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“Thus, from the war of nature, from famine and death, the most exalted object which we are capable of 

conceiving, namely, the production of the higher animals, directly follows. There is a grandeur in this 

view of life, with its several powers, having been originally breathed into a few forms or into one; and 

that whilst this planet has gone cycling on according to the fixed law of gravity, from so simple a 

beginning endless forms most beautiful and most wonderful have been, and are being, evolved.”  

 

DARWIN, C. On the Origin of Species. 6. ed. introduction by 
W. R. Thompson. New York: Everyman's Library, 1872. p. 
488. 

 
  



  



 
 

 

 

ABSTRACT 

 
Molecular markers that are widely distributed throughout the genome offer a 
fundamental tool to optimize forest tree breeding programs. This study aimed to 
evaluate the genetic architecture of quantitative genes and optimize genomic selection 
models for growth and wood-quality traits of Eucalyptus grandis. We evaluated an 
open-pollinated breeding population with 1,772 genotypes, composed of 27 different 
families, that was established using complete randomized block design with 20 
replicates each. Individuals were genotyped using the Illumina Infinium EuCHIP60K 
chip and 12 different phenotypic variables were evaluated for growth traits (diameter 
at breast height, height, and volume evaluated at 3 and 6 years after planting) and 
wood-quality traits (pure cellulose yield, basic wood density, syringyl/guayacil, soluble 
lignin, total solids, and total extractives). First, we performed a genome-wide 
association study (GWAS) using the single-trait model (farmCPU) and multi-trait 
(MTMM) mixed models. Next, we searched for quantitative trait loci (QTLs) and their 
predicted functional effects using a database for Eucalyptus. Subsequently, the 
accuracy of the prediction ability, coincidence of selection, and selection gains of 
genomic selection models were analyzed based on the Genomic Best Linear Unbiased 
Prediction (GBLUP) method. We tested different approaches considering the additive 
variance, additive-dominant variance, optimization of training set, and multi-trait 
models. Finally, we analyzed the efficiency of using growth traits to increase the 
prediction ability of wood-quality traits considering a multi-trait model with optimization 
of training set methodology. After quality control, a total of 21,254 informative SNPs 
were found that have a wide distribution and a high linkage disequilibrium decay across 
the 11 chromosomes. For the GWAS analysis, the farmCPU model identified 43 and 
38 small effect markers that are significantly associated with growth and wood quality 
traits, respectively. Similarly, pleiotropic SNPs were also discovered between growth 
(24) and wood quality traits (6) using the MTMM model. Through gene ontology 
analysis, we identified genes responsible for plant growth and related with hydric 
stress. For the genomic selection analysis, growth traits appeared to be more 
influenced by dominance than wood quality traits, meanwhile GBLUP models were 
effective in predicting wood quality traits. Although the results for CS appear to be low, 
SG values were relatively high. The optimization of the training set analysis effectively 
selected the best genotypes to be used as the training set. Additionally, the multi-trait 
and multi-trait with optimization of the training set were also able to increase the 
prediction ability of the GBLUP models. Thus, information from growth traits can be 
used to effectively increase the prediction ability of wood quality traits. Our study 
demonstrates the complex nature of quantitative traits, provides new evidence for the 
architecture of genes related to trait expression, and highlights the efficiency of 
genomic selection models to predict phenotypic expression in E. grandis. 
 
Keywords: genome-wide association; genomic selection; multi-trait analysis; forest 
breeding; eucalypt. 
 
 
 
 
 
 
 



  



 
 

 

 

RESUMO 
 

O uso de marcadores moleculares amplamente distribuídos ao longo do genoma são 
uma ferramenta fundamental para otimizar programas de melhoramento florestal. Esta 
pesquisa teve como objetivos avaliar a arquitetura genética de caracteres 
quantitativos e otimizar modelos de seleção genômica de Eucalyptus grandis para 
variáveis de crescimento e qualidade da madeira. Dessa forma, foi avaliada uma 
população de polinização aberta de E. grandis composta por 1.772 genótipos e 
provenientes de 27 famílias estabelecidas usando um delineamento de blocos ao 
acaso com 20 plantas/parcela. Os indivíduos foram genotipados usando o chip 
Illumina Infinium EuCHIP60K e 12 caracteres fenotípicos foram avaliados e 
classificados em caracteres de crescimento (diâmetro à altura do peito, altura e 
volume aos três e seis anos após o plantio) e qualidade da madeira (produção de 
celulose pura, densidade básica da madeira, relação siringil/guayacil, lignina solúvel, 
sólidos totais e extrativos totais). Primeiramente, foi realizada uma análise de 
associação genômica ampla (GWAS) usando modelos mistos de single-trait 
(farmCPU) e multi-trait (MTMM). Em seguida, foram identificados lócus de caracteres 
quantitativos (QTLs) utilizando o banco de anotações para Eucalyptus. 
Posteriormente, a habilidade de predição, a coincidência de seleção e os ganhos de 
seleção de modelos de seleção genômica foram analisados utilizando a metodologia 
Genomic Best Linear Unbiased Prediction (GBLUP). Foram testadas diferentes 
abordagens considerando apenas a variância aditiva, as variâncias aditivas-
dominantes, modelos de otimização da população de treinamento e modelos multi-
trait. Finalmente, foi avaliado a efetividade da utilização de caracteres fenotípicos de 
crescimento para aumentar a habilidade de predição de caracteres de qualidade da 
madeira usando uma metodologia conjunta entre multi-trait e otimização da população 
de treinamento. Após o controle de qualidade, um total de 21.254 SNPs informativos 
foram encontrados com ampla distribuição e alto decaimento de desequilíbrio de 
ligação nos 11 cromossomos. Considerando a análise GWAS, o modelo farmCPU 
identificou 43 e 38 marcadores de pequeno efeito significativamente associados às 
variáveis nas classes crescimento e de qualidade da madeira, respectivamente. 
Semelhantemente, marcadores pleiotrópicos também foram identificados entre 
caracteres crescimento (24) e de qualidade da madeira (6) usando o modelo MTMM. 
A análise da ontologia genética identificou diversos genes responsáveis pelo 
crescimento celular e associados ao stress hídrico. Considerando a análise de seleção 
genômica, os caracteres de crescimento foram mais influenciados pela dominância. 
Por outro lado, os modelos GBLUP foram eficientes para predizer caracteres de 
qualidade da madeira. Embora a coincidência de seleção pareça ter valores baixos, 
os valores de ganhos de seleção encontrados foram relativamente altos. A análise 
otimização da população de treinamento foi eficiente para selecionar os melhores 
genótipos a serem utilizados como conjunto de treinamento. Adicionalmente, as 
análises multi-trait e multi-trait com otimização da população de treinamento também 
foram eficientes para aumentar a habilidade de predição dos modelos GBLUP. Dessa 
forma, o uso de informações do crescimento pode ser usado de forma eficiente para 
aumentar a habilidade de predição dos caracteres de qualidade da madeira. Nosso 
estudo demonstra que a natureza caracteres quantitativos fornece novas evidências 
para a arquitetura de genes relacionados à expressão de caracteres, bem como a 
eficiência de modelos seleção genômica para prever a expressão fenotípica em E. 
grandis. 
 



Palavras-chave: associação genômica ampla; seleção genômica; análise multi-trait; 
melhoramento florestal; eucalipto. 
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GENERAL INTRODUCTION 
 

Worldwide, Brazil is the top producer and exporter of eucalypt round wood and 

cellulose pulp (GONCALVES et al., 2013) and the second largest producer of cellulose 

pulp in the world (IBÁ, 2019). The genus Eucalyptus L'Heritier consists of 

approximately 900 species and subspecies, and Eucalyptus grandis W.Hill is the most 

commonly cultivated tree species (CAMPOE et al., 2013). The main uses of the 

species are related to the production of cellulose and wood (ACOSTA; 

MASTRANDREA; LIMA, 2008). In addition, the species presents great importance due 

to intense hybrid vigor generated by crossings with species of the same subgenus, 

with an outstanding relevance regarding the hybrids between E. grandis and 

Eucalyptus urophyla ST Blake, which generates intense vigor, allowing a high 

productivity as well as the possibility of planting in remote areas (POTTS; DUNGEY, 

2004). However, its high adaptability in subtropical regions, the species genome has 

generated introgression into the genome in plantations in regions with arid climate 

(MOSTERT-O’NEILL et al., 2021). 

Currently, there is an urgent need to implement genomic approaches to 

optimize time, cost, and accuracy of Eucalyptus breeding strategies (GRATTAPAGLIA 

et al., 2018). Several methods have been proposed to reduce the time needed for 

breeding based on early selection strategies (BURDON, 1989; WU et al., 1998). 

However, marker-assisted selection methods have emerged as important tools that 

can improve both the accuracy and reduce the length of the breeding cycle 

(O’MALLEY; MCKEAND, 1994; WU et al., 1998; GUIMARÃES, 2007; MURANTY et 

al., 2014; AHMAR et al. 2021). Additionally, because of the complex, polygenic nature 

of quantitative traits, the development of high throughput molecular technology has 

become key not only to breeding program improvement (DENIS; BOUVET, 2013; 

THAVAMANIKUMAR et al., 2013), but also to discovering the genetic architecture 

behind the expression of important traits in tree species (MACKAY, 2001).  

Long breeding cycles together with late flowering are major problems in forest 

tree breeding (NAMKOONG; BARNES; BURLEY, 1980; GRATTAPAGLIA, 2017). 

Thus, the development of new methods that can shorten selection cycles is necessary 

to increase tree breeding efficiency and reduce the time required to obtain superior 

genotypes (CROSSA et al., 2017). Several methods have been developed to 

understand the simultaneous genetic control of quantitative traits (VARSHNEY; 
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ROORKIWAL; SORRELLS, 2017), while studies aimed at improving the selection 

cycle of forest species have also been undertaken (GRATTAPAGLIA, 2014). Thus, 

considering breeding strategies as well as the key species analyzed in the study, new 

methodologies must be developed that address problems and optimize breeding 

programs. 

Eucalyptus grandis is a diploid species that has 11 chromosomes (2n = 22). The 

Eucalyptus genome consists of about 640 megabases, with homozygous regions 

covering 24% of the genome (MYBURG et al., 2014). The first studies involving the 

sequencing of single polymorphism nucleotides (SNPs) in E. grandis were performed 

using expressed genes (ETS) by Novaes et al. (2008). Recently, a large-scale SNP-

array has also been developed for Eucalyptus species, with 64K SNPs (EUChip60K) 

(SILVA‐JUNIOR; FARIA; GRATTAPAGLIA, 2015). Therefore, several methodologies 

have been developed to optimize eucalypt breeding, such as genomic selection (GS) 

(CAPPA et al., 2018; ARCURI et al., 2020; MPHAHLELE et al., 2020) and genome-

wide association studies (GWAS) (MÜLLER et al., 2017; KAINER et al., 2019). 

The identification of genomic associations for economically relevant traits 

remains a challenge for forest species (GRATTAPAGLIA et al., 2018). Single 

nucleotide polymorphisms (SNPs) are molecular markers that occur from a single base 

variation in the genome (MAMMADOV et al., 2012) which can be used to help identify 

important regions in the genome of the species under study. The accuracy of the 

applicability of SNP markers is generally related to their abundance in the genome, in 

addition to their high reproducibility in species (AGARWAL; SHRIVASTAVA; PADH, 

2008). Thus, from the development of SNPs markers, it is possible to detect 

quantitative trait loci (QTLs) associated with a gene by linkage disequilibrium (LD) 

(RAFALSKI, 2002), thus enabling the development of efficient methods of genome 

association (WANG et al., 2005).  

GWAS methodologies analyze the associations between quantitative traits and 

genetic variants that are widely distributed in the genome of individuals (BUSH; 

MOORE, 2012). Studies using GWAS seek to identify not only associations between 

regions of the genome with traits of interest, but also regions with a significant effect 

on phenotypes (HIRSCHHORN; DALY, 2005). From this, it is possible to study the 

biological functions involved with QTLs and, consequently, understand the genetic 

influence on the phenotypic expression of a genotype (WANG et al., 2005). Although 

GWAS were developed to assess the genetic interaction of diseases in humans, the 



19 
 

 

methodology has been applied in several other areas, such as animal breeding 

(DUIJVESTEIJN et al., 2010; BOLORMAA et al., 2011; WU et al., 2013), improvement 

of agricultural species (WANG et al., 2012; JABBARI et al., 2018; TAO et al., 2020), in 

addition to forest improvement (MÜLLER et al., 2017; KAINER et al., 2019; BALLESTA 

et al., 2020). The associations in GWAS are based on the theory of linkage 

disequilibrium (LD) between SNP markers and the phenotypic traits of interest, and 

have different methods associated with its application. 

Meuwissen et al. (2001) proposed the concept of GS using genome-wide single 

nucleotide polymorphism (SNPs). Soon after, using the information from pedigree-

based best linear unbiased prediction (BLUP) using mixed models (HENDERSON, 

1975), and more recently the genomic best linear unbiased prediction (GBLUP) 

(HAYES et al., 2009) and the random regression of the best linear unbiased prediction 

(RR-BLUP) (WHITTAKER; THOMPSON; DENHAM, 2000; MEUWISSEN; HAYES; 

GODDARD, 2001), offered quick and accurate predictions for traits of interest. Since 

then, several extensions of these statistical methods have been developed, using 

penalized regression models (WALDRON et al., 2011; LI; SILLANPÄÄ, 2012), 

Bayesian modeling (CROSSA et al., 2010; HABIER et al., 2011; LEGARRA et al., 

2011; XU, 2007), and nonparametric and semiparametric regression models 

(HOWARD; CARRIQUIRY; BEAVIS, 2014; BUDHLAKOTI et al., 2020). From this, 

studies have compared the statistical power of GS studies (CHANG et al., 2018; 

LEBEDEV et al., 2020; MISZTAL; STEIN; LOURENCO, 2022); yet, depending on the 

trait and population under study, applying different models may provide better results 

for accuracy (BERNARDO, 2021). For most studies, GBLUP has shown to have more 

robust predictions, achieving the highest correlations between predicted and observed 

genotypes (WANG; YANG; XU, 2015; XU; XU; XU, 2017). 

