_	56	_	404	_	120	_	95	_	80	_	50	_	345	_	749	_

⁽a) Número de plantas daninhas no tratamento.

⁽b) porcentagem de controle em relação à testemunha não capinada.

Quadro 3 — Número de plantas e porcentagem de controle das principais espécies daninhas infestantes, monocotiledôneas e dicotiledôneas, na avaliação realizada aos 60 dias após a semeadura da soja. Jaboticabal, 1980.

H 5		- 13						Princip	pais	planta	as da	ninh	as									
Trat.			N	lonoco	tiledôr	neas			To	tal				Dicoti	ledôr	neas				tal	Total	
Trat.	capca	arrap.	capp	e-gal.	capc	olchão	capm	armel.	Mo	noc.	anil	eira	guan	xuma	carı	ıru	poaia-	branca	Die	cot.	Dicc	
	N.º(a)	%(b)	N.º	%	N.º	%	N.º	%	N.º	%	N.º	%	N°.	%	N.º	%	N.º	%	N.º	%	N.º	%
T1	10	95,4	4	92,9	4	97,8	3	96,3	21	96,1	52	78,9	75	49,3	42	66,7	22	74,4	191	68,5	212	81,6
T¾	9	95,9	8	96,4	6	96,8	8	90,2	31	94,3	58	76,4	86	41,9	48	61,9	20	76,7	212	65,0	243	78,9
T1/2	22	90,0	16	71,4	16	91,4	14	82,9	68	87,5	124	49,6	92	37,8	67	46,8	38	55,8	321	47,0	389	66,2
A1	15	93,2	4	92,9	12	93,5	14	82,9	45	91,7	74	69,9	51	65,5	38	69,8	15	82,6	178	70,6	223	80,6
A34	18	91,8	4	92,9	8	95,7	14	82,9	44	91,9	68	72,4	77	48,0	48	61,9	22	74,4	215	64,5	259	77,5
$A\frac{1}{2}$	26	88,2	12	78,6	17	90,9	28	65,8	83	84,7	126	48,8	88	40,5	57	54,8	29	66,3	300	50,5	383	66,7
M 1	62	71,8	20	64,3	46	75,3	26	68,3	154	71,7	32	87,0	12	91,9	12	90,5	12	86,0	68	88,8	222	80,7
M¾	76	65,4	26	53,6	52	72,0	32	61,0	186	65,8	20	91,9	14	90,5	10	92,1	10	88,4	54	91,1	240	79,1
M½	90	59,1	26	53,6	70	62,4	41	50,0	227	58,3	50	79,7	46	68,9	32	74,6	14	83,7	142	76,6	369	67,9
MY1	44	80,0	22	60,7	31	83,3	17	79,3	114	79,0	12	95,1	7	95,3	8	93,7	7	91,9	34	94,4	148	87,1
MY3/4	52	76,4	20	64,3	39 -	79,0	31	62,2	142	73,9	16	93,5	18	87,8	10	92,1	16	81,4	60	90,1	202	82,4
MY 1/2	68	69,1	38	32,1	70	62,4	35	57,3	211	61,2	61	75,2	40	73,0	24	81,0	29	66,3	154	74,6	365	68,3
TM1	8	96,4	7	87,5	6	96,8	6	92,7	27	95,0	10	95,9	9	93,9	6	95,2	2	97,7	27	95,5	54	95,3
TM¾	13	94,1	8	85,7	12	93,5	8	90,2	41	92, 5	8	96,7	6	95,9	12	90,5	11	87,2	37	93,9	78	93,2
TM½	22	90,0	12	78,6	18	90,4	16	80,5	68	87,5	66	73,2	15	89,9	32	74,6	19	77,9	132	78,2	200	82,6
AM1	3	98,6	1	98,2	1	99,5	5	93,9	10	98,2	9	96,3	4	97,3	4	96,8	4	95,3	21	96,5	31	97,
AM¾	12	94,5	9	83,9	7	96,2	12	85,4	40	92,6		93,1	13	91,2		91,3		86,0	53	91,3	93	91,9
AM½	30	86,4	16	71,4	14	92,5	18	78,0	78	85,7	42	82,9	43	70,9	22	82,5	16	81,4	123	79,7	201	82,
10 0	220	_	56	_	186	_	82	_	544	_	246	_	148	_	126	_	86	_	606	_	1150	-

⁽a) Número de plantas daninhas no tratamento.

⁽b) porcentagem de controle em relação à testemunha não capinada.

metro muito sensível para detectar os possíveis efeitos maléficos causados pela competição das plantas daninhas que não foram controladas pelos tratamentos menos eficientes. Isto pode ser confirmado pelos dados obtidos aos 81 e 95 dias após a semeadura, que foram as épocas de maior peso, observando-se muitos resultados estatisticamente iguais entre a testemunha sem capina e os demais tratamentos. De modo geral, a testemunha sem capina só apresentou diferenças estatistic amente significativas da maioria dos outros tratamentos nas duas últimas avaliações. Em algumas avaliações aparecem diferenças significativas entre tratamentos com herbicidas isolados e 50% da dose padrão, e aqueles em que se testou as misturas nas doses padrão ou reduzida de 25%. Convém salientar tam bém que tais mist uras cita das apresent aram dados sempre situados entre os maiores valores, mesmo que não estatisticamente significativos.

Os pesos da matéria seca de ramos e caule (quadro 5) obtidos no experimento em questão confirmam o fato relativo a não sensibilidade deste parâmetro à competição interespecífica. Somente nas avaliações aos 109 e 123 dias após a semeadura é que se notaram diferenças no acúmulo, principalmente nos tratamentos que apresentaram melhores controles das plantas daninhas como é o caso das misturas em dose total e com 25% de redução, além da testemunha capinada. Provavelmente, nestas duas avaliações, estava havendo uma movimentação de fotossintetizados em direção às vagens, que por sua vez apresentaram nítidas diferenças de acúmulo nos tratamentos anteriormente mencionados, como mostra o quadro 6. Também a competição exercida pelas plantas daninhas não controladas até a época da amostragem deve ter-se intensificado e consequentemente influído neste parâmetro, nos tratamentos com os menores índices de controle. Desta forma, foram principalmente as vagens o principal parâmetro responsável pela diferença de acúmulo total de matéria seca nas plantas dos tratamentos que proporcionaram melhores controles das plantas daninhas.

Uma importante informação prática pode ser aproveitada com relação a estes parâmetros ora avaliados. Nem sempre a competição afeta o peso das folhas em uma cultura, mas sim a eficiência com que elas produzem os materiais de acúmulo. Isto pode estar relacionado com a área foliar e com a absorção e utilização diferencial dos vários nutrientes.

A intercepção da energia radiante e a assimilação do Co2 são processos importantes na fotossíntese e estão relacionados com a área foliar. Desta forma, o acúmulo de matéria seca total na planta, ou em uma de suas partes (como é o caso dos grãos) é bastante dependente do desenvolvimento, duração e eficiência da área foliar. Além disso, a formação e a manutenção da área foliar de uma cultura são parâmetros estreitamente relacionados com a continuidade do controle proporcionado pelo herbicida no início do ciclo, através do sombreamento às plantas que germinam após o término do efeito residual do produto.

No quadro 8, são apresentados os valores de IAF para os diferentes tratamentos, determinados a cada quatorze dias do ciclo da cultura, em ordem decres cente das médias, para uma mais fácil visualização das possíveis diferenças encontradas. Estudos de correlação efetuados mostram que os IAF máximos, foram obtidos ao redor de 81 dias após a semeadura. O IAF também foi uma característica que não apresentou muitas variações estatisticamente significativas dentro de cada época, apesar de poder se detectar claramente, para a maioria das avaliações efetuadas, maiores valores para os tratamentos que também apresentaram melhores controles de plantas daninhas, maiores produções de vagens e grãos e maiores quantidades de matéria seca (principalmente de vagens). As misturas nas doses total e com redução de 25% dela se destacaram com relação a estas avaliações anteriormente mencionadas.

Quadro 4 — Médias do peso da matéria seca de folhas das doze plantas coletadas nas parcelas, em diferentes dias após a semeadura Jaboticabal, 1980.

T				Dia	is após a s	emeadura(a)			
Trat.	25	39	53	67	81	95	109	123	137
T1	7,333	24,302 ab	35,126 bcd	51,636 abc	73,417	72,864 abc	63,586 a	51,986 abcd	45,450 ab
T3/4	7,462	24,247 ab	35,376 bcd	45,760 abc	68,771	70,122 abc	63,839 a	54,247 abc	43,295 ab
T1/2	6,656	20,951 ab	38,221 abcd	43,396 bc	60,936	60,840 abcd	53,415 ab	48,930 abcd	41,775 ab
A1	6,710	23,255 ab	44,906 ab	45,940 abc	60,766	60,656 abcd	51,160 ab	42,908 d	38,790 bo
A3/4	7,620	27,987 ab	40,065 abcd	50,593 abc	70,791	69,306 abc	53,396 ab	43,500 cd	38,890 bo
A1/2	7,634	22,811 ab	34,787 cd	47,598 abc	65,672	67,260 abc	63,136 a	53,118 abcd	37,860 bo
M1	7,930	23,199 ab	42,419 abc	46,764 abc	70,411	68,242 abc	63,285 a	53,181 abcd	43,110 ab
M3/4	7,764	21,273 ab	39,609 abcd	49,566 abc	75,652	73,780 a	63,860 a	49,750 abcd	44,100 ab
M ½	6,527	21,110 ab	38,310 abcd	43,043 bc	67,993	65,420 abc	58,880 a	51,859 abcd	44,292 ab
MY1	7,314	24,084 ab	39,183 abcd	45,473 abc	53,772	71,470 abc	65,268 a	53,538 abcd	44,430 ab
MY¾	7,400	25,511 ab	38,684 abcd	42,480 bc	55,922	54,325 bcd	49,131 ab	43,130 d	43,390 ab
MY1/2	6,986	23,853 ab	35,858 bcd	43,201 bc	53,776	53,823 cd	51,560 ab	45,556 bcd	43,200 ab
TM1	7,720	26,483 ab	43,378 abc	55,662 abc	73,147	73,412 ab	68,425 a	55,585 ab	46,240 ab
TM¾	7,805	23,599 ab	43,317 abc	49,080 abc	68,792	69,105 abc	61,128 a	53,260 abcd	49,540 a
TM½	6,217	21,721 ab	42,890 abc	49,119 abc	63,878	63,312 abc	58,030 a	50,175 abcd	47,105 ab
AM1	8,016	23,968 ab	43,850 abc	63,721 a	60,896	61,426 abcd	59,632 a	55,010 ab	45,110 ab
AM¾	7,419	25,111 ab	46,674 a	61,486 ab	69,439	68,590 abc	63,287 a	56,735 a	47,600 ab
AM½	6,387	27,381 ab	39,783 abcd	49,753 abc	57,595	59,536 abcd	53,022 ab	50,232 abcd	47,300 ab
0	6,951	19,810 Ь	30,976 d	40,370 c	46,547	43,322 d	36,734 b	31,250 e	29,195
10	6,965	29,137 a	40,344 abcd	49,286 abc	72,233	71,866 abc	58,492 a	52,950 abcd	46,562 ab
F	2,52**	2,09*	4,45**	2,53**	1,49NS	4,88**	3,69**	8,84**	5,73**
C.V. (%)	8,06	12,24	8,19	13,41	16,93	9,51	11,53	7,01	7,50
D.M.S.	1,8133	9,1186	10,1000	20,2784	34,4689	19,1812	20,7598	10,8333	10,0949

⁽a) Números, da mesma coluna, seguidos da mesma letra, não diferem entre si pelo teste de Tukey a 5% de probabilidade.

Quadro 5 — Médias do peso da matéria seca de ramos e caules das doze plantas coletadas nas parcelas, em diferentes dias após a semeadura. Jaboticabal, 1980.