The implementation of GS in Eucalyptus breeding has several advantages, of 

these a reduction in selection cycle length stands out as it is the most prominent 

obstacle encountered in tree breeding programs (REZENDE; DE RESENDE; DE 

ASSIS, 2014). Genomic selection enables the prediction of genotype behavior from 

models trained for genotypes of the same species and based on genetic composition, 

considering the occurrence of SNPs and their influence on phenotypic traits 

(GODDARD; HAYES, 2007). The superiority of GS models is due to the use of 

molecular markers that cover a large part of the genome, ensuring that all QTLs are in 

LD with at least one marker (MEUWISSEN; HAYES; GODDARD, 2001). The use of 
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methodologies such as accounting for dominance variance (PALUDETO et al., 2021), 

optimizing the training populations (CERICOLA et al., 2017; TAYEH et al., 2015; 

BERRO et al., 2019), and using multi-trait methodologies (BASTIAANSEN et al., 2012; 

JIA; JANNINK, 2012), can lead to a reduction in selection costs, while also increasing 

the efficiency of genomic selection models. Although using simple GS methodologies 

can achieve good prediction capabilities, optimized models can increase the accuracy 

of the GS models. 

Thus, the thesis structure is divided into two chapters. The main objective of our 

study is to perform a GWAS to identify single and pleiotropic markers associated with 

growth and wood quality traits and optimize the predictive ability of genomic selection 

models of E. grandis. For chapter one, we specifically aimed to i) run single and multi-

trait GWAS to identify significant markers associated with phenotypic expression, and 

ii) identify single and pleiotropic genes related to trait expression. On the other hand, 

for chapter two, we aimed to i) evaluate the influence of dominance on genomic 

selection models; ii) optimize the training set of genomic selection models; iii) perform 

multi-trait analysis to increase the predictive ability of genomic selection models, and 

iv) use optimization of the training set and multi-trait analysis to increase the predictive 

ability.  
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CHAPTER 1 
 QUANTITATIVE TRAIT LOCI RELATED TO GROWTH AND WOOD QUALITY 
TRAITS IN Eucalyptus grandis W. Hill IDENTIFIED THROUGH SINGLE AND 

MULTI-TRAIT GENOME-WIDE ASSOCIATION STUDIES 
 

ABSTRACT 
 

The genetic improvement of forest tree species is a constant challenge mainly due to 
the complex genetic nature of quantitative traits. Nevertheless, understanding the 
pleiotropic effects of genes and polygenic inheritance is crucial for tree breeding 
programs. Thus, the aim of this study was to conduct single- and multi-trait genome 
wide association studies (GWAS) and identify quantitative trait loci (QTLs) for the 
expression of phenotypic traits in Eucalyptus grandis. We evaluated an open-pollinated 
breeding population with 1,772 genotypes composed of 27 different families 
established using a randomized complete block design. We performed single-trait 
GWAS using the fixed and random model circulating probability unification (FarmCPU), 
and multi-trait GWAS for genetically correlated phenotypic traits using the multi-trait 
mixed model (MTMM). Then, gene annotation was identified through the Phytozome 
database. The FarmCPU model identified 43 and 38 QTLs that are significantly 
associated with growth and wood quality traits, respectively. Similarly, 40 pleiotropic 
QTLs were discovered using the MTMM model. Gene ontology for single-trait analysis 
identified genes responsible for regulating several important biological processes in 
different tissues and at different stages of maturation. On the other hand, the multi-trait 
model identified genes associated with gibberellin signaling, which regulates several 
aspects of plant growth and development, as well as genes related to the reinforcement 
of cell wall composition. Our study demonstrates the complex nature of E. grandis 
quantitative traits and provides new evidence for the architecture of genes associated 
with the expression of important phenotypic traits.  

Key-words: association mapping, genome-wide association study, Eucalyptus, gene 
ontology 
1  

                                                 
1 Formatted according to the “Tree Genetics and Genomes” submission guidelines.  
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1.1 INTRODUCTION 
 

Genome wide association studies (GWAS) are used to identify significant 

associations among quantitative traits and genetic loci in plant and animal genomes 

(Bush and Moore 2012). GWAS have been used extensively to understand the genetic 

complexity of economically important traits in tree species (Korte and Farlow 2013). 

Within the Eucalyptus genus, the species Eucalyptus grandis stands out because of 

its fast growth, high adaptability, and superior wood quality (Malan 1993). It is the most 

commonly planted hardwood tree globally, with a diverse range of applications in 

cellulose, paper, timber, and charcoal production (Malan and Gerischer, 1987; 

Grattapaglia 2008; Carocha et al. 2015).  

Cellulose in particular is a key wood product that meets a wide variety of primary 

human needs, such as paper (Hollertz et al. 2017; Jin et al. 2021), pharmaceuticals 

(Beyger and Nairn 1986; Giri et al. 2020), biofuels (Carere et al. 2008; Rubin 2008; 

Carroll and Somerville, 2009), and food (Lavanya et al. 2011; Shi et al. 2014). 

Therefore, tree breeding strategies should focus on selecting genotypes considering 

not only growth characteristics, but also wood quality traits (Byram et al. 2005; Apiolaza 

et al. 2013). To improve the quality of wood production, several studies have 

emphasized the importance of finding the genetic basis of wood quality traits such as 

lignin (Li et al. 2008; Hisano et al. 2009), syringyl/guaiacyl ratio (Stackpole et al. 2011; 

Denis and Bouvet, 2013), wood density (Osorio et al. 2001; Stackpole et al. 2010), 

total extractives (Gallo et al. 2018; Makouanzi et al. 2018), and cellulose yield 

(Schimleck et al. 2004; Kien et al. 2009). In this context, developing new GWAS 

strategies are essential for identifying associations between genomic regions of the 

traits of interest and those significantly associated with the phenotype (Hirschhorn and 

Daly 2005). 

Several studies have identified genes related to the expression of growth and 

wood quality traits in Eucalyptus (Resende et al. 2017; Müller et al. 2017, 2019). 

Generally, growth traits tend to be more correlated with moderate levels of heritability, 

while wood quality traits are less correlated, but commonly present higher levels of 

heritability (Mphahlele et al. 2020). For Eucalyptus, Kainer et al. (2019) examined the 

genetic effects on oil yield, while Resende et al. (2017) conducted regional heritability 

mapping for growth and wood quality traits to identify quantitative trait loci (QTLs). 

Nevertheless, few studies have sought to understand the genetic effect of pleiotropic 
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genes in Eucalyptus by comparing single-trait and multi-traits GWAS (Tan and 

Ingvarsson, 2018; Rambolarimanana et al. 2018). 

Pleiotropic effects occur when genetic loci have an influence on more than one 

trait (Solovieff et al. 2013). The application of pleiotropy in breeding means a 

movement away from selecting for one trait at the genetic level to selecting for multiple 

traits at a phenotypic level (Paaby and Rockman 2013). Although single-trait GWAS 

has identified the polygenic inheritance effect of markers, several efforts have been 

made to understand the pleiotropism between quantitative traits (Liu and Yan 2019), 

such as multiple trait selection assisted by genetic markers. Among single-trait GWAS 

algorithms, the fixed and random model circulating probability unification procedure 

(FarmCPU) performs a multi-locus linear mixed model (MLMM) to effectively control 

for spurious associations (Liu et al. 2016). On the other hand, multi-trait mixed models 

(MTMM) were developed by Korte et al. (2012) to perform multi-trait GWAS and 

examine the common genetic effects that act in pleiotropy on two correlated phenotypic 

traits.  

The MTMM algorithm performs three different analyses, categorized as full, 

common, and interaction. While the full model considers both common and interaction 

effects, the common and interaction models separate these effects individually. Thus, 

the common model performs a statistical analysis that demonstrates the coincident 

effects on two traits. Meanwhile, the interaction model identifies interacting genetic 

effects that act in the opposite direction between two traits (Korte et al. 2012). In the 

presence of pleiotropy, the power of the multi-trait GWAS is superior to single-trait 

GWAS because of the additional accuracy obtained when data for two traits are 

considered together (Korte et al. 2012; Korte and Farlow 2013; Oladzad et al. 2019). 

The present study focused on using GWAS to assess the genetic architecture 

of growth and wood quality traits of an open-pollinated E. grandis seed orchard. The 

specific objectives of the present study were to: (1) develop and compare the 

performance of single- and multi-trait GWAS models in the identification of significant 

SNP markers related to growth and wood quality traits; (2) identify QTLs significantly 

associated with the expression of phenotypic traits; (3) and understand the pleiotropic 

effects and the genetic architecture of important traits. 
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1.2 MATERIAL AND METHODS 
 

1.2.1 Plant material and phenotypes 

 

The study population was an open-pollinated seed orchard of E. grandis located 

in the municipality of São Miguel Arcanjo, São Paulo, Brazil (-23.890188, -47.937138). 

The population was established in September 2012 by the SUZANO company’s 

breeding team. The experiment consisted of a randomized complete block design, with 

four blocks, each containing 27 families (treatments) and one clonal control test 

(commercial clone), with four plots of 20 individuals each (five plants per plot). The 

spacing between plants was 3 m × 2 m, resulting in a planted area of 1.344 ha with 

2,240 trees. The open-pollinated seeds used to establish the experiment were 

collected from seven different locations across Brazil (Rio Claro - São Paulo (SP); 

Teixeira de Freitas - Bahia; Biritiba Mirim - SP; Salto - SP; Sarapui - SP; Mogi Guaçu 

- SP; and São Simão - SP) and one from Zimbabwe, Africa. The 27 families are 

originally from Coff’s Harbour (New South Wales, NSW) and Atherton (Queensland, 

QLD), Australia. 

For the analysis, we considered the genomic and phenotypic information from 

1,772 individuals. The control genotype was an E. grandis commercial clone used by 

the SUZANO company. The phenotypic information was subdivided into growth traits 

(GWT) and wood quality traits (WQT). Growth traits were measured at two different 

ages (three and six years after planting) and were classified as height (HEI3 and HEI6) 

in meters and diameter at breast height (DBH3 and DBH6) in centimeters. The DBH 

(DBH3/DBH6) and height (HEI3/HEI6) were used to estimate tree volume at three and 

six years of age (VOL3 and VOL6, respectively) in cubic meters according to formula 

described by Schumacher and Hall (1933):  

 

 𝑉𝑂𝐿 =  𝐷𝐵𝐻2 ×
𝜋

40000
× 𝐻𝐸𝐼 × 𝑓 (1) 

 

Further, we analyzed six wood quality traits related to cellulose production. To 

do so, an increment borer was used at breast height to collect wood cores of 12 mm 

at 6.5 years after planting. Then, wood material was sent to the laboratory for 

processing to obtain spectral information using near-infrared spectroscopy (NIRS). 
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Sawdust samples from 69 genotypes were retained in a mesh sieve and placed 

in circular cells. The NIR reflectance spectra were obtained using scans of wavelength 

ranges. Curve calibration was based on samples from five different species 

(Eucalyptus grandis, Eucalyptus urophylla, Eucalyptus brassiana, Eucalyptus 

tereticornis, and Eucalyptus pellita) collected in three different regions of Brazil 

(Maranhão, São Paulo, and Bahia) at six years after planting. An internal company 

calibration (SUZANO S. A.) model was developed using the Bruker FT-NIR 

spectrophotometer MPA II. The resulting calibration database containing NIR wood 

spectra was obtained through following methods outlined in the reference literature. 

The prediction of constituent values based on existing calibration curves were used to 

estimate the following wood quality traits: pure cellulose yield (PCY) in percentage; 

basic wood density (WBD) in cubic meters; syringyl/guaiacyl ratio (SGR); soluble lignin 

(SOL) in percentage; total solid content (TSC); and total extractives (TEX) in 

percentage. 

 

1.2.2 Phenotypic data analysis 

 

Each of the 1,772 samples was evaluated using the Bonferroni outlier test to 

find the mean-shift outlier with studentized residuals in linear mixed models. Thus, 

outliers were removed by deleting observations based on standard deviation with the 

car package in the R software environment (Fox et al. 2012). Then, the normal 

distribution of phenotypic data was verified using the Shapiro-Wilk test, and data 

normalization was performed using the bestNormalize package in R (Peterson 2021). 

Finally, with the normalized dataset, the best linear unbiased predictions (BLUPs) 

(Rodriguez et al. 2020) were estimated for each trait with the breedR package in R 

(Muñoz and Sanchez, 2015) using the following mixed model: 

 

𝑌𝑖𝑗𝑘  =  𝜇 +  𝑋𝑏𝑗 + 𝑍𝑡𝑖
+  𝑍𝑝𝑘 +  𝜀𝑖𝑗   

(2) 

 

where, 𝜇 is the average mean; 𝑏𝑗 is the fixed effect of the 𝑗𝑡ℎ block; 𝑡𝑗 is the fixed effect 

of the 𝑗𝑡ℎ family effect (progeny); 𝑃𝑘 is the random effect of the 𝑗𝑡ℎ plot with p ~ N(0, 

𝜎𝑃
2); and 𝜀𝑖𝑗 is the residual error that represents the nongenetic effects. The matrices 

𝑋 and 𝑍 are the incidence matrices for the fixed and random effects, respectively. 
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Deregressed best linear unbiased prediction/predictor (dBLUP) were then estimated 

to avoid shrinkage properties (Henderson 1975) according to the formula 
𝑔̂

𝑟2 (Garrick 

et al. 2009), where: 𝑔̂ is the genomic BLUP; and 𝑟2 is the reliability, estimated as 1 −

(𝑃𝐸𝑉/𝜎𝑔
2), where 𝑃𝐸𝑉 is the prediction error variance and 𝜎𝑔

2 is the genotypic variance. 