Γrat.					Dias após a se	meadura(a)			- 18.7
irat.	25	39	53	67	81	95	109	123	137
T1	4,498 ab	21,692	42,370 abc	79,980	129,390 ab	128,522 abc	132,720 bcdefg	156,130 a	176,830 a
T¾	4,526 ab	21,181	43,280 abc	69,450	119,190 ab	126,344 abc	136,430 abcdefg	146,218 abc	175,120 a
$T^{1/2}$	4,398 ab	18,898	41,830 abc	67,050	116,760 ab	124,180 bc	126,130 efg	138,430 bcd	177,430 a
A1	4,680 ab	20,137	46,060 abc	68,690	116,653 ab	122,155 cd	123,012 fg	132,670 d	185,550 a
A3/4	4,948 ab	24,525	46,510 abc	76,200	127,393 ab	129,146 abc	130,433 defg	138,420 bcd	170,000 a
A½	5,226 ab	20,711	44,870 abc	78,850	122,730 ab	128,444 abc	130,120 defg	141,136 bcd	168,150 a
M1	4,945 ab	21,152	50,380 abc	79,940	130,423 ab	139,430 abc	139,423 acbde	140,430 bcd	168,430 a
M3/4	5,031 ab	19,496	50,420 abc	77,960	135,523 ab	139,223 abc	139,470 abcde	146,342 abc	165,470 a
M1/2	4,348 ab	18,641	46,430 abc	67,230	119,660 ab	126,430 abc	130,620 defg	140,431 bcd	172,175 a
MY1	4,560 ab	21,666	48,180 abc	66,430	133,830 ab	142,333 abc	142,600 abcd	148,343 ab	168,160 a
MY¾	4,788 ab	23,200	49,490 abc	68,520	117,167 ab	129,110 abc	131,440 bcdefg	135,130 cd	169,490 a
MY1/2	4,517 ab	17,714	41,280 bc	62,340	110,797 ab	118,436 cd	122,330 g	130,122 d	174,870 a
TM1	4,911 ab	23,815	54,560 ab	89,330	144,537 a	150,540 a	151,470 a	158,470 a	176,180 a
TM3/4	4,983 ab	21,120	53,510 abc	78,890	130,573 ab	142,530 abc	146,620 ab	157,140 a	180,120 a
TM½	4,181 b	19,536	45,560 abc	73,670	116,053 ab	126,480 abc	131,020 cdefg	148,800 ab	174,470 a
AM1	5,470 a	21,947	52,110 abc	92,700	111,643 ab	140,220 abc	146,120 abc	155,730 a	175,120 a
AM¾	5,002 ab	23,649	56,090 a	91,610	131,987 ab	148,630 ab	148,700 a	156,870 a	174,480 a
AM½	4,517 ab	21,186	49,530a bc	80,020	126,873 ab	128,123 abc	138,010 abcdef	149,990 ab	176,180 a
0	4,875 ab	17,763	38,930 c	63,810	91,193 b	97,230 d	100,015 h	115,010 e	130,422 b
10	4,863 ab	20,700	46,840 abc	67,810	130,750 ab	136,000 abc	141,777 abcd	156,030 a	176,870 a
F	1,79NS	1,60NS	2,86**	2,44**	1,79NS	6,20**	16,65**	21,16**	7,66**
C.V. (%)	8,71	12,62	10,04	13,32	12,15	6,34	3,67	2,92	3,93
D.M.S.	1,2891	8,2044	14,7852	30,9067	46,4810	25,8376	15,3313	13,1294	20,9473

⁽a) Números, da mesma coluna, seguidos da mesma letra, não diferem entre si pelo teste de Tukey a 5% de probabilidade.

Quadro 6 — Médias do peso da matéria seca de vagens das doze plantas coletadas nas parcelas, em diferentes dias após a semeadura. Jaboticabal, 1980.

Trat		Dia	as após a semeadur	a(a)	
	81	95	109	123	137
T1	5,859	19,430	58,072 abc	85,170 b	110,870 ь
Γ¾	5,677	20,222	59,023 abc	84,820 b	112,200 b
T½	6,474	20,720	59,777 abc	83,185 b	106,700 b
A1	6,360	19,772	56,780 bc	82,890 b	108,120 b
A¾,	6,170	21,000	59,025 abc	83,470 b	110,120 b
A 1/2	5,146	19,720	56,012 c	84,000 b	98,870 b
M1	7,970	22,010	58,033 abc	84,225 b	99,120 b
M3⁄4	7,394	21,430	57,376 abc	84,001 b	100,000 ь
M1/2	6,367	22,001	56,115 c	83,885 b	98,700 ь
MY1	6,129	20,197	59,018 abc	86,120 b	110,120 в
MY¾	4,735	21,100	58,777 abc	82,490 b	100,001 Ъ
MY 1/2	5,499	19,895	57,123 abc	83,140 b	95,170 bc
TM1	9,021	22,010	62,030 ab	98,230 a	135,118 a
TM¾	7,399	22,135	61,046 abc	97,472 a	134,720 a
TM 1/2	6,911	21,012	60,001 abc	86,880 b	112,400 b
AM1	5,814	22,014	62,115 a	97,292 a	135,118 a
AM3/4	6,417	21,895	60,118 abc	99,120 a	134,430 a
AM1/2	5,884	21,770	60,333 abc	85,430 в	112,470 в
0	4,167	15,002	46,890 d	60,030 c	76,730 c
10	6,352	21,330	60,119 abc	95,670 a	134,470 a
F	1,09NS	1,43NS	10,76**	15,38**	5,88**
C.V. (%)	27,82	11,20	2,92	3,12	6,49
D.M.S.	5,4610	7,2044	5,2981	8,1247	21,4185

⁽a) Números, da mesma coluna, seguidos da mesma letra, não diferem entre si pelo teste de Tukey a 5% de probabilidade.

Quadro 7 — Médias do peso da matéria seca total da parte aérea das doze plantas coletadas nas parcelas, em diferentes dias após a semeadura. Jaboticabal, 1980.

Trat.				Dia	as após a se	meadura(a)			
	25	39	53	67	81	95	109	123	137
Г1	11,831 ab	45,994	77,496 bc	129,286 abc	218,441 ab	220,816 ab	254,378 abc	293,286 abcd	333,150 abcd
Γ¾	11,988 ab	45,429	78,656 bc	115,207 abc	203,371 ab	216,688 ab	259,292 abc	285,285	330,615 bcd
Γ1/2	11,045 ab	39,849	80,054 abc	110,443 abc	195,317 ab	205,740 ab	239,322 bc	270,545 cdef	325,905 cd
A1	11,389 ab	43,392	90,969 abc	114,634 abc	193,099 ab	202,583 ab	230,952 с	258,468 h	332,460 bcd
A3/4	12,568 ab	52,502	86,575 abc	126,793 abc	214,384 ab	219,452 ab	242,854 bc	265,390 fgh	320,010 d
A 1/2	12,857 ab	43,521	79,654 abc	126,563 abc	204,415 ab	215,424 ab	249,268 abc	278,254 defgh	304,880 d
M1	12,875 ab	44,351	92,803 abc	120,701 abc	219,028 ab	229,682 ab	260,741 abc	274,836 defgh	310,660 d
M3/4	12,795 ab	40,769	90,029 abc	127,523 abc	228,826 ab	234,433 ab	260,706 abc	280,093 defg	309,570 d
M½	10,875 ab	39,751	84,740 abc	110,277 abc	203,305 ab	213,851 ab	245,615 abc	276,175 defgh	315,167 d
MY1	11,874 ab	45,750	87,360 abc	111,907 abc	222,468 ab	234,000 ab	266,886 abc	288,001 bcde	322,710 d
MY¾	12,188 ab	48,712	88,164 abc	111,000 abc	189,202 ab	204,535 ab	239,348 bc	260,750 gh	312,881 d
MY 1/2	11,503 ab	41,567	77,134 bc	105,541 bc	179,553 ab	192,154 ab	231,013 c	258,871 h	313,240 d
TM1	12,631 ab	50,298	97,138 ab	145,989 abc	236,714 a	245,962 a	281,925 a	312,285 a	357,538 ab
TM3/4	12,788 b	44,719	96,823 ab	127,970 abc	218,558 ab	233,770 ab	268,794 abc	307,872 ab	364,380 a
TM1/2	10,398 a	41,257	88,450 abc	122,792 abc	196,139 ab	210,804 ab	249,051 abc	285,855 cde	333,975 abcd
AM1	13,486 ab	46,016	95,961 ab	156,421 a	187,788 ab	223,660 ab	267,867 abc	308,032 ab	355,348 abc
AM¾	12,421 ab	48,760	102,760 a	153,093 ab	218,325 ab	239,115 a	272,105 ab	312,725 a	356,510 abc
AM1/2	10,904 ab	48,567	89,310 abc	129,773 abc	199,520 ab	209,429 ab	251,365 abc	285,652 cde	335,950 abcd
0	11,826 ab	37,573	69,902 c	104,183 c	150,245 b	155,554 b	183,639 d	206,290 i	236,347
10	11,828 ab	49,837	87,180 abc	113,759 abc	218,069 ab	229,196 ab	260,388 abc	304,650 abc	357,902 ab
F	2,22**	1,63NS	3,50**	2,67**	1,73NS	1,93**	8,77**	33,03**	15,52**
C.V. (%)	7,88	12,19	8,69	12,76	12,68	12,26	4,88	2,38	3,15
D.M.S.	2,9365	17,0113	23,5128	48,8091	80,7083	81,9666	37,9591	20,6026	31,4362

⁽a) Números, da mesma coluna, seguidos da mesma letra, não diferem entre si pelo teste de Tukey a 5% de probabilidade.

No entanto, a informação mais importante quanto ao IAF alto é a precocidade com que ele é atingido em um determinado tratamento e por quanto tempo mais ele se mantém alto em relação aos outros. Em termos de manutenção de controle das plantas daninhas por sombreamento, a rapidez com que o doss el cobre a superfície do solo é muito importante pois menor poderá ser a dose (dentro de limites) e, consequentemente, menores serão os períodos residuais dos herbicidas utilizados.

Nota-se, no entanto, que os tratamentos que tiveram as doses reduzidas pela metade, juntamente com a testemunha sem capina, foram os que apresentaram os menores valores de IAF, principalmente quando os produtos foram aplicados isoladamente.

Os tratamentos AM1, AM³/4, TM1, TM³/4 e 10 estiveram entre os maiores valores de IAF para cada época, desde 67 até 109 dias apôs a seme adura. Alguns deles, como é o caso do AM1, TM1 e 10 sempre foram maiores a partir de 39 dias após a semeadura, até o final do ciclo. Da mesma forma, os tratamentos MY1/2, T¹/₂ e M¹/₂ sempre mostraram os menores valores de IAF, juntamente com a te stemunha sem capina (0). Pode se observar que os valores máximos, obtidos para estes tratamentos aos 81 após a semeadura, entre, 2,95 (testemunha sem capina) e 4,06 (T¹/2), já haviam sido plenamente alcançados aos 53 dias, pelas misturas com doses reduzidas (25%), ou seja, 4,29 para TM³/4 e 4,23 para AM3/4. Assim, verifica-se que os valores máximos (obtidos somente aos 81 dias após a semeadura) de IAF para alguns tratamentos, já haviam sido atingidos por outros cerca de 28 dias antes, prolongando-se por 14 dias após, num total de 42 dias.

Esta manutenção do IAF alto por mais tempo durante o ciclo, permite inferir que o IAF ótimo também permaneceu por mais tempo e seguramente, foi um dos fatores que mais contribuiram para os maiores resultados de produção

da matéria seca e de grãos, nestes tratamentos. Fic ou mais uma comprovado que a competição leva à uma diminuição do IAF, como se pode ver através dos resultados encontrados na tes tem unha sem capina e em tratamentos, onde o controle geral (monocotiledôneas + dicotiledôneas) foi menor. Aos 81 dias após a semeadura o IAF da testemunha sem capina foi 42,5%; 41,2%; 39,8%; 38,5% e 37,8% menor que o dos tratamentos AM1, AM³/4, TM3/4, TM1 e 10, respectivamente. Os result ados mos tra ram tam bém, que não houve interferência direta (fitotoxi cidade), diminuindo a área foliar, por parte de nenhum dos herbicidas estudados.

As médias dos teores de macro e micronutrientes nas folhas aos 67 dias após a semeadura (Diagnose Foliar), enconframse no quadro 9. Os teores se enquadram dentro dos níveis de suficiência previstos por Small e Ohlrogge (24) e Malavolta (16). Nesta época apenas observou-se diférenças estatisticamente significativas dos tratamentos AM1, AM3/4, TM1 e 10 com a testemunha sem capina e também entre os tratamentos AM1 e AM³/4 com o T¹/2, para os teores de nitrogênio. Para os teores de fósforo, os tratamentos que diferiram da testemunha sem capina foram Ml, TM1, TM³/4 e AM1. Para este macronutriente, último OS encontrados nos tratamentos TM³/4 e AM1 foram estatisticamente diferentes dos obtidos em $A^1/2$, $M^1/2$, $MY^3/4$, $MY^1/2$, $TM^1/2$ e $AM^1/2$, ou seja, de um modo geral, quando os produtos, isolados ou em misturas, tiveram suas doses reduzidas em 50%.

A concentração de nutrientes na planta em um dado momento, é o resultado da integração de vários fatores que atuam até o momento em que a amostra é colhida. Os principais destes fatores são: o solo, o clima, tempo ou idade, a própria planta e as práticas culturais (item que abrange, entre vários fatores, o maior ou menor controle das plantas daninhas).