Pearson’s genetic correlation tests were then performed using the BLUPs to verify the 

correlation between the 12 growth and wood quality traits. Correlation distributions 

were plotted using the ggcorrplot package in R (Kassambara 2019).  

 

1.2.2 DNA extraction and quality control 
 

Cambium tissue was collected individually from 1,772 trees and processed 

using the CTAB Lysis Buffer. DNA was extracted using the CTAB method (Doyle and 

Doyle 1987). DNA integrity was confirmed in 1% agarose gel electrophoresis and 

quantified by the Nanodrop spectrophotometer (Thermo Fisher, Waltham, MA, USA). 

DNA genotyping was performed using the EUChip60K high-density Illumina Infinium 

SNPchip for Eucalyptus species (Silva‐Junior et al. 2015). Duplicate SNPs were 

eliminated from the raw dataset based on markers with the lowest call rate. Quality 

control was conducted using the R package snpReady (Granato et al. 2018). Markers 

were removed if they were monomorphic or had a call rate lower than 95%. Alleles 

with minor allele frequency (MAF) lower than or equal to 0.01 were also excluded. The 

genotypes were coded as “0” and “2” for homozygotes and “1” for heterozygotes. The 

remaining genotypic data was imputed using the R package snpReady considering 

Wright's equilibrium of the probability of occurrence considering the combination of 

allelic frequency and heterozygosity observed from the markers (Granato et al 2018). 

Later, the filtered markers were submitted to linkage disequilibrium (LD) pruning, 

removing markers with a pairwise r2 higher than 0.99. This step was performed using 

the SNPRelate package in R (Zheng et al. 2012). After quality control, high-quality 

SNPs were selected for association mapping. 

 

1.2.3 SNP repositioning 
 

We repositioned the markers using the information from the SNP probes in 

Illumina. Probe sequences were used to align with the second version of the 

Eucalyptus grandis reference genome (v2.0) (https://data.jgi.doe.gov/refine-
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download/phytozome?genome_id=297) with the bowtie 2 aligner (Langmead and 

Salzberg 2012) and sensitive global alignment settings. The SNP position from version 

2.0 was used in the GWAS analysis. We removed all scaffolds from the Brasuz v2.0 

that were not in the linkage groups (from chromosome 1 to 11). The success of the 

repositioning was analyzed using a comparison map, and the dotplot coincidence 

graphs of the positioning of the two reference genomes (v1.0 and v2.0) were plotted 

using the R packages RIdeogram (Hao et al. 2020) and ggplot2 (Wickham 2011), 

respectively.  

 

1.2.4 Genetic parameters and population structure 
 

The effective population size (𝑁𝑒) was estimated using the molecular linkage 

disequilibrium method (Waples and Do 2008) as implemented in NeEstimator V2.1 (Do 

et al. 2014). Population genetic parameters were estimated using the popgen function 

in the R package SNPReady (Granato et al. 2018), and include: Nei’s genetic diversity, 

as 𝐺𝐷 = 1 −  𝑝𝑗
2 − 𝑞𝑗

2; polymorphic information content, where 𝑃𝐼𝐶 = 1 − (𝑝𝑗
2 + 𝑞𝑗

2) −

(2𝑝𝑗
2𝑞𝑗

2) ; and minor allele frequency using the formula  𝑀𝐴𝐹 = min (𝑝𝑗, 𝑞𝑗 ). The 

observed heterozygosity (𝐻𝑜) was obtained with the formula: 𝐻𝑜 =  𝑛𝐻𝑗 𝑁⁄ , where 𝐻𝑗 is 

the number of heterozygous individuals and 𝑁 is the number of individuals. For each 

trait, we estimated the narrow-sense ( ℎ𝑎
2 =  𝜎𝑎

2/ 𝜎𝑝
2 ) and broad-sense ( ℎ𝑔

2 =

 𝜎𝑎
2 + 𝜎𝑑

2 𝜎𝑝
2⁄ ) heritability, where  𝜎𝑎

2  represents the additive variance and 𝜎𝑝
2  is the 

phenotypic variance. Then, the degree of differentiation between the two origin 

populations (𝐹𝑆𝑇) was estimated using the formula 𝐹𝑆𝑇 = 1 − 𝐻𝑆 𝐻𝑇⁄ , where: 𝐻𝑆 is the 

average expected heterozygosity for each population (two different origins); and 𝐻𝑇 is 

the expected heterozygosity in the total population. 

The population structure was first analyzed by a principal component analysis 

(PCA) using genotypic data, where the first two principal components (PC1 and PC2) 

were used to determine the extent of population structuration. The two different origins 

were represented by different colors. We subsequently used the ADMIXTURE 

software to identify different genetic clusters with a fixed number of populations (K) 

ranging from 1 to 40. Genetic correlation between phenotypes was estimated using 

the BreedR package in R (Munoz and Rodriguez 2014). Correlation was estimated in 

pairs considering the same model used to estimate BLUPs (Item 2.2). The genomic 
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kinship matrix (𝐺𝑎) was obtained using the SNPReady package in R (Granato et al. 

2018), following VanRaden (2008), with the following equation: 

 

𝐺𝑎 =
𝑍𝐴𝑍𝐴

𝑇

2 ∑ 𝑝𝑖(1 − 𝑝𝑖)
𝑚𝑖
1

 (3) 

 

where 𝑍𝐴 is a matrix coded as 0 for homozygote 𝐴1𝐴1, 1 for heterozygote 𝐴1𝐴2, and 2 

for homozygote 𝐴2𝐴2; 𝑝𝑖 is the frequency of an allele from locus 𝑖; and 𝑍 is an n × m 

matrix of marker incidence (n is the number of genotypes and m is the number of 

markers). 

 

1.2.5 Linkage disequilibrium (LD) decay 
 

Genome-wide pairwise linkage disequilibrium (LD) was estimated for each 

chromosome using the function LD.decay from the sommer package v 2.9 in R v 4.0.2 

(Covarrubias-Pazaran 2016). LD was estimated by the squared allele frequency 

correlation r2 between marker pairs, and the decay was plotted considering the first 

distance classes based on the marker matrix and a map with distances between SNPs 

on a loess curve. To investigate the average LD decay in the whole genome and within 

chromosomes, significant intra-chromosomal r2 values were plotted against the genetic 

distance between markers using the ggplot2 package in R (Wickham 2011).  

 

1.2.6 Genome-wide association study 
 

We performed single-trait GWAS using the fixed and random model circulating 

probability unification (FarmCPU) (Liu et al. 2016) and multi-trait GWAS using the 

multi-trait mixed model (MTMM) (Korte et al. 2012) to identify genetic factors 

associated with the expression of phenotypic traits. The corrected phenotypic data 

(BLUP) and the genotypic information were used for single- and multi-trait GWAS. The 

single-trait association was performed using the genome association and prediction 

integrated tool (GAPIT) (Lipka et al. 2012; Tang et al. 2016). The population structure 

based on PCA matrix (Q) and kinship (K) were automatically generated (VanRaden 

2008; Lipka et al. 2012) using genotypic data and the default GAPIT parameters. Using 
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the GWAS results, we estimated the phenotypic variance explained by a significant 

marker (𝑃𝑉𝐸), described as follows: 

 

 𝑃𝑉𝐸 =  2 ∗ (𝛽2) ∗ 𝑀𝐴𝐹 ∗ (1 − 𝑀𝐴𝐹) (4) 

 

where, 𝛽 is the effect of allele substitution and 𝑀𝐴𝐹 is the minor allele frequency of 

markers. The pleiotropic effect among phenotypic traits, which is a SNP marker having 

an effect on two or more traits, was estimated using the multi-trait mixed model 

(MTMM) (Korte et al. 2012). We performed multi-trait GWAS in pairs for the 

significantly associated growth and wood quality phenotypic traits. The R scripts 

provided by Korte et al. (2012) partition the interaction effects into three different 

analysis models: interaction, common, and full. Thus, considering two traits using a 

single marker model, the MTMM model can be written as (Korte, 2012): 

𝑦 =  [
𝑦1

𝑦2
] =  𝑠1𝜇1 + 𝑠2𝜇2 + 𝑥𝛽 +  (𝑥 ×  𝑠1)𝛼 +  𝜈  

 

(5) 

where 𝑦1 and 𝑦2 are phenotypic values for genotype interactions of two traits. The 𝑦 

value is estimated as 𝑋𝛽 + 𝑢𝐺 +  𝑢𝐺×𝐸 + 𝑒, considering 𝑢𝐺 and 𝑢𝐺×𝐸 are the genotype 

and genotype-by-environment interaction values; 𝑠1 and 𝑠2 are vectors of 1 or 0 for all 

values of the trait in question;  𝜇1  and 𝜇2  are the means; 𝑥  is the marker effect; 𝛽 

represents the effect size of fixed effects; and 𝜈 is the prediction error. The interaction 

and common models identify markers that act differentially or in the same direction for 

two traits. On the other hand, the full model identifies SNPs with either an interaction 

or common effect. The significance threshold used for the p-values estimated by 

single- and multi-trait GWAS was calculated using the Bonferroni method (α = 0.05). 

The p-values (-log10 P) for each evaluated SNP and model was used to generate 

Manhattan and QQ (quantile-quantile) plots using the R package CMPlot (Yin, 2018). 

 

1.2.7 Gene ontology  
 

The significant SNPs for growth and wood quality traits were used to conduct a 

gene ontology analysis according to the physical distance within the GWAS peak 

regions. Since there were no strong LD blocks along the genome, which is probably 

related to LD-pruning, the downstream and upstream distance to search for candidate 
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genes were estimated considering the distance of the two nearest flanking markers to 

the significant SNP. The genetic annotation and predicted functional effect of each 

gene were obtained by searching the database for version 2.0. of E. grandis from 

Phytozome v11.0 (Egrandis_297_v2.0.gene.gff3.gz). Ven diagrams were developed 

using the jvenn plot (Bardou et al. 2014). 

 

1.3 RESULTS  
 

1.3.1 Phenotypic data 
 

The number of outliers removed varied among the 12 phenotypic traits (DBH3: 

63; HEI3: 111; VOL3: 2; DBH6: 0; HEI6: 6; VOL6: 1; PCY: 22; WBD: 21; SGR: 111; 

TSC: 23; SOL: 78; and TEX: 83). The genetic correlation among phenotypic traits 

ranged from -0.96 (PCY/TSC) to 1 (DBH6/VOL6) (Figure 1a). Similarly, the highest 

correlation between wood quality traits was found between TEX and SOL (0.62). The 

PCA biplot represents the first two components for the full set of 12 traits (six growth 

and six wood quality). The first two axes account for 50.7% and 17.9% of the variation 

in the phenotypic data (Figure 1b). 
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Figure 1 - (a) Genotypic correlation between phenotypic traits for growth and 
wood quality categories across the 1,772 Eucalyptus grandis 
genotypes; (b) Principal component analysis for wood quality and 
growth traits 

 

DBH3 = Diameter at breast height at 3 years; DBH6 = DBH at 6 years; VOL3 = Volume 

at 3 years, VOL6 = Volume at 6 years; HEI3 = Height at 3 years; HEI6 = Height at 6 

years; PCY = Pure cellulose yield; WBD = Basic wood density; SGR = 

Syringyl/guaiacyl ratio; SOL = Soluble lignin; TSC = Total solid content; and TEX = 

Total extractives. 

 

1.3.2 Population structure and genetic diversity parameters 
 

The PCA using genotypic data revealed that the first component was mainly 

responsible for the genetic variation (55%) (Figure S1). Although there was a slight 

grouping of genotypes according their origin by PCA, the ADMIXTURE analysis 

showed an absence of population genetic structure (Figure S2). Accordingly, the 

genetic differentiation (FST) between individuals from two the different origins 

presented a value of 0.036, indicating limited genetic divergence between them. A 

similar pattern was found for the kinship matrix (VanRaden 2008), where different 

subpopulations were identified but with no evidence of a strong population structure.  

Although the genotypes evaluated are originally from two native populations, the seeds 

which were used to establish the breeding population are from open-pollinated trials 

installed in eight different locations. Thus, we believe that crossings among genotypes 

from different origins may have generated stratification in the population. 

(a) (b) 
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Figure 2 - Kinship relationships for the Eucalyptus grandis breeding population 
of 1,772 individuals using the 21,254 SNPs based on the VanRaden 
method 

 

In general, genetic diversity parameters showed moderate values. Nei’s genetic 

diversity of the whole population ranged from 0.07 to 0.50, with an average of 0.35. 

The marker polymorphic information content (PIC) ranged from 0.07 to 0.38, with an 

average of 0.28. The minimum allele frequency (MAF) showed a mean value of 0.26, 

ranging from 0.04 to 0.50. The observed heterozygosity (𝐻𝑜) had an average of 0.40, 

ranging from 0.24 to 0.47. Similarly, the inbreeding coefficient ranged from 0.04 to 

0.50, with a mean value of 0.26. We found an effective population size (𝑁𝑒) of 31.5 

considering linkage disequilibrium between markers (𝐿𝐷𝑁𝑒). 

 

1.3.3 SNP repositioning and quality control 
 

In general, several SNPs changed their original relative position between the 

first and second version of the E. grandis reference genome, and some even changed 
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chromosomes. However, the genome-scale SNP collinearity (Figure 3) between the 

two versions showed that most SNPs maintained similar positions. We did note a high 

collinearity pattern and more reliable linkage maps with version 2.0 (Bartholomé et al. 

2015). Thus, we chose SNP positions estimated using the second version to perform 

GWAS analysis and identify QTLs and candidate genes related to trait expression. 

Figure 3 - Synteny dotplot for SNP positions across the two versions of the 
Eucalyptus grandis genome. The x-axis represents version 1.0 and the 
y-axis represents version 2.0 

  

 

For quality control, from the initial total of 64,639 markers, 3,425 duplicate SNPs 

were removed considering the call rate, leaving 61,214 markers. After SNP 

repositioning, 1,946 markers were removed as they were located in small scaffolds. A 

total of 28,957 markers were removed due to MAF (0.05), and 8,229 markers were 

removed due to the call rate (0.9), leaving 22,082 markers. Furthermore, 1.08% 

missing points were imputed. Finally, after LD pruning, 828 SNPs with high linkage 

disequilibrium were removed, leaving a final total of 21,254 markers for the analysis.   

The informative SNPs selected were uniformly distributed across the 11 

chromosomes of the E. grandis genome. Figure 4a shows the occurrence of SNPs 

along the E. grandis chromosomes, where the number of SNPs is summed within 

adjacent 1 Mb windows. LD showed a quick and similar decay pattern across the 11 
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E. grandis chromosomes (Figure 4b). The ad-hoc value of r2 (0.10) indicated an 

average LD across chromosomes ranging from 150 kb to 200 kb (Figure S4). 

Figure 4 - (a) SNP density plot across each chromosome representing the 
number of SNPs after quality control within a 1 Mb window size; (b) 
Pairwise LD-decay across the 11 chromosomes of the 1,772 
individuals genotyped using the EUChip60K. Different colors 
represent different SNP density and “Chr” represents the E. grandis 
chromosomes 

   

 

 1.3.4 Genome-wide association study 
 

1.3.4.1 Broad- and narrow-sense heritability and gene annotation 
 

For growth traits, we found moderate values of narrow-sense heritability, 

ranging from 0.4299 (HEI3) to 0.5816 (DBH6) (Table 1). Three wood quality traits 

(SGR, SOL, and TEX) presented relatively low narrow-sense heritability (0.1599, 

0.1845, and 0.1515, respectively). On the other hand, pure cellulose yield (PCY) 

presented the highest broad-sense heritability (0.7107) among all growth and wood 

quality traits.  

The FarmCPU model successfully performed single trait GWAS, indicating 

significant associations between growth and wood quality traits in E. grandis. After 

Bonferroni correction, a total of 81 SNPs with a significant association were identified 

for six growth traits (43 SNPs) and five wood quality traits (38 SNPs). Only the wood 

quality trait total extractives (TEX) showed no significant associations with markers 

(Table 1). The number of significant markers associated with phenotypic traits ranged 

from 2 (DBH6) to 14 (WBD) (Figure 5a and Figure 5b, respectively). 

The average minor allele frequency (MAF) for the significant markers ranged 

from 0.0946 (DBH6) to 0.3164 (TSC). For all significant SNPs, the total phenotypic 

(a) (b) 
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variance explained by a given SNP (PVE) was low, ranging from 0.0529 (SOL) to 

0.2110 (PCY). Marker EuBR04s9558885 (PCY) showed the highest phenotypic 

variance (0.1014), suggesting a strong influence of this marker on phenotypic 

expression. Several markers were found associated with multiple phenotypic traits for 

trait expression and candidate gene annotation (Figure 5).  

 

Table 1 - Significant associations for growth and wood quality traits using the 
single-trait model (FarmCPU) for a Eucalyptus grandis breeding 
population. Traits are divided into growth (GWT) and wood quality 
(WQT). The number of SNPs, MAF, PVE, and number of genes are 
related to the significant number of associations found by the FarmCPU 
model. 

Type Trait ℎ𝑎
2 ℎ𝑔

2 SNPs MAF PVE Genes 

GWT 

DBH3 0.5657 0.6764 5 0.1868 0.0976 10 

HEI3 0.4299 0.5543 8 0.2549 0.2108 28 
VOL3 0.5614 0.6537 6 0.1615 0.1039 15 

DBH6 0.5816 0.6775 2 0.0946 0.0551 0 
HEI6 0.5640 0.6837 13 0.2285 0.1502 44 

VOL6 0.5504 0.6322 9 0.1789 0.1910 21 

WQT 

PCY 0.6056 0.7107 8 0.3146 0.2110 22 

WBD 0.5702 0.5931 14 0.2404 0.1991 45 

SGR 0.1599 0.1774 7 0.2363 0.0867 10 

SOL 0.1845 0.1845 6 0.2423 0.0529 28 

TSC 0.5355 0.5934 3 0.3164 01197 14 
 TEX 0.1068 0.1515 0 - - 0 

ℎ𝑎
2  = Narrow-sense heritability; ℎ𝑔

2  = Broad-sense heritability; SNPs = Number of 

significant SNPs; MAF = Average minor allele frequency; PVE = Sum of phenotypic 
variance explained by the significant SNPs; Genes = Number of genes found; GWT = 
Growth-traits; WQT = Wood quality traits; DBH3: Diameter at breast height at 3 years; 
DBH6: DBH at 6 years; VOL3: Volume at 3 years, VOL6: Volume at 6 years; HEI3: 
Height at 3 years; HEI6: Height at 6 years; Pure cellulose yield (PCY); Basic wood 
density (WBD); Syringyl/guaiacyl ratio (SGR); Soluble lignin (SOL); Total solid content 
(TSC); and Total extractives (TEX). 
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Figure 5 - Manhattan and QQ-plots of GWAS for growth traits (a,c) and wood 
quality traits (b,d), respectively, using the FarmCPU model for an 
Eucalyptus grandis breeding populations with 21,254 markers. 
Different colors represent different tested traits. Dashed line 
indicates the Bonferroni threshold (α = 0.05) 

 

 

   

(a) 

(b) 
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The number of annotated genes associated with the expression of phenotypic 

traits ranged from 0, with no gene annotation for the significant SNP (DBH6), to 46 

(WBD). We found QTLs significantly related to more than one trait for both categories 

(Table S1; Figure S3). In general, functional gene annotation presented several 

categories and descriptions associated with tissue growth on cell walls, cellulose 

biosynthetic process, transporter activity, DNA, ion and protein biding, oxidation-

reduction process and catalytic activity, among others. The function and description of 

all candidate genes for both growth and wood quality traits are shown in Table S1. 

The pleiotropic effect among genes for growth traits was first seen for the SNP 

marker EuBR09s24960947, which presented the most significant association for traits 

DBH3 and HEI3, with p-values of 9.34 × 10-9 and 1.91 × 10-9, respectively. This marker 

tags seven different genes (Eucgr.I01459, Eucgr.I01460, Eucgr.I01461, Eucgr.I01462, 

Eucgr.I01463, Eucgr.I01464, and Eucgr.I01465). In general, the single-trait GWAS 

revealed 13 candidate genes significantly associated with DBH3. Similarly, most genes 

found for HEI3 also showed comparable genome locations and molecular functions. 

Considering the trait HEI3, we found no annotation for candidate genes located near 

three significant SNPs (EuBR07s925067, EuBR06s38139098, and 

EuBR08s70063929) (Table S1). On the other hand, for HEI6, we found 44 annotated 

genes related to trait expression with different descriptions and gene ontology terms.  

The SNP EuBR11s17004419 (HEI6) showed four different flanking genes 

(Eucgr.K01383, Eucgr.K01384, Eucgr.K01385, and Eucgr.K01386). The marker 

EuBR06s23565060 was identified for both ages for volume (VOL3 and VOL6) and for 

DBH3 (p-values 8.29 × 10-8; 1.01 × 10-8; 8.44 × 10-8, respectively). We found a similar 

pattern of significant SNPs correlated with more than one phenotypic trait for wood 

quality in single-trait GWAS. For PCY and TSC, three different SNPs 

(EuBR07s252985, EuBR08s57640594, and EuBR10s1696823) were significantly 

correlated with the expression of these traits. These two phenotypic traits (PCY and 

TSC) presented the highest negative correlation (-0.96), indicating that negative 

correlations can be effective in identifying pleiotropic genes. 

Regarding pure cellulose yield, SNP marker EuBR04s9558885 had the highest 

significance (p-values 1.06 × 10-11), presenting five different flanking genes related to 

trait expression (Eucgr.D00522, Eucgr.D00523, Eucgr.D00525, Eucgr.D00526, and 

Eucgr.D00527). The gene ontology terms suggested association with a lipid metabolic 

process. Additionally, SNP EuBR10s1696823 was related to PCY, with the presence 
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of gene Eucgr.J00155, a wound-induced protein that plays a role in reinforcing cell wall 

composition. Similarly, for TSC, we found 12 annotated genes significantly associated 

with trait expression. The marker EuBR01s39512949 presented six different genes 

related to its expression (Eucgr.A02909, Eucgr.A02910, Eucgr.A02911, and 

Eucgr.A02912). Gene Eucgr.A02909 is a sugar and monosaccharide transmembrane 

transporter.  

 

1.3.4.2 Multi-trait genome-wide association 
 

The multi-trait GWAS showed good performance for all significant combinations 

among traits (Figure S3). We found significant marker-phenotype associations for 

growth and wood quality traits that were not identified with the single-trait GWAS. 

Considering the 33 phenotypic correlations among the 12 traits, 22 combinations 

showed significant associations (Table 1; Figure S3). The MT models (full, common, 

and/or interaction) for some models were unable to properly perform the GWAS since 

the p-values seemed to be deflated, and the QQ-plot showed more noise (e.g., Fig. 

S4d). These models were also unable to find significant associations considering the 

Bonferroni correction, which suggests no influence of possible false positives on the 

results.  

The combinations among growth traits in multi-trait GWAS resulted in the 

highest number of significant SNPs with pleiotropic effects (24). Further, the multi-trait 

GWAS analysis among wood quality (6) and between the two categories (GWT and 

WQT) (10) tended to express less significant markers. The multi-trait GWAS revealed 

40 SNPs influencing the expression of multiple phenotypic traits (Table S6). Not 

surprisingly, the multi-trait methodology showed greater power to identify associations 

considering that most single-trait analyses using the MTMM methodology (Korte et al. 

2012) could not identify associations due to the strict Bonferroni cutoff (α = 0.05; p-

value = 1.63 × 10-5).  

Significant associations between the same trait in different years of data 

sampling (e.g., EuBR03s72654230 for DBH3 and DBH6; EuBR04s246324 for HEI3 

and HEI6; EuBR02s2712998 for VOL3 and VOL6) indicate a strong pleiotropic effect 

on trait association. The SNP EuBR06s39120397 presented a strong p-value, and this 

marker was also statistically significant in the expression of HEI3, DBH6, and VOL6. 

This pattern may be related to the strong genetic correlation among these traits. 
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Similarly, SNP EuBR01s28498846 was also found for the combination of traits TSC, 

DBH6, VOL6, and VOL3, indicating evidence of a pleiotropic effect of the marker on 

growth and wood quality traits. 

 We identified one SNP that was significantly associated with two trait 

combinations (HEI3 and DBH6; HEI3 and VOL6) (EuBR06s39120397; p-values 7.57 

× 10-6; 1.14 × 10-5, respectively), with nine candidate genes related to its expression 

(Eucgr.F02939 ~ Eucgr.F02947). Among several different functions, the genes 

Eucgr.F02941 and Eucgr.F02943 are described as being associated with cellulase 

activity. One SNP was found to be significant by the full model between the 

combinations of traits DBH3 and DBH6 and DBH3 and VOL6 (EuBR03s72654230; p-

values 1.59 × 10-5; 1.02 × 10-5, respectively). In addition, two genes were related to 

trait expression (Eucgr.C03882 and Eucgr.C03884) that act as amino acid 

transmembrane transport. 

The SNP EuBR03s43394028 was significant for three combinations of traits 

(HEI6 and VOL6; VOL3 and HEI3; and DBH3 and HEI6) (p-values 9.33 × 10-7; 1.01 × 

10-5 and 1.54 × 10-6). However, between traits HEI3 and HEI6, although SNP marker 

EuBR03s22449999 (p-value 8.41 × 10-6) was identified as significant by the common 

model, there were no annotations for candidate genes. On the other hand, SNP 

EuBR04s246324 was significant for the common and full models with a high p-value 

(9.05 × 10-7). Considering that both traits HEI3 and HEI6 represent plant height, the 

power of multi-trait GWAS to detect significant candidate genes proved to be effective 

even for the same trait, considering different developmental stages. 

One SNP marker was detected as significant for traits DBH3 and VOL3 

(EuBR05s62102817; p-value 2.19 × 10-6) (Table S1). Similarly, between traits VOL3 

and DBH6, the marker EuBR07s16969079 showed significant association (p-value 

1.38 × 10-5). We found two significant markers for the first WQT combination SOL and 

TEX (EuBR06s19529730 and EuBR06s52964694; p-values 2.66 × 10-7 and 5.06 × 10-

6, respectively). The multi-trait GWAS combination between the traits SGR and TEX 

identified three significant markers (EuBR11s43922247, EuBR11s44284539, and 

EuBR03s16484895; p-values 7.26 × 10-6, 1.16 × 10-5, and 9.83 × 10-6) through the full 

and interaction models. Similarly, the genomic regions for marker EuBR11s44284539 

revealed two flanking candidate genes (Eucgr.K03516 and Eucgr.K03517). GO 

analysis between gene Eucgr.K03517 and AT3G62650 from Arabidopsis thaliana 

classified this gene as a response to light intensity and to red or far-red light.  
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1.4 DISCUSSION 
 

Single and multi-trait GWAS were effective in properly identifying QTLs as well 

as annotated genes related to phenotypic expression in the studied E. grandis 

breeding population. Additionally, the quality control process was able to remove 

uninformative markers, leaving a total of 21,254 highly informative markers that were 

used in the GWAS analysis. In general, most of the markers removed (28,957) during 

quality control were due to a low minor allele frequency (< 5%), which is the frequency 

of the second most common allele in the population. Also, although there were some 

rearrangements during SNP reposition, using new SNP positions for v2.0 of the 

genome was effective in finding QTLs and annotated genes.  