A diagnose foliar se baseia na pre-

Quadro 8 — Médias decrescentes dos Índices de Área Foliar (IAF) em diferentes dias após a semeadura, para o cultivar Santa Rosa nos diferentes tratamentos estudados. Jaboticabal, 1980.

								Trat	ame	ntos e	dias	apös a	semead	ura	a/							_	
Trat.	25	Trat.	39	Tret.	53		Trat.	67		Trat.		Trat.			Trat.	109		Trat.	12	3	Trat.	137	
A2/6	0.92 .	TH,	2,69	A _{3/b}	4,56	•	AH,	4,92	•	AH,	5,13	10	4,48 a		TH ₁	3,30		AH,	1,89	•	TH ₁	1,10	•
	0,91 ab			AH,	4.38	ab	10	4,88	•	A43/4	5,02	AH,	4,28 e	-		3,24	ab	TH ₁	1,86	•	TH3/4	1,04	аb
1	0,88 abc			TH ₁	4,29	eb	AH3/4	4,87		TH3/4	4,90	TH3/4	4,27 •		10	3,21	ab	TH3/4	1,71	ab			
M ₁	0,87 abc	AN,	2,40	TH _{3/4}	4,29	ab	TH ₁	4,70	ab	TH,	4,80	AH3/4	4,22 •	- 1	AM3/4	3,07	abc	10	1,67		10	0,94	abcd
1	0,86 abc	MY,											4,19 •					M,	1,65	abc	MY,	0,93	abcd
1	0,85 abc	A1/2	2,37	AH _{3/4}	4,23	ab	TH. 74	4,57	ab	м,	4,73	H ₁	4,17 a	-	A,	2,98	abcd	т,			A ₁	0.93	abcd
1/2	0,85 abc	AM2/4	2,36	H,	3,99	abc	M,	4,53	ab	A2/4	4,66.	Α, .	4,00 a		т, .	2,87	abcde	H _{3/4}	1,58	abc			abcde
3/4	0,84 abc	H3/4	2,34	HY 3/4	3.98	abc	TH1/2	4,43	ab	A ₁	4,56	H3/4	3,98 a	ь :	м,	2,84	abcde	AM3/4	1,57	abc	н,	0,89	
1/2	0,84 abc	10	2,32	TH1/2	3.98	abc	A,	4,36	ab .	T3/4	4,53	MY,	3,97 *	ь .	T3/4	2,77	bcde	A,	1,56	abc	HY 3/4	0,87	bcd
	0,84 abc		2,32	AH1/2	3,94	abc	T,	4.35	ab	T,	4,51	A3/4	3.94 a	ь	A3/4	2,69	cde	TH _{1/2}	1,53	abc	AM3/4	0,87	abcd
H3/4	0,83 abc	A,	2,30	10	3,84	abc	AH _{1 /2}	4.33	ab	MY,	4,48	A1/2	3,83 a	ь	MY 3/4	2,69	cde	T _{3/4}	1,50	abc	T3/4	0,85	bcd
3/4	0,82 abc	TH3/4	2,29	, HY	3,81	abc	H1/4	4,15	ab	TH1/2	4,48	τ,	3.79 •	5	MY,	2,64	cde	A3/4	1,49	abc	TH1/2	0,85	bcd
H3/4	0,81 abc	H. /4	2,27	H _{2/4}	3,62	abc	T./4	4,08	ab	M3/4	4,39	MY 3/4	3.70 a	ь	TH _{1/2}	2,64	cde	MY,	1,46	abc	A3/4	0,81	cd
1	0,79 abc	T3/4	2,26	H1/2	3,61	abc	H1/2	3,82	ab	A1/2	4,26	TH1/2	3,68 a	ь	M3/4	2,63	cde	A1/2	1,39	bcd	M3/4	0,78	d
0	0,77 abc	AH1 /2	2,24	A1/2	3,46	bc	MY,	3,80	ab	MY 3/4	4,25	M1/2	3,63 a	b	AM _{1/2}	2,57	cde	H1/2	1,38	bcd	T _{1/2}	0.77	đ
W _{1/2}	0,76 abc	TH1/2	2,11	T ₁	3.38	bc	T _{1/2}	3,78	ab	AH1/2	4,07	HY 1/2	3,63 a	ь	A _{1/2}	2,55	de				A1/2		
1/2	0,72 abc	H _{1/2}	2.03	T 2/4	3.37	bс	A _{1/2}	3,68	ab	T1/2	4,06	AH1/2	3.57 •	Ь	T _{1/2}	2,52	de				H1/2		
.,-	0,72 abc	T1/2	2,02	MY 1/2	3,35	bc	MY 3/4	3,68	ab	H _{1/2}	3,83	T3/4	3,39 a	ь	MY 1/2	2,51	de				HY 1/2		
M _{1 /2}	0,70 bc	HY 1/2	2,02	T _{1/2}	3.34	bc	HY 1/2	3,42	ds	MY 1/2	3.74	T1/2	3,39 •	ь	H _{1/2}	2,45	e	MY 1/2	1,28	cd	AH1/2	0,68	
H _{1/2}	0,69 c	0 ''	1,96		2,97			3,24	ь	0	2,95		2,33			1,74		0			0		
F	2,79**		1,23	15	4,78	**		2,83*	*		1,45 ^N	s	2,29*			13,63	**		6,64	**		11,17	**
L (\$)	8,49		12,79		8,93			12,31			16,55		13,93			5,98			9,20			8,69	
H.S.	0,2142		0,908	35	1,06	36		1,610	7		2,264	9	1,6532			0,505	97		0,43	06		0,22	71

[🛂] Números, da mesma coluna, seguidos da mesma letra, não diferem entre si pelo teste de Tukey a 5% de probabilidade.

missa de que folhas maduras, cujo crescimento já terminou, refletem particularmente bem a relação entre o teor de um elemento no solo e o conteúdo do mesmo na planta. Há também uma relação entre o teor do elemento na folha e a produção obtida.

De modo geral, os tratamentos (TM1, TM³/4, AM1, AM³/4 e 10) que apresentaram os maiores valores de controle das plantas daninhas, produção de matéria seca e IAF, também mostraram os maiores teores de macro e micronutrientes nas folhas, mesmo que sem apresentar diferenças estatisticamente significativas com os demais tratamentos, como ocorreu para o Ca, Mg, Mn, Cu, Fe e Zn.

No entanto, pelos dados apresentados na figura 1, verifica-se que as diferenças entre os tratamentos anteriormente citados e as demais, se tornam bem mais nítidas para todos os macronutrientes analisados na matéria seca da parte aérea das plantas colhidas aos 137 dias após a semeadura. Desta forma, os resultados ora apresentados indicam uma absorção diferencial dos nutrientes, nestes tratamentos, que se estendeu até o final do ciclo.

As quantidades de nitrogênio nas doze plantas, foram estatisticamente signifi cati va s pa ra os tratamento s TM 1, TM³/4, AM1 AM³/4 e 10 em relação a todos os demais. Segundo Malavolta et alii (17) e Epstein (10), as plantas com maior suprimento de nitrogênio apresentam maiores quantidades de aminoácidos essenciais, de substratos necessários nas sínteses de carboidratos e dos esqueletos carbônicos para todos os tipos de sin-teses orgânicas. As plantas de soja desenvolvem associações mutualísticas com bactérias fixadoras de nitrogênio, o que as torna relativamente independentes do solo com relação à este elemento. Entretanto, as plantas daninhas podem não só interferir na desenvolvimento instalação e desta relação mutualística como também prejudicar o transporte deste elemento às sementes.

As quantidades de fósforo e cálcio

só apresentaram algumas diferenças estatisticamente significativas entre os melhores tratamentos (TM1, TM³/4, AM1 e 10) e a tes tem unh a sem capina. No entanto, para o potássio e o magnésio já ocorreram diferenças entre estes trata mentos e a maioria dos demais. O melhor suprimento de potássio, além da menor competição que ocorreu nestes tratamentos, pode ter sido uma das razões do sensível aumento do número de vagens por planta. Os maiores conteúdos de magnésio podem justificar as maiores eficiências das folhas. O fósforo e o cálcio podem ter proporcionado melhoria na síntese de compostos fosforilados e no desenvolvimento do sistema radicular, respectivamente.

Pode-se observar que o nitrogênio foi o nutriente encontrado em maior abundância na matéria seca da parte aérea das doze plantas, seguido, em ordem decrescente, pelo potássio, cálcio, magnésio e fós for o. Esta ordem de grandeza está de acordo com Bataglia et alii (3).

No quadro 10 estão as médias dos teores de nitrogênio, fôs foro, potássio, cálcio e magnésio dos grãos. De acordo com Small e Ohlrogge (24), há indicações de que a análise das sementes de soja pode ser instrumento útil da diagnose das condições nutricionais no local onde a cultura se desenvolveu e consequentemnte dos possíveis efeitos negativos da competição ou mesmo dos herbicidas testados, sobre as plantas de soja.

Nos grãos, o N apresentou os maiores teores, seguido do potássio, cálcio, fósforo e magnésio. Os resultados obtidos na análise dos grãos, confirmam os apresentados anteriormente, com exceção do N que não apresentou diferenças estatisticamente significativas entre os tratamentos.

Os melhores tratamentos em termos de controle (TM1, TM³/4, AM1, AM³/4 e 10) já citados anteriormente, de acordo com os teores nos grãos, foram os que mostraram maiores acúmulos nos totais de grãos colhidos por hectare. Para o N estes valores variaram de 154,876 a

Quadro 9 — Médias dos teores de macro (%) e micronutrientes (ppm) nas folhas do cultivar Santa Rosa, aos 67 dias após a semeadura (Diagnose Foliar). Jaboticabal, 1980.

Trat.		Macro	nutrientes (%)(a)			Micronutrien	ites (ppm)	
	N	P	К	Ca	Mg	Mn	Cu	Fe	Zn
T1	4,52 abc	0,26 abcd	2,54	1,85	0,55	108,9	10,4	204,3	36,4
T¾	4,43 abc	0,30 abcd	2,83	2,03	0,56	104,1	9,1	194,4	38,7
T1/2	4,21 bc	0,28 abcd	2,34	1,78	0,52	103,9	11,2	205,1	39,0
A1	4,55 abc	0,24 abcd	2,70	2,25	0,59	102,6	11,9	205,2	39,8
A¾	4,54 abc	0,24 abcd	2,56	2,12	0,58	96,8	12,9	209,5	34,3
A1/2	4,33 abc	0,24 bcd	2,38	1,84	0,51	103,6	12,9	193,4	33,0
M1	4,59 abc	0,30 abc	2,65	2,28	0,63	90,6	12,2	195,5	29,9
M¾	4,52 abc	0,27 abcd	2,54	1,93	0,59	100,1	10,9	189,1	34,8
M½	4,32 abc	0,23 bcd	2,36	1,83	0,58	88,3	9,2	190,4	22,8
MY1	4,50 abc	0,29 abcd	2,80	2,00	0,60	108,3	14,4	233,2	40,3
MY¾	4,48 abc	0,24 bcd	2,90	1,83	0,54	81,1	11,2	185,8	28,9
MY 1/2	4,33 abc	0,22 cd	2,39	1,83	0,54	89,3	12,2	189,4	26,7
TM1	4,69 ab	0,33 ab	2,73	2,04	0,62	100,2	12,2	244,7	37,2
TM¾	4,60 abc	0,34 a	2,76	2,08	0,63	101,3	12,7	223,8	31,0
TM½	4,55 abc	0,23 bcd	2,60	1,78	0,56	88,9	12,9	221,0	31,9
AM1	4,71 a	0,34 a	2,77	2,02	0,64	113,4	13,2	243,9	30,2
AM¾	4,74 a	0,26 abcd	2,72	1,91	0,63	104,8	11,4	215,8	35,7
AM½	4,50 abc	0,23 bcd	2,65	1,81	0,58	94,5	12,9	217,4	27,2
0	4,13 c	0,20 d	2,42	1,75	0,58	100,2	10,7	173,5	27,1
10	4,62 ab	0,28 abcd	2,77	2,04	0,67	104,2	10,9	237,3	33,4
F	3,16**	4,59**	0,92NS	0,67NS	0,92NS	1,24NS	1,57NS	0,83NS	1,29NS
C.V. (%)	3,49	12,47	11,87	16,93	13,26	16,76	15,85	18,72	22,86
D.M.S.	0,4875	0,1031	0,9661	1,0254	0,2405	52,2102	5,7959	121,3083	23,3613

⁽a) Números, da mesma coluna, seguidos da mesma letra, não diferem entre si pelo teste de Tukey a 5% de probabilidade.