In relation to the rearrangement of the E. grandis genome assembly, 

Bartholomé et al. (2015) identified 43 non-collinear and 13 non-synthetic regions. 

Thus, although there are modifications in marker collinearity found by the linear trend 

between the two versions of the genome, the new arrangement may be related to 

modifications in genome assembly. We reinforce that as far as we know, this is the first 

GWAS study developed using repositioned SNP probes that compares the positions 

of the two genome versions. Furthermore, considering that gene annotation is based 

on the second version of the Eucalyptus genome (Bartholomé et al. 2015), we believe 

that the possibility of errors was reduced.  

Another important point to consider is related to population structure. Herein, 

we found no clear structuration of the population between individuals, which may be 

related to the population’s breeding history. Although there are two origins and it is 

likely that there would have been population structure, the breeding population was 

established from eight different provenances, which might have promoted outcrossing 

between individuals from different origins. According to Hayes (2013), not considering 

population structure in GWAS can cause false positive associations. Thus, both 

models (single- and multi-trait GWAS) were tested against population structure, and 

we believe that this effect did not have an impact on our results as they were 

considered in the analysis.  

Several genetic mapping through association studies have been used to assess 

the complexity of the genetic architecture of growth (Müller et al. 2017, 2019), wood 

quality traits (Cappa et al. 2013; Resende et al. 2017; Dasgupta et al. 2021), and non-

wood traits (Resende et al. 2017; Kainer et al. 2019; Mhoswa et al. 2020) of 
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Eucalyptus. Using the second version of the Eucalyptus genome, it was possible to 

more accurately identify QTLs. Many studies have also developed single-trait GWAS 

for growth, wood quality, and disease resistance in Eucalyptus spp. (Resende et al. 

2017; Kainer et al. 2019; Müller et al. 2019; Ballesta et al. 2020; Mhoswa et al. 2020; 

Valenzuela et al. 2021). However, few studies have evaluated the multi-trait 

association models for growth and even fewer for wood quality in eucalypts 

(Rambolarimanana et al. 2018; Tan and Ingvarsson 2018). As expected, although 

several markers were found to be significant, the results from the single- and multi-trait 

GWAS indicate limited genetic variance, which can explain the relatively low number 

of associations. This pattern might be related to the polygenic nature of quantitative 

traits (Grattapaglia et al. 2018), indicating that there are many genes related to trait 

expression, as predicted by Fisher's infinitesimal model (Fisher 1918).  

Although the complexity of multiple genes influences the expression of 

quantitative traits, the number of significant SNPs identified herein, and consequently 

the number of QTLs for both single and multi-trait GWAS, was similar to previous 

studies (Müller et al. 2019; Ballesta et al. 2020). Additionally, besides the reliable 

accuracy achieved by the single- and multi-trait GWAS, the phenotypic information 

used in the present study was obtained from a single environment, which may have 

limited the phenotypic precision of each individual. Thus, our study reinforces the 

importance of using multi-trait models combined with single-trait models for highly 

complex quantitative traits. According to Liu et al. (2016), the FarmCPU model offers 

the best trade-off between predictive power and false positives. On the other hand, the 

power of the MTMM approach considering the correlation between two traits (multi-

trait GWAS) can improve the identification of more evident pleiotropic effects than 

those found using a single marginal trait analysis (Korte et al. 2012).  

The implementation of GWAS using phenotypic information from different traits 

can lead to the discovery of effects stronger than those identified by single trait analysis 

(Korte et al. 2012). To increase the statistical power of GWAS, several studies have 

used multi-trait analysis to identify significant genetic-phenotypic associations (Jaiswal 

et al. 2016; Thoen et al. 2017; Yoshida and Yáñez 2021). Thus, multi-trait GWAS can 

increase the power of single-trait GWAS using different measures or multiple traits with 

a high pattern of genetic correlation (Porter and O’Reilly 2017). Regarding Pearson’s 

genetic correlations between phenotypic traits, the strongest associations between 

growth variables found herein are expected because diameter, height, and volume are 
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directly related. On the other hand, wood quality traits did not show strong patterns of 

association, except for PCY which presented several significant and positive 

associations with growth traits. This finding suggests that selection for growth traits 

might lead to a large increase in cellulose yield, which for example, could have a further 

effect of reducing the total solid content production. Thus, pleiotropic QTLs are 

important when using marker assisted selection for multiple traits. 

Generally, our results show that multi-trait GWAS was able to increase the 

power of single-trait GWAS (FarmCPU) to identify genes that directly affect mutual 

traits, thus increasing the capacity to identify markers with minor effects. Further, 

compared to the multi-trait GWAS (MTMM), the FarmCPU showed a lack of power to 

identify pleiotropic markers and correlated traits with low phenotypic correlation, as 

shown in previous studies (Korte et al. 2012). The joint association analysis which 

considered the full, common, and interaction models, suggested genetic factors acting 

in the same direction, differentially, or with an interaction or common effect for the 

expression of the growth and wood quality traits. 

Considering single trait GWAS, several studies identified that FarmCPU 

increased the power of GWAS for complex traits (Tang et al. 2016; Kusmec and 

Schnable 2018; Miao et al. 2019). Our study corroborated this finding, identifying 81 

significant markers for growth (43) and wood quality (38) traits. Furthermore, FarmCPU 

was able to control for false positives caused by population structure and kinship 

because of the distribution of quantile-quantile (QQ) plots. On the other hand, the 

MTMM model performed in the multi-trait GWAS identified a smaller number of 

significant markers (31) among all significant trait combinations (Table S6). The 

importance of finding pleiotropic QTLs is related to marker assisted selection, which 

can be used together to select multiple regions related to the expression of both growth 

and wood quality traits (Gupta et al. 2010). Regarding genomic heritability, 

low/moderate heritability levels were found for growth traits. The high/moderate 

heritability for the wood quality traits PCY and WBD indicates that they are less 

influenced by environment. However, three wood quality traits (SGR, SOL, and TEX) 

showed a critically low heritability, making GWAS not appropriate for these traits. 

Herein, the pleiotropic effect of genes influencing the expression of phenotypic 

traits was primarily found through in single-trait GWAS analysis. A similar tendency 

was found by Ward et al. (2019) comparing yield traits in soft red winter wheat, where 

several markers presenting genes with pleiotropic effects were identified by the 



43 
 

 

FarmCPU model. Here, pleiotropy was identified for both growth and wood quality traits 

in E. grandis. However, the markers with a pleiotropic effect identified for different traits 

by single-trait GWAS were not identified when using the multi-trait GWAS. The 

difference of significant SNPs found in these analyses might result from the different 

statistical methodologies that explore GWAS associations (Hayes 2013).  

Some significant QTLs identified in this study were located close to several 

strong functional candidate genes associated with growth and plant development. For 

instance, the candidate gene Eucgr.G01887 (EuBR07s34761317) was identified as 

related to cytokinin expression for pure cellulose yield. According to Chakraborty and 

Akhtar (2021), cytokinins (CKs) are hormones that influence plant growth, 

development, and physiology. Several plant processes are involved with CKs, such as 

seed germination, apical dominance, flowering, fruit development, leaf senescence, 

and plant-pathogen interaction. Further, CKs can promote cell division or cytokinesis 

in plant roots and shoots. Additionally, according to Li et al. (2021), CKs are a class of 

phytohormones that regulate plant growth, development, and stress response.  

We also found the candidate genes Eucgr.K01383 and Eucgr.K01384 (SNP 

EuBR11s17004419; trait HEI6) from the GRAS domain family. These play an important 

role in gibberellin signaling, regulating several aspects of plant growth and 

development (Hirsch and Oldroyd 2009). Similarly, the gene Eucgr.J00155 is near to 

the marker EuBR10s1696823 and plays a role in reinforcing cell wall composition after 

wounding and during plant development. Considering basic wood density, SNP 

EuBR08s73877790 presented the flanking gene Eucgr.H05146, which is related to the 

pentatricopeptide repeat superfamily protein that acts in the cell and performs 

physiological functions during plant growth and development (Barkan and Small 2014). 

Several markers indicated an effect on lipid metabolism (e.g., 

EuBR04s9558885, EuBR02s52286175, and EuBR06s42411988). According to Laskin 

et al. (2002), since plant cells assimilate more carbon than they can store, the excess 

carbon is converted into lipids, responsible for storing energy, signaling, and acting as 

structural components of cell membranes. Similarly, we found several candidate genes 

related to cell wall composition (e.g., EuBR10s1696823, gene Eucgr.J00155), as well 

as the expression of cellulase (Eucgr.F02941 and Eucgr.F02943), which are enzymes 

responsible for breaking down the cellulose of plant cell walls into simple sugars 

(Thapa et al. 2020). According to MacMillan et al. (2010), wood tissue synthesis in 

plants is associated with the development of strong and flexible plant structures and 
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facilitates the transport of water and nutrients. Because of the large number of genes 

related to quantitative traits, the functional relationship between the identified QTLs 

and the phenotypic variation in growth and wood quality traits in E. grandis is still 

unclear. Thus, the identified significant genomic regions and their potential relationship 

with phenotypic traits must be further analyzed. 

 

1.5 CONCLUSION 
 

Our study highlights the importance of examining associations between markers and 

phenotypes for eucalypt species. Herein, we identified markers that act individually on 

each trait using the single-trait GWAS and markers that have pleiotropic effects and 

influence several traits using multi-trait GWAS. The results corroborate previously 

published data for eucalypt species using moderate size populations along with high-

density SNP data sets.  As far as we know, most of the markers identified herein have 

never been described in previous GWAS for eucalypt species. This result is consistent 

with previous theories indicating that phenotypic expression is linked to both a large 

number of genes as well as the effects of the environment. The results discussed 

herein provide a better understanding of gene expression and offer important 

information to inform marker assisted selection.  

In terms of identifying QTLs using single and multi-trait GWAS, we were able to 

find clear results related to gene interaction. Gene ontology analysis of GWAS was 

also important in identifying the biological context of genes. The different GWAS 

methodologies applied involved the scanning of the whole genome from different trees 

and identifying genetic markers that can be used to predict phenotypic traits. As a 

result, GWAS effectively identified candidate genes related to the expression of 

phenotypic traits. We believe that the results can be used in genetic selection to 

increase the productivity of eucalypt plantations and improve future breeding 

programs. Nevertheless, further studies should be conducted to identify significant 

associations with multiple environmental conditions. Thus, it is essential to continue 

evaluating the genetic effects and the complexity of the genetic architecture of 

economically important traits to continue to accumulate genetic gains in each breeding 

cycle. 
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APPENDIX A - SUPPLEMENTARY MATERIAL FOR CHAPTER 1 
 

Figure S1 - Principal component analysis for genotypic data for 1,772 
Eucalyptus grandis genotypes from a breeding population located 
in São Miguel Arcanjo, Brazil, genotyped using the EuChip60 (Silva-
Júnior et al. 2015) 

 
Figure S2. Number of clusters found considering the standard error from the 

ADMIXTURE analysis for the 1,772 Eucalyptus grandis genotypes 
from a breeding population located in São Miguel Arcanjo, Brazil 
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Figure S3. Manhattan and QQ-plots using the multi-trait model (MTMM) between 
growth traits for the 1,772 Eucalyptus grandis individuals genotyped 
using the Eucalyptus chip (EUChip60K). a, b Diameter at breast 
height at three years and Diameter at breast height at 6 years; c, d 
Diameter at breast height at three years and volume at three years; e, 
f Diameter at breast height at three years and volume at six years; g, 
h Diameter at breast height at six years and height at six years; i, j 
height at three years and height at six years; k, l; Height at three years 
and diameter at breast height at six years; m, n Height at three years 
and volume at six years; o, p Height at six years and volume at six 
years; q, r Volume at three years and height at six years; s, t Volume 
at three years and diameter at breast height at six years; u, v Volume 
at three years and volume at six years. 
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Figure S4. Manhattan and QQ-plots using the multi-trait model (MTMM) 
between wood-quality traits for the 1,772 Eucalyptus grandis 
individuals genotyped using the Eucalyptus chip (EUChip60K). a, b 
Soluble lignin and total extractives; c, d Syringyl/guaiacyl ratio and 
total extractives; e, f Syringyl/guaiacyl ratio and soluble lignin. 
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Figure S5. Manhattan and QQ-plots using the multi-trait model (MTMM) between 
growth traits and wood-quality traits for the 1,772 Eucalyptus grandis 
individuals genotyped using the Eucalyptus chip (EUChip60K). a, b 
Pure cellulose yield and height at six years; c, d Pure cellulose yield 
and diameter at breast height at three years; e, f, Total solid content 
and height at six years; g, h Total solid content and volume at three 
years; i, j Total solid content and diameter at breast height at three 
years; k, l Total solid content and diameter at breast height at six 
years; m, n Total solid content and volume at three years; o, p Total 
solid content and volume at six years. 
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Figure S6. Vem diagram for the number of candidate genes for (a) growth and 
(b) wood-quality traits in a breeding population of Eucalyptus 
grandis located in São Miguel Arcanjo, Brazil 

 
 

 
 

(a) 

(b) 



60 
 

Table S1 - Significant SNP markers and candidate genes for growth traits in Eucalyptus grandis using farmCPU model and 
single-trait analysis 

 
Trait SNP Chr Position P.value Gene name Description 

DBH3 EuBR09s24960947 9 24925225 9.34 × 10-9 

Eucgr.I01459 (M=4) PF05180 - DNL zinc finger;AT5G27280-NA|Zim17-type zinc finger protein|nucleus 

Eucgr.I01460 
(M=2) K11804 - WD repeat-containing protein 42A;AT4G35140-NA|Transducin/WD40 repeat-like 
superfamily protein|cytosol 

Eucgr.I01461 
(M=1) PTHR24015:SF87 - PENTATRICOPEPTIDE (PPR) REPEAT-CONTAINING 
PROTEIN;AT2G17033-NA|pentatricopeptide (PPR) repeat-containing protein|plastid 

Eucgr.I01462 
(M=1) K06640 - serine/threonine-protein kinase ATR;AT5G40820-ATATR,ATR,ATRAD3|Ataxia 
telangiectasia-mutated and RAD3-related|nucleus 

Eucgr.I01463 
(M=21) KOG4629 - Predicted mechanosensitive ion channel;AT1G78610-MSL6|mechanosensitive 
channel of small conductance-like 6|cytosol 

Eucgr.I01464 
(M=7) PTHR23257:SF82 - PROTEIN KINASE ATMRK1;AT4G38470-NA|ACT-like protein tyrosine 
kinase family protein|cytosol 

Eucgr.I01465 NA 

DBH3 EuBR06s23565060 6 24478814 8.44 × 10-8 Eucgr.F01827 NA 

DBH3 EuBR07s6053942 7 5644975 2.55 × 10-7 NA NA 

DBH3 EuBR11s23336060 11 24494998 5.75 × 10-7 
Eucgr.K01867 

(M=3) K11594 - ATP-dependent RNA helicase DDX3X;AT2G42520-NA|P-loop containing nucleoside 
triphosphate hydrolases superfamily protein|nucleus;AT2G42520-NA|P-loop containing nucleoside 
triphosphate hydrolases superfamily protein|nucleus 

Eucgr.K01867 ;AT2G42520-NA|P-loop containing nucleoside triphosphate hydrolases superfamily protein|nucleus 

DBH3 EuBR11s19104457 11 20793674 1.23 × 10-6 Eucgr.K01579 
(M=1) K01142 - exodeoxyribonuclease III;AT2G41460-ARP|apurinic endonuclease-redox 
protein|nucleus 

HEI3 EuBR09s24960947 9 24925225 1.91 × 10-9 

Eucgr.I01459 (M=4) PF05180 - DNL zinc finger;AT5G27280-NA|Zim17-type zinc finger protein|nucleus 

Eucgr.I01460 
(M=2) K11804 - WD repeat-containing protein 42A;AT4G35140-NA|Transducin/WD40 repeat-like 
superfamily protein|cytosol 

Eucgr.I01461  

Eucgr.I01462 
(M=1) K06640 - serine/threonine-protein kinase ATR;AT5G40820-ATATR,ATR,ATRAD3|Ataxia 
telangiectasia-mutated and RAD3-related|nucleus 

Eucgr.I01463 
(M=21) KOG4629 - Predicted mechanosensitive ion channel;AT1G78610-MSL6|mechanosensitive 
channel of small conductance-like 6|cytosol 

Eucgr.I01464 
(M=7) PTHR23257:SF82 - PROTEIN KINASE ATMRK1;AT4G38470-NA|ACT-like protein tyrosine 
kinase family protein|cytosol 

Eucgr.I01465 NA 

HEI3 EuBR07s925067 7 925007 1.39 × 10-8 NA NA 

HEI3 EuBR06s38139098 6 40637919 1.44 × 10-7 NA NA 

HEI3 EuBR03s39418342 3 40444329 1.52 × 10-7 Eucgr.C02176 
(M=2) PTHR10516:SF15 - PEPTIDYLPROLYL ISOMERASE;AT2G43560-NA|FKBP-like peptidyl-prolyl 
cis-trans isomerase family protein|plastid;AT2G43560-NA|FKBP-like peptidyl-prolyl cis-trans isomerase 
family protein|plastid 

     Eucgr.C02176 ;AT2G43560-NA|FKBP-like peptidyl-prolyl cis-trans isomerase family protein|plastid 

     Eucgr.C02176 ;AT2G43560-NA|FKBP-like peptidyl-prolyl cis-trans isomerase family protein|plastid 

     Eucgr.C02177 
(M=1) K01961 - acetyl-CoA carboxylase, biotin carboxylase subunit;AT5G35360-CAC2|acetyl Co-
enzyme a carboxylase biotin carboxylase subunit|plastid;AT5G35360-CAC2|acetyl Co-enzyme a 
carboxylase biotin carboxylase subunit|plastid 
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HEI3 EuBR03s39418342 3 40444329 1.52 × 10-7 Eucgr.C02177 ;AT5G35360-CAC2|acetyl Co-enzyme a carboxylase biotin carboxylase subunit|plastid 

HEI3 EuBR06s49043638 6 51542500 1.60 × 10-7 

Eucgr.F04077 
(M=281) PTHR24420//PTHR24420:SF474 - LEUCINE-RICH REPEAT RECEPTOR-LIKE PROTEIN 
KINASE // SUBFAMILY NOT NAMED;AT3G47570-NA|Leucine-rich repeat protein kinase family 
protein|plasma membrane 

Eucgr.F04078 ;AT1G33500-NA|NA|nucleus 
Eucgr.F04079 ;AT1G33500-NA|NA|nucleus 
Eucgr.F04080 NA 

HEI3 EuBR11s9232784 11 9489911 1.66 × 10-7 

Eucgr.K00803 
(M=172) PTHR10641 - MYB-LIKE DNA-BINDING PROTEIN MYB;AT2G46410-CPC|Homeodomain-like 
superfamily protein|nucleus 

Eucgr.K00804 
(M=4) KOG1770 - Translation initiation factor 1 (eIF-1/SUI1);AT4G27130-NA|Translation initiation factor 
SUI1 family protein|cytosol;AT4G27130-NA|Translation initiation factor SUI1 family protein|cytosol 

Eucgr.K00804 ;AT4G27130-NA|Translation initiation factor SUI1 family protein|cytosol 
Eucgr.K00805 NA 
Eucgr.K00806 (M=92) 1.11.1.7 - Peroxidase.;AT5G15180-NA|Peroxidase superfamily protein|extracellular 
Eucgr.K00808 (M=92) 1.11.1.7 - Peroxidase.;AT3G01190-NA|Peroxidase superfamily protein|extracellular 
Eucgr.K00809 (M=92) 1.11.1.7 - Peroxidase.;AT1G05260-RCI3,RCI3A|Peroxidase superfamily protein|extracellular 

Eucgr.K00810 
(M=3) PTHR21530 - PHEROMONE SHUTDOWN PROTEIN;AT1G05270-NA|TraB family 
protein|cytosol;AT1G05270-NA|TraB family protein|cytosol 

Eucgr.K00810 ;AT1G05270-NA|TraB family protein|cytosol 

HEI3 EuBR08s70063929 8 68658658 1.78 × 10-7 NA NA 

HEI3 EuBR08s71999611 7 36903328 9.50 × 10-7 Eucgr.H05019 ;AT5G24280-GMI1|gamma-irradiation and mitomycin c induced 1|nucleus 

HEI3 EuBR02s34899535 2 30476873 1.37 × 10-6 

Eucgr.B01857 
(M=7) PTHR23155//PTHR23155:SF304 - LEUCINE-RICH REPEAT-CONTAINING 
PROTEIN;AT1G69550-NA|disease resistance protein (TIR-NBS-LRR class)|plasma membrane 

Eucgr.B01858 NA 

Eucgr.B01859 
(M=214) PF00646 - F-box domain;AT1G55000-NA|peptidoglycan-binding LysM domain-containing 
protein|plasma membrane 

Eucgr.B01863 
(M=7) PTHR23155//PTHR23155:SF304 - LEUCINE-RICH REPEAT-CONTAINING 
PROTEIN;AT1G69550-NA|disease resistance protein (TIR-NBS-LRR class)|plasma membrane 

Eucgr.B01864 NA 

VOL3 EuBR03s38709900 3 39735887 1.65 × 10-10 
Eucgr.C02137 

(M=6) PTHR24420//PTHR24420:SF203 - LEUCINE-RICH REPEAT RECEPTOR-LIKE PROTEIN 
KINASE // SUBFAMILY NOT NAMED;AT2G24370-NA|Protein kinase protein with adenine nucleotide 
alpha hydrolases-like domain|nucleus 

Eucgr.C02138 
(M=29) PF03080 - Domain of unknown function (DUF239);AT2G44220-NA|Protein of Unknown 
Function (DUF239)|extracellular 

VOL3 EuBR11s36177647 11 35503789 1.01× 10-8 

Eucgr.K02808 
;AT5G63100-NA|S-adenosyl-L-methionine-dependent methyltransferases superfamily 
protein|mitochondrion 

Eucgr.K02809 
(M=37) PF03195 - Protein of unknown function DUF260;AT5G63090-LOB|Lateral organ boundaries 
(LOB) domain family protein|nucleus 

Eucgr.K02810 ;AT1G21280-NA|NA|nucleus 

Eucgr.K02812 
(M=5) PF07223 - Protein of unknown function (DUF1421);AT5G14540-NA|Protein of unknown function 
(DUF1421)|nucleus 

Eucgr.K02813 
(M=6) 2.4.1.82 - Galactinol--sucrose galactosyltransferase.;AT5G40390-SIP1|Raffinose synthase family 
protein|cytosol 

Eucgr.K02814 
(M=1) PTHR13948//PTHR13948:SF20 - RNA-BINDING PROTEIN;AT4G34140-NA|D111/G-patch 
domain-containing protein|nucleus;AT4G34140-NA|D111/G-patch domain-containing protein|nucleus 
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     Eucgr.K02814 ;AT4G34140-NA|D111/G-patch domain-containing protein|nucleus 

     

Eucgr.K02814 ;AT4G34140-NA|D111/G-patch domain-containing protein|nucleus 

Eucgr.K02815 
(M=29) KOG1208 - Dehydrogenases with different specificities (related to short-chain alcohol 
dehydrogenases);AT5G50130-NA|NAD(P)-binding Rossmann-fold superfamily protein|mitochondrion 

Eucgr.K02816 NA 

Eucgr.K02817 
(M=1) K11550 - kinetochore protein Spc25, animal type;AT3G48210-NA|NA|nucleus;AT3G48210-
NA|NA|nucleus 

Eucgr.K02817 ;AT3G48210-NA|NA|nucleus 

Eucgr.K02818 
(M=29) PF03080 - Domain of unknown function (DUF239);AT5G50150-NA|Protein of Unknown 
Function (DUF239)|extracellular 

VOL3 EuBR06s23565060 6 24478814 8.29 × 10-8 Eucgr.F01827 NA 

VOL3 EuBR04s3954175 4 4182167 8.47 × 10-7 NA NA 

VOL3 EuBR07s6053942 7 5644975 1.12 × 10-6 NA NA 

VOL3 EuBR03s13584769 3 13747344 1.32 × 10-6 

Eucgr.C00825 
(M=1) PTHR12465 - UBIQUITIN SPECIFIC PROTEASE HOMOLOG 49;AT2G28230-NA|TATA-binding 
related factor (TRF) of subunit 20 of Mediator complex|cytosol;AT2G28230-NA|TATA-binding related 
factor (TRF) of subunit 20 of Mediator complex|cytosol 

Eucgr.C00825 ;AT2G28230-NA|TATA-binding related factor (TRF) of subunit 20 of Mediator complex|cytosol 
Eucgr.C00825 ;AT2G28230-NA|TATA-binding related factor (TRF) of subunit 20 of Mediator complex|cytosol 
Eucgr.C00825 ;AT2G28230-NA|TATA-binding related factor (TRF) of subunit 20 of Mediator complex|cytosol 
Eucgr.C00825 ;AT2G28230-NA|TATA-binding related factor (TRF) of subunit 20 of Mediator complex|cytosol 

Eucgr.C00826 
(M=172) K09422 - myb proto-oncogene protein, plant;AT5G49330-ATMYB111,MYB111,PFG3|myb 
domain protein 111|nucleus 

DBH6 EuBR02s22040507 2 26814555 1.35 × 10-11 NA NA 

DBH6 EuBR03s23262715 3 22481832 8.44 × 10-8 NA NA 

HEI6 EuBR02s22040507 2 26814555 1.67 × 10-10 NA NA 

HEI6 EuBR11s19104457 11 20793674 6.58 × 10-9 Eucgr.K01579 
(M=1) K01142 - exodeoxyribonuclease III;AT2G41460-ARP|apurinic endonuclease-redox 
protein|nucleus 

HEI6 EuBR03s36174125 3 37200112 1.30 × 10-8 
Eucgr.C02023 (M=3) PF01424 - R3H domain 
Eucgr.C02023 NA 

HEI6 EuBR11s17004419 11 17261546 2.50 × 10-8 

Eucgr.K01383 (M=85) PF03514 - GRAS domain family;AT2G37650-NA|GRAS family transcription factor|nucleus 
Eucgr.K01384 (M=85) PF03514 - GRAS domain family;AT2G37650-NA|GRAS family transcription factor|nucleus 

Eucgr.K01385 
(M=9) PF05910 - Plant protein of unknown function (DUF868);AT2G04220-NA|Plant protein of unknown 
function (DUF868)|multiple 

Eucgr.K01386 ;AT3G07640-NA|NA|cytosol 

HEI6 EuBR06s48724759 6 51223621 7.47 × 10-8 NA NA 

HEI6 EuBR04s3546467 4 3940694 7.74 × 10-8 

Eucgr.D00230 
(M=31) KOG0054 - Multidrug resistance-associated protein/mitoxantrone resistance protein, ABC 
superfamily;AT2G34660-ATMRP2,EST4,MRP2|multidrug resistance-associated protein 2|vacuole 

Eucgr.D00231 ;AT1G30410-ATMRP13,MRP13|multidrug resistance-associated protein 13|plasma membrane 
Eucgr.D00232  

Eucgr.C02697 
(M=651) PTHR23155 - LEUCINE-RICH REPEAT-CONTAINING PROTEIN;AT1G69550-NA|disease 
resistance protein (TIR-NBS-LRR class)|plasma membrane 