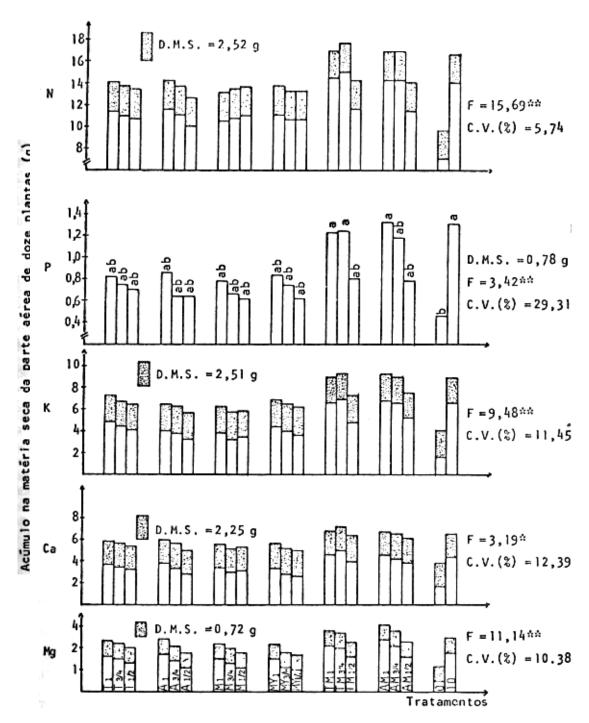


FIGURA I - Médias dos conteGdos de nitrogénio, fósforo, potássio, cálcio e magnésio na matéria seca da parte aérea de doze plantas do cultivar Santa Rosa, aos 137 dias após a semeadura. Jabotica bal, 1980.

Quadro 10 — Médias dos teores de nitrogênio, fósforo, potássio, cálcio e magnésio nos grãos do cultivar Santa Rosa, submetido a diferentes herbicidas isolados ou em mistura. Jaboticabal, 1980.

Trat.			% nos grãos(a)		
	N	P	K	Ca	Mg
T1	5,97	0,29 bcde	1,89 abc	0,47 ab	0,23 abcde
T34	5,89	0,27 efgh	1,79 bcdef	0,45 ab	0,21 abcde
T1/2	5,83	0,24 ghi	1,61 fghi	0,36 ab	0,15 e
A1	5,99	0,28 defg	1,83 abcde	0,45 ab	0,28 abc
A34	5,96	0,26 efghi	1,75 bcdefg	0,43 ab	0,23 abcde
A1/2	5,82	0,24 hi	1,55 hi	0,34 ab	0,17 cde
M1	5,96	0,26 efghi	1,84 abcd	0,48 ab	0,28 abcd
M34	5,80	0,25 fghi	1,69 defgh	0,41 ab	0,25 abcde
M1/2	5,81	0,22 i	1,58 ghi	0,39 ab	0,18 cde
MY1	5,95	0,28 defgh	1,73 cdefgh	0,49 ab	0,26 abcde
MY¾	5,93	0,28 cdef	1,64 efghi	0,43 ab	0,20 bcde
MY 1/2	5,81	0,24 fghi	1,56 ghi	0,34 ab	0,17 * de
TM1	6,09	0,32 abc	1,94 ab	0,56 a	0,29 ab
TM¾	6,07	0,33 ab	1,90 abc	0,55 a	0,30 ab
TM½	5,88	0,27 efgh	1,63 fghi	0,46 ab	0,20 bcde
AM1	6,09	0,36 a	1,98 a	0,58 a	0,32 a
AM3/4	6,06	0,32 bcd	1,85 abcd	0,58 a	0,30 ab
AM 1/2	5,86	0,26 efghi	1,61 fghi	0,37 ab	0,20 bcde
0	5,80	0,22 i	1,46 i	0,30 b	0,15 e
10	6,03	0,32 bcd	1,83 abcde	0,54 a	0,27 abcd
F	2,98**	24,65**	17,61**	3,50**	6,79**
C.V. (%)	1,74	4,87	3,55	17,45	15,42
D.M.S.	0,3204	0,0416	0,1913	0,2425	0,1112

⁽a) Números, da mesma coluna, seguidos da mesma letra, não diferem entre si pelo teste de Tukey a 5% de probabilidade.

BAIXAS DOSES DE HERBICIDAS EM SOIA

159,852 kg/ha, para o P de 6,376 a 7,765 kg/ha, para o K de 42,770 a 50,606 kg /ha, para o Ca de 9,564 a 12,585 kg/ha e para o Mg foi de 3,985 a 7,351 kg/ha. Os menores valores acumulados nos grãos foram obtidos nos tratamentos em que foram testados os herbicidas isolados e com dose reduzida pela metade (T 1/2, A1/2, MY 1/2 e M¹/2), além da testemunha sem capina. A variação da quantidade acumulada nestes tratamentos foi de 83,346 a 121,591 kg/ha para o N, de 3,985 a 7,188 kg/ha para P, de 25,294 a 39,532 kg/ha para o K, de 5,434 a 11,580 kg/ha para o Ca e de 2,717 a 6,389 kg/ha para o Mg. As variações médias entre os dois grupos de tratamentos citados foram de 54,896; 1,484; 14,275; 2,568 e 1,115 kg/ha, para o N, P, K, Ca e Mg, respectivamente.

Para o cultivar Santa Rosa e os mesmos herbicidas, Deuber et alii (8) não encontraram efeitos diretos sobre os teores de nitrogênio dos grãos colhidos. Apesar de ter obtido valores mais baixos nos teores de N para 'Santa Rosa', Deuber (7) não encontrou diferenças devido a aplicação do bentazon em diferentes estádios das plantas, dentro do cultivar. Estes trabalhos comprovam o fato de ter ocorrido diferenças, no presente experimento, entre os teores dos nutrientes e estas terem sido computadas exclusivamente à competição imposta pelas plantas daninhas não controladas.

Finalmente, após este estudo mais detalhado dos diversos parâmetros avaliados no trabalho, chega-se a conclusão que os melhores tratamentos testados foram as misturas, na dose padrão ou com três-quartos delas, pois não apresentaram diferenças entre si e da testemunha capinada. Logicamente, a escolha dentro das misturas mencionadas, deve visar uma maior racionalização em termos econômicos e ecológicos e isto faz com que seja recomendada a redução de 25% nas doses, ou seja, trifluralin + metribuzin a 0,65 -F 0,21 kg/ha e alachlor + metribuzin a 1,44 + 0,21 kg/ha.

A diminuição das doses padrões de misturas de herbicidas, está perfeitamen te coerente com uma das principais

preocupações do British Crop Protection Council (25) que, através do Sub-Committtee relacionado a plantas daninhas, organizou um colóquio no final de setembro de 1982, justamente para discutir, os problemas e os benefícios do uso de menores doses dos herbicidas ("Herbicides : are low dose rates good or bad?"). Nesta reunião, foram expostos os "pontos de cita" do reunião, foram expostos de cita" do reunidados fobricantes de companyo de cita". vista" dos pesquisadores, fabricantes, distri bui dores e faz end eiros. No ent anto, todos foram unânimes em afirmar que as doses recomendadas no rótulo, pelo fabricante, têm abrangência nacional e, às vezes, regional, mas que o uso efetivo de doses menores pode ser conseguido pelos fazendeiros, junto com o técnico que o orienta no local, devido ao conhecimento que ambos possuem da propriedade em questão. Uma das principais conclusões produzidas neste colóquio é que existe uma grande necessidade de estudos para que se consiga informações diretas ou indire tas que ven ham a aju dar na resolução do problema.

LITERATURA CITADA

- Aloisi, R.R. & Demattê, J.L.I. Ievantamento dos solos, da Faculdade de Medicina Veterinária e Agronomia de Jaboticabal. Científica, 2(2): 123-136, 1974.
- Barrentine, W.L. & Oliver, L.R. Competition threshold levels and control of cocklebur in soybeans. Agricultural and Forestry Experiment Station. Technical Bulletin n.º 83. 28p., 1977.
- Bataglia, O.C.; Mascarenhas, H.A.A. & Miyasaka, S. Nutrição mineral da soja. *In:* A soja no Brasil Central. Campinas (SP), Ed. Fundação Cargill, p. 56-83. 1977.
- Blanco, H.G.; Oliveira, D.A.; Araujo, J.B.M. & Grassi, N. Observações sobre o período em que as plantas daninhas competem com a soja (Glycine max (L.) Merril). O Biológico, 39(2): 31-35, 1973.
- Blanco, H.G.; Coelho, R.R. & Soares Novo, M.C.J. Comportamento do herbicida trifluralin em solos. I — Experimento para estabelecer metodologia a ser empregada em pesquisas sobre persistência de herbicidas nos solos. O Biológico, 45(9/10): 175-182. 1979.
- Comissão de Solos. Levantamento de reconhecimento dos solos do Estado de São

- Paulo e Rio de Janeiro. Rio de aJneiro, CNEPA/SNPA, 639p. 1960 (Boletim 12).
- Deuber, R. Efeitos do bentazon sobre a produção e teores de N e óleo em soja (Glycine max (L.) Merril). Planta Daninha, 4(1): 7-11, 1981.
- Deuber, R.; Camargo, P.N. & Signori, L.H. Efeitos de herbicidas e populações de plantas na nodulação e produção da soja (Glycine max (L.) Merril 'Santa Rosa'). Planta Daninha, 4(2): 97-109, 1981.
- Durigan, J.C. & Carvalho, N.M. Aplicação, em pré-colheita, de dessecante em dois cultivares de soja (Glycine max (L.) Merril). I — Efeitos imediatos sobre a germinação e produção de sementes. Planta Daninha, 3(2): 108-115, 1980.
- Epstein, E. Nutrição mineral de plantas. Princípios e perspectivas. Ed. da USP, São Paulo. 1975. 341p.
- Geddes, R. D.; Scott, H. D. & Oliver, L. R. Growth and water use by common cocklebur (Xanthium pensylvanicum) and soybeans (Glycine max) under field conditions. Weed Sci., 27(2): 206-212, 1979.
- Hagood Jr., E.S.; Bauman, T.T.; Williams Jr., JJ.L. & Schreiber, M.M. Growth analysis of soybeans (Glycine max) in competition with velvetleaf (Abutilon theophrasti). Weed Sci., 28(6): 729-734, 1980.
- Hagood Jr., E.S.; Bauman, T.T.; Williams Jr., J.L. & Schreiber, M.M. Growth analysis of soybeans (Glycine max) in competition with Jimsonweed (Datura stramonium). Weed Sci., 29(4): 500-504, 1981.
- James, A.R.; Oliver, L.R. & Talbert, R.E. Radius of influence of common cocklebur in soybeans. *In:* Annual Meeting Southern Weed Sci. Soc. of America, Fayetteville. p. 379, 1973.
- Jorgensen, S.S. Metodologia utilizada para análises químicas de rotina, Guia Analítico. Piracicaba, Centro de Energia Nuclear na Agricultura (CENA). 24p. (Mimeografado).

- Malavolta, E. Nutrição mineral e adubação da soja. Boletim da Ultrafertil, 40p., 1978.
- Malavolta, E.; Haag, H.P.; Mello, F.A.F. & Brasil Sobrinho, M.O.C. Nutrição mineral e adubação de plantas cultivadas. Ed. Pioneira. São Paulo, 727p. 1974.
- Maun, M.A. Suppressing effect of soybeans on Barnayard grass. Can. J. Plant. Sci., 57(2): 425-490, 1977a.
- Maun, M.A. Ecological effects of Barnayard grass on soybeans in a greenhouse. Weed Sci., 25(2: 128-131, 1977b.
- Oliver, L.R. Influence of soybean (Glycine max) planting date on velvetleaf (Abutilon theophrasti) competition. Weed Sci., 27: 183-188, 1979.
- Oliver, L. R.; Frans, R. E. & Talbert, R. E. Field competition between tall morningglow and soybean. I — Growth Analysis. Weed Sci., 24(5): 482-488, 1976.
- 22. Pitelli, R.A. & Neves, A.S. Efeitos da competição das plantas daninhas sobre algumas características morfológicas e agronômicas de plantas de soja. *In:* Resumos do XII Seminário Brasileiro de Herbicidas e Ervas Daninhas, Fortaleza (CE). p. 104, 1978.
- Sarruge, J.R. & Haag, H.P. Análises químicas em plantas. Piracicaba, ESALQ-USP, 56p., 1974 (Mimeografado).
- Small Jr., H.G. & Ohlrogge, A.J. Plant analysis as an acid in fertilizing soybeans and peanuts. In: Walsh, L.M. & Beaton, J.D. Soil testing and plant analysis. Soil Sci. Soc. of Am., Madison, Wisconsin (USA), p. 315-328, 1973.
- The BCPC Bulletin. Herbicides: are low dose rates good orbad? A report on the BCPC and its work, Croydon, n.º 3, November, p. 3, 1982.
- Wierma, J.V. & Bayley, T.B. Estimation of leaflet trifoliate and total leaf area of soybeans. Agron. J., 67(1): 26-30, 1975.