Eucgr.C02699 NA 
Eucgr.C02701 (M=411) PF01582 - TIR domain;AT1G27170-NA|transmembrane receptors;ATP binding|cytosol 
Eucgr.C02703 NA 
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HEI6 EuBR04s3546467 4 3940694 7.74 × 10-8 

Eucgr.C02704 
(M=425) KOG0472 - Leucine-rich repeat protein;AT1G69550-NA|disease resistance protein (TIR-NBS-
LRR class)|plasma membrane 

Eucgr.C02705 
(M=425) KOG0472 - Leucine-rich repeat protein;AT1G69550-NA|disease resistance protein (TIR-NBS-
LRR class)|plasma membrane 

Eucgr.C02706 NA 

Eucgr.C02708 
(M=651) PTHR23155 - LEUCINE-RICH REPEAT-CONTAINING PROTEIN;AT1G69550-NA|disease 
resistance protein (TIR-NBS-LRR class)|plasma membrane 

Eucgr.C02709 
(M=1421) PF00560 - Leucine Rich Repeat;AT4G16940-NA|Disease resistance protein (TIR-NBS-LRR 
class) family|nucleus 

Eucgr.C02710 NA 
Eucgr.C02711 NA 

HEI6 EuBR09s23175321 9 23139599 3.93 × 10-7 

Eucgr.I01229 (M=1) K11876 - proteasome assembly chaperone 2;AT3G18940-NA|clast3-related|cytosol 
Eucgr.I01230  

Eucgr.I01231 
(M=7) PF05562 - Cold acclimation protein WCOR413;AT2G15970-ATCOR413-
PM1,ATCYP19,COR413-PM1,FL3-5A3,WCOR413,WCOR413-LIKE|cold regulated 413 plasma 
membrane 1|plasma membrane 

HEI6 EuBR06s49882819 6 52381681 6.93 × 10-7 

Eucgr.F04163 (M=84) PTHR11709:SF9 - LACCASE;AT5G09360-LAC14|laccase 14|extracellular 
Eucgr.F04164 NA 
Eucgr.F04165 ;AT1G71780-NA|NA|cytosol 

Eucgr.F04166 
(M=7) KOG0394 - Ras-related GTPase;AT4G09720-ATRABG3A,RABG3A|RAB GTPase homolog 
G3A|multiple;AT4G09720-ATRABG3A,RABG3A|RAB GTPase homolog G3A|multiple 

Eucgr.F04166 ;AT4G09720-ATRABG3A,RABG3A|RAB GTPase homolog G3A|multiple 

Eucgr.F04168 
(M=15) PF00280 - Potato inhibitor I family;AT3G46860-NA|Serine protease inhibitor, potato inhibitor I-
type family protein|extracellular 

Eucgr.F04169 
(M=29) KOG1208 - Dehydrogenases with different specificities (related to short-chain alcohol 
dehydrogenases);AT4G09750-NA|NAD(P)-binding Rossmann-fold superfamily protein|mitochondrion 

Eucgr.F04170 
(M=17) K13460 - disease resistance protein RPS5;AT1G12220-RPS5|Disease resistance protein (CC-
NBS-LRR class) family|cytosol 

Eucgr.F04171 
(M=29) KOG1208 - Dehydrogenases with different specificities (related to short-chain alcohol 
dehydrogenases);AT4G09750-NA|NAD(P)-binding Rossmann-fold superfamily protein|mitochondrion 

Eucgr.F04172 
(M=17) K13460 - disease resistance protein RPS5;AT1G12220-RPS5|Disease resistance protein (CC-
NBS-LRR class) family|cytosol 

HEI6 EuBR02s27050204 2 21804858 7.44 × 10-7 NA NA 

HEI6 EuBR05s22005045 5 20942275 7.63 × 10-7 Eucgr.E01694 
(M=204) KOG0157 - Cytochrome P450 CYP4/CYP19/CYP26 subfamilies;AT2G26710-
BAS1,CYP72B1,CYP734A1|Cytochrome P450 superfamily protein|endoplasmic reticulum 

HEI6 EuBR05s23402100 5 22339330 1.07 × 10-6 

NA NA 

Eucgr.K01308 
(M=2) PTHR10891:SF43 - CALCIUM-BINDING PROTEIN;AT4G20780-CML42|calmodulin like 
42|multiple 

Eucgr.K01309 ;AT2G28330-NA|NA|nucleus 

Eucgr.K01310 
(M=88) PF03168 - Late embryogenesis abundant protein;AT3G05975-NA|Late embryogenesis 
abundant (LEA) hydroxyproline-rich glycoprotein family|plasma membrane 

Eucgr.K01311 
(M=88) PF03168 - Late embryogenesis abundant protein;AT3G54200-NA|Late embryogenesis 
abundant (LEA) hydroxyproline-rich glycoprotein family|plasma membrane 

Eucgr.K01312 
(M=88) PF03168 - Late embryogenesis abundant protein;AT3G54200-NA|Late embryogenesis 
abundant (LEA) hydroxyproline-rich glycoprotein family|plasma membrane 
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HEI6 EuBR05s23402100 5 22339330 1.07 × 10-6 

Eucgr.K01312 
(M=88) PF03168 - Late embryogenesis abundant protein;AT3G54200-NA|Late embryogenesis 
abundant (LEA) hydroxyproline-rich glycoprotein family|plasma membrane 

Eucgr.K01313 
(M=88) PF03168 - Late embryogenesis abundant protein;AT3G54200-NA|Late embryogenesis 
abundant (LEA) hydroxyproline-rich glycoprotein family|plasma membrane 

Eucgr.K01314 
(M=3) KOG4513 - Phosphoglycerate mutase;AT3G08590-NA|Phosphoglycerate mutase, 2,3-
bisphosphoglycerate-independent|cytosol;AT3G08590-NA|Phosphoglycerate mutase, 2,3-
bisphosphoglycerate-independent|cytosol 

Eucgr.K01315 ;AT5G01015-NA|NA|extracellular 
Eucgr.K01316 (M=13) PF04525 - Tubby C 2;AT3G15810-NA|Protein of unknown function (DUF567)|cytosol 

Eucgr.K01317 
(M=2) 2.7.7.14 - Ethanolamine-phosphate cytidylyltransferase.;AT2G38670-
PECT1|phosphorylethanolamine cytidylyltransferase 1|mitochondrion 

Eucgr.K01318 
(M=1) PTHR23324//PTHR23324:SF29 - SEC14 RELATED PROTEIN // SUBFAMILY NOT 
NAMED;AT5G01010-NA|NA|cytosol 

VOL6 EuBR02s22040507 2 26814555 1.53 × 10-9 NA NA 

VOL6 EuBR07s15774740 7 14235600 4.68 × 10-9 
Eucgr.G00894 ;AT3G08880-NA|NA|nucleus 

Eucgr.G00895 
(M=35) KOG1493 - Anaphase-promoting complex (APC), subunit 11;AT1G72220-NA|RING/U-box 
superfamily protein|nucleus 

VOL6 EuBR06s23565060 6 24478814 1.01 × 10-8 Eucgr.F01827 NA 

VOL6 EuBR11s19104457 11 20793674 1.80 × 10-7 Eucgr.K01579 
(M=1) K01142 - exodeoxyribonuclease III;AT2G41460-ARP|apurinic endonuclease-redox 
protein|nucleus 

VOL6 EuBR11s17004419 11 17261546 5.68 × 10-7 

Eucgr.K01383 (M=85) PF03514 - GRAS domain family;AT2G37650-NA|GRAS family transcription factor|nucleus 
Eucgr.K01384 (M=85) PF03514 - GRAS domain family;AT2G37650-NA|GRAS family transcription factor|nucleus 

Eucgr.K01385 
(M=9) PF05910 - Plant protein of unknown function (DUF868);AT2G04220-NA|Plant protein of unknown 
function (DUF868)|multiple 

Eucgr.K01386 ;AT3G07640-NA|NA|cytosol 

VOL6 EuBR07s18186900 7 16413125 6.00 × 10-7 

Eucgr.G01047 
(M=164) PF02365 - No apical meristem (NAM) protein;AT1G33060-ANAC014,NAC014|NAC 
014|nucleus;AT1G33060-ANAC014,NAC014|NAC 014|nucleus 

Eucgr.G01047 ;AT1G33060-ANAC014,NAC014|NAC 014|nucleus 
Eucgr.G01048 NA 

Eucgr.G01049 
(M=164) PF02365 - No apical meristem (NAM) protein;AT4G35580-NTL9|NAC transcription factor-like 
9|nucleus 

Eucgr.G01050 NA 
Eucgr.G01051 NA 
Eucgr.G01051 NA 

VOL6 EuBR07s10484525 7 8835665 1.90 × 10-6 Eucgr.G00596 
(M=12) K08511 - vesicle-associated membrane protein 72;AT1G04760-ATVAMP726,VAMP726|vesicle-
associated membrane protein 726|plasma membrane 

     Eucgr.G00598 NA 

     Eucgr.G00599 
(M=12) K08511 - vesicle-associated membrane protein 72;AT2G32670-ATVAMP725,VAMP725|vesicle-
associated membrane protein 725|plasma membrane 

     Eucgr.G00600 
(M=281) PTHR24420//PTHR24420:SF474 - LEUCINE-RICH REPEAT RECEPTOR-LIKE PROTEIN 
KINASE // SUBFAMILY NOT NAMED;AT3G47570-NA|Leucine-rich repeat protein kinase family 
protein|plasma membrane 

     Eucgr.G00600 NA 

     Eucgr.G00601 
(M=12) K08511 - vesicle-associated membrane protein 72;AT1G04760-ATVAMP726,VAMP726|vesicle-
associated membrane protein 726|plasma membrane 
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Eucgr.G00601 ;AT1G04760-ATVAMP726,VAMP726|vesicle-associated membrane protein 726|plasma membrane 

Eucgr.G00602 
(M=12) K08511 - vesicle-associated membrane protein 72;AT2G32670-ATVAMP725,VAMP725|vesicle-
associated membrane protein 725|plasma membrane 

VOL6 EuBR03s36174125 3 37200112 1.90 × 10-6 
Eucgr.C02023 (M=3) PF01424 - R3H domain 
Eucgr.C02023 NA 

VOL6 EuBR10s3594677 10 3594617 2.03 × 10-6 
Eucgr.J00366 

(M=180) PF02458 - Transferase family;AT5G41040-NA|HXXXD-type acyl-transferase family 
protein|cytosol 

Eucgr.J00367 
(M=4) PTHR10030 - ALPHA-L-FUCOSIDASE;AT2G28100-ATFUC1,FUC1|alpha-L-fucosidase 
1|extracellular 
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Table S2 - Significant SNP markers and candidate genes using the single trait analysis for wood quality traits in a 
Eucalyptus grandis breeding population located in São Miguel Arcanjo, São Paulo, Brazil. 
 

Trait SNP Chr Position P.value Gene name Description 

PCY EuBR04s9558885 4 9786877 1.06 × 10-11 

Eucgr.D00522 (M=28) 3.1.1.3 - Triacylglycerol lipase.;AT4G18550-NA|a lpha/beta-Hydrolases superfamily protein|cytosol 

Eucgr.D00523 
(M=123) PTHR22835:SF39 - LATERAL SIGNALING TARGET PROTEIN 2;AT5G45910-NA| GDSL-like 
Lipase/Acylhydrolase superfamily protein|extracellular 

Eucgr.D00525 
M=123) PTHR22835:SF39 - LATERAL SIGNALING TARGET PROTEIN 2;AT5G45910-NA| GDSL-like 
Lipase/Acylhydrolase superfamily protein|extracellular 

Eucgr.D00526 
 (M=123) PTHR22835:SF39 - LATERAL SIGNALING TARGET PROTEIN 2;AT5G45910-NA| GDSL-like 
Lipase/Acylhydrolase superfamily protein|extracellular 

Eucgr.D00527 
(M=123) PTHR22835:SF39 - LATERAL SIGNALING TARGET PROTEIN 2;AT5G45910-NA| GDSL-like 
Lipase/Acylhydrolase superfamily protein|extracellular 

PCY EuBR08s57640594 8 54276404 6.86 × 10-10 NA NA 

PCY EuBR03s79713635 3 82024066 3.17 × 10-9 NA NA 

PCY EuBR07s34761317 7 28804454 4.26 × 10-9 

Eucgr.G01887 
(M=15) K10760 - adenylate isopentenyltransferase (cytokinin synthase); AT5G19040-ATIPT5,IPT5| 
isopentenyltransferase 5|mitochondrion 

Eucgr.G01888 (M=2) PF03048 - UL92 family;AT5G45360-NA|F-box family protein|nucleus 
Eucgr.G01889 ;AT2G23690-NA|NA|cytosol 
Eucgr.G01890 (M=590) PF01535 - PPR repeat; |Tetratricopeptide repeat  (TPR)-like superfamily protein|mitochondrion 

Eucgr.G01891 
(M=184) PTHR24420//PTHR24420:SF441 - LEUCINE-RICH REPEAT RECEPTOR-LIKE PROTEIN 
KINASE // SUBFAMILY NOT NAMED; receptor serine/threonine kinase, putative|plasma membrane 

Eucgr.G01892 ;AT1G49350-NA|pfkB-like carbohydrate kinase family protein|peroxisome 

Eucgr.G01893 
(M=1) K12670 - oligosaccharyltransferase complex subunit beta; AT5G66680-DGL1|dolichyl-
diphosphooligosaccharide-protein glycosyltransferase 48k Da subunit family protein|endoplasmic reticulum 

Eucgr.G01894 
(M=11) KOG0324 - Uncharacterized conserved protein;AT1G47740-NA| PPPDE putative thiol peptidase 
family protein|nucleus 

Eucgr.G01894 ;AT1G47740-NA|PPPDE putative thiol peptidase family protein|nucleus 
Eucgr.G01894 ;AT1G47740-NA|PPPDE putative thiol peptidase family protein|nucleus 
Eucgr.G01895 NA 

Eucgr.G01896 
(M=590) PF01535 - PPR repeat;AT3G18840-NA|Tetratricopeptide repeat (TPR)-like superfamily 
protein|mitochondrion 

Eucgr.G01897 
(M=184) PTHR24420//PTHR24420:SF441 - LEUCINE-RICH REPEAT RECEPTOR-LIKE PROTEIN 
KINASE // SUBFAMILY NOT NAMED; AT4G18250-NA|receptor serine/threonine kinase, putative|plasma 
membrane 

Eucgr.G01898 
(M=184) PTHR24420//PTHR24420:SF441 - LEUCINE-RICH REPEAT  RECEPTOR-LIKE PROTEIN 
KINASE // SUBFAMILY NOT NAMED; |receptor serine/threonine kinase, putative|plasma membrane 

Eucgr.G01899 
(M=31) PF05055 - Protein of unknown function (DUF677);AT4G34320-NA|Protein of unknown function 
(DUF677)|cytosol 

PCY EuBR03s47117919 3 50465764 3.58 × 10-8 NA NA 

PCY EuBR10s1696823 10 1696763 3.70 × 10-8 Eucgr.J00155 
(M=7) PF07107 - Wound-induced protein WI12;AT3G10985-ATWI-12,SAG20,WI12|senescence 
associated gene 20|plasma membrane 

PCY EuBR07s252985 7 252925 2.89 × 10-7 Eucgr.G00025 
(M=11) PTHR13943 - HRAS-LIKE SUPPRESSOR - RELATED;AT3G02700-NA|NC domain-containing 
protein-related|multiple 
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PCY EuBR10s20170300 10 19395285 3.93 × 10-7 
Eucgr.J01562 

(M=2) K02958 - small subunit ribosomal protein S15e;AT5G09500-NA|Ribosomal protein S19 family 
protein|cytosol 

Eucgr.J01563 ;AT5G43650-BHLH92|basic helix-loop-helix (bHLH) DNA-binding superfamily protein|nucleus 

WBD EuBR08s41044396 8 39604466 4.21 × 10-10 
Eucgr.H02844 

(M=18) K13428 - LRR receptor-like serine/threonine-protein kinase EFR;AT3G47090-NA|Leucine-rich 
repeat protein kinase family protein|plasma membrane 

Eucgr.H02845 ;AT4G13690-NA|NA|mitochondrion 

WBD EuBR02s28457850 2 28158241 1.30 × 10-8 Eucgr.B01645 
(M=651) PTHR23155 - LEUCINE-RICH REPEAT-CONTAINING PROTEIN;AT1G69550-NA|disease 
resistance protein (TIR-NBS-LRR class)|plasma membrane 

WBD EuBR02s47319408 2 45237800 1.49 × 10-8 

Eucgr.B02518 
(M=1) KOG0383 - Predicted helicase;AT1G08060-MOM,MOM1|ATP-dependent helicase family 
protein|nucleus;AT1G08060-MOM,MOM1|ATP-dependent helicase family protein|nucleus 

Eucgr.B02518 ;AT1G08060-MOM,MOM1|ATP-dependent helicase family protein|nucleus 

Eucgr.B02519 
(M=6) PTHR24420//PTHR24420:SF481 - LEUCINE-RICH REPEAT RECEPTOR-LIKE PROTEIN KINASE 
// SUBFAMILY NOT NAMED;AT2G23770-NA|protein kinase family protein / peptidoglycan-binding LysM 
domain-containing protein|plasma membrane 

Eucgr.B02520 
(M=14) K01674 - carbonic anhydrase;AT1G08080-ACA7,ATACA7|alpha carbonic anhydrase 
7|extracellular 

Eucgr.B02521 NA 

WBD EuBR08s73877790 8 70566605 1.08 × 10-7 

Eucgr.H05143 ;AT1G48720-NA|NA|cytosol 

Eucgr.H05144 
(M=157) KOG4412 - 26S proteasome regulatory complex, subunit PSMD10;AT4G10720-NA|Ankyrin 
repeat family protein|multiple 

Eucgr.H05145 ;AT4G10720-NA|Ankyrin repeat family protein|multiple 

Eucgr.H05146 
(M=590) PF01535 - PPR repeat;AT1G52640-NA|Pentatricopeptide repeat (PPR) superfamily 
protein|mitochondrion 

Eucgr.H05147 
(M=15) PF00280 - Potato inhibitor I family;AT3G46860-NA|Serine protease inhibitor, potato inhibitor I-type 
family protein|extracellular 

WBD EuBR03s9730959 3 8701931 1.72 × 10-7 Eucgr.C00545 
(M=9) K11159 - carotenoid cleavage dioxygenase;AT3G63520-
ATCCD1,ATNCED1,CCD1,NCED1|carotenoid cleavage dioxygenase 1|cytosol 

WBD EuBR01s35497723 1 40180587 3.37 × 10-7 

Eucgr.A02484 
(M=11) PTHR21495//PTHR21495:SF10 - NUCLEOPORIN-RELATED // SUBFAMILY NOT 
NAMED;AT1G58170-NA|Disease resistance-responsive (dirigent-like protein) family protein|extracellular 

Eucgr.A02485 
(M=51) PTHR21495 - NUCLEOPORIN-RELATED;AT1G65870-NA|Disease resistance-responsive 
(dirigent-like protein) family protein|extracellular 

Eucgr.A02486 
(M=51) PTHR21495 - NUCLEOPORIN-RELATED;AT1G65870-NA|Disease resistance-responsive 
(dirigent-like protein) family protein|extracellular 

Eucgr.A02487 
(M=51) PTHR21495 - NUCLEOPORIN-RELATED;AT1G65870-NA|Disease resistance-responsive 
(dirigent-like protein) family protein|extracellular 

WBD EuBR06s23537926 6 24451680 5.75 × 10-7 NA NA 

WBD EuBR07s44074670 7 46392648 7.29 × 10-7 

Eucgr.G02554 
(M=8) PTHR11654:SF21 - NITRATE TRANSPORTER (NTL1);AT1G69850-
ATNRT1:2,NRT1:2,NTL1|nitrate transporter 1:2|plasma membrane 

Eucgr.G02555 NA 

Eucgr.G02556 NA 

Eucgr.G02557 
(M=1) PTHR11224//PTHR11224:SF27 - MAKORIN-RELATED;AT2G02160-NA|CCCH-type zinc finger 
family protein|nucleus;AT2G02160-NA|CCCH-type zinc finger family protein|nucleus 

Eucgr.G02557 ;AT2G02160-NA|CCCH-type zinc finger family protein|nucleus 

Eucgr.G02558 NA 
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WBD EuBR07s44074670 7 46392648 7.29 × 10-7 

Eucgr.G02559 
(M=5) PF06454 - Protein of unknown function (DUF1084);AT2G02180-TOM3|tobamovirus multiplication 
protein 3|plasma membrane;AT2G02180-TOM3|tobamovirus multiplication protein 3|plasma membrane 

Eucgr.G02559 ;AT2G02180-TOM3|tobamovirus multiplication protein 3|plasma membrane 

Eucgr.G02559 ;AT2G02180-TOM3|tobamovirus multiplication protein 3|plasma membrane 

Eucgr.G02559 ;AT2G02180-TOM3|tobamovirus multiplication protein 3|plasma membrane 

Eucgr.G02560 
(M=3) 1.13.99.1 - Inositol oxygenase.;AT1G14520-MIOX1|myo-inositol oxygenase 1|cytosol;AT1G14520-
MIOX1|myo-inositol oxygenase 1|cytosol 

Eucgr.G02560 ;AT1G14520-MIOX1|myo-inositol oxygenase 1|cytosol 

Eucgr.G02560 ;AT1G14520-MIOX1|myo-inositol oxygenase 1|cytosol 

Eucgr.G02561 
(M=38) PTHR11732:SF34 - ALDO-KETO REDUCTASE;AT2G37770-NA|NAD(P)-linked oxidoreductase 
superfamily protein|multiple 

Eucgr.G02562 NA 

Eucgr.G02563 
(M=1) PTHR24015:SF155 - PENTATRICOPEPTIDE (PPR) REPEAT-CONTAINING 
PROTEIN;AT5G55840-NA|Pentatricopeptide repeat (PPR) superfamily protein|plastid 

Eucgr.G02564 
(M=1) PTHR12999:SF1 - GB DEF: AT1G50300/F14I3_23 (TAF15);AT1G50300-TAF15|TBP-associated 
factor 15|nucleus 

WBD EuBR01s33473818 1 38156682 9.60 × 10-7 NA NA 

WBD EuBR02s52286175 2 49213947 1.30 × 10-6 

Eucgr.B02853 (M=39) PF02309 - AUX/IAA family;AT2G01200-IAA32,MEE10|indole-3-acetic acid inducible 32|nucleus 
Eucgr.B02854 (M=31) PF00564 - PB1 domain;AT2G01190-NA|Octicosapeptide/Phox/Bem1p family protein|nucleus 
Eucgr.B02854 ;AT2G01190-NA|Octicosapeptide/Phox/Bem1p family protein|nucleus 

Eucgr.B02855 
(M=8) 3.1.3.4 - Phosphatidate phosphatase.;AT1G15080-ATLPP2,ATPAP2,LPP2|lipid phosphate 
phosphatase 2|plasma membrane 

WBD EuBR02s62244152 2 57535800 1.32 × 10-6 

Eucgr.B03812 
(M=3) PTHR11668:SF17 - BSU-PROTEIN PHOSPHATASE;AT1G08420-BSL2|BRI1 suppressor 1 
(BSU1)-like 2|nucleus 

Eucgr.B03813 
(M=1) K11108 - RNA 3'-terminal phosphate cyclase-like protein;AT5G22100-NA|RNA cyclase family 
protein|mitochondrion 

Eucgr.B03814 (M=25) PTHR22849 - WDSAM1 PROTEIN;AT2G35930-PUB23|plant U-box 23|cytosol 

Eucgr.B03815 
(M=1) PTHR21678 - GROWTH INHIBITION AND DIFFERENTIATION RELATED PROTEIN 
88;AT5G22120-NA|NA|nucleus 

Eucgr.B03816 
(M=6) PTHR13902:SF5 - GB DEF: BHLH TRANSCRIPTION FACTOR;AT2G27230-LHW|transcription 
factor-related|nucleus 

Eucgr.B03817 
(M=10) PTHR10797 - CCR4-NOT TRANSCRIPTION COMPLEX SUBUNIT;AT5G22250-
NA|Polynucleotidyl transferase, ribonuclease H-like superfamily protein|nucleus 

Eucgr.B03818 (M=15) PF04844 - Transcriptional repressor, ovate;AT2G36026-NA|Ovate family protein|nucleus 

Eucgr.B03819 
(M=88) PF03168 - Late embryogenesis abundant protein;AT3G52460-NA|hydroxyproline-rich glycoprotein 
family protein|plasma membrane 

WBD EuBR08s59266112 8 55901922 1.58 × 10-6 

Eucgr.H04137 ;AT1G08530-NA|NA|plastid 
Eucgr.H04137 ;AT1G08530-NA|NA|plastid 
Eucgr.H04138 (M=15) 3.1.2.2 - Palmitoyl-CoA hydrolase.;AT1G48320-NA|Thioesterase superfamily protein|peroxisome 

Eucgr.H04139 
(M=15) 3.1.2.2 - Palmitoyl-CoA hydrolase.;AT1G48320-NA|Thioesterase superfamily 
protein|peroxisome;AT1G48320-NA|Thioesterase superfamily protein|peroxisome 

     Eucgr.F00028 
(M=6) PTHR11731//PTHR11731:SF54 - PROTEASE FAMILY S9B,C DIPEPTIDYL-PEPTIDASE IV-
RELATED // SUBFAMILY NOT NAMED;AT5G36210-NA|alpha/beta-Hydrolases superfamily 
protein|plastid 

     Eucgr.F00029 NA 
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WBD EuBR06s779311 6 147085 1.73 × 10-6 Eucgr.F00030 
(M=7) PF04759 - Protein of unknown function, DUF617;AT5G42680-NA|Protein of unknown function, 
DUF617|plastid 

WBD EuBR05s13465317 5 12396851 2.32 × 10-6 NA NA 

SGR EuBR07s50574163 7 53140783 9.54 × 10-8 Eucgr.G03236 
(M=1) PTHR26402//PTHR26402:SF52 - RESPONSE REGULATOR OF TWO-COMPONENT 
SYSTEM;AT3G57040-ARR9,ATRR4|response regulator 9|nucleus 

SGR EuBR01s32182181 1 36865045 1.45 × 10-7 NA NA 

SGR EuBR10s29287132 10 28512117 1.87 × 10-7 

Eucgr.J02335 NA 

Eucgr.J02336 
(M=1) PTHR23074:SF17 - FIDGETIN LIKE-1;AT3G27120-NA|P-loop containing nucleoside triphosphate 
hydrolases superfamily protein|nucleus 

Eucgr.J02337 
(M=204) KOG0157 - Cytochrome P450 CYP4/CYP19/CYP26 subfamilies;AT3G48520-
CYP94B3|cytochrome P450, family 94, subfamily B, polypeptide 3|endoplasmic reticulum 

Eucgr.J02338 (M=1) 1.8.3.1 - Sulfite oxidase.;AT3G01910-AT-SO,AtSO,SOX|sulfite oxidase|multiple 
Eucgr.J02339 NA 

SGR EuBR07s17699641 7 15925866 2.51 × 10-7 NA NA 

SGR EuBR02s39973654 1 19363017 3.02 × 10-7 
Eucgr.B02072 

(M=7) PTHR11260:SF31 - OS04G0435500 PROTEIN;AT1G77290-NA|Glutathione S-transferase family 
protein|cytosol 

Eucgr.B02073 NA 
Eucgr.B02818 ;AT5G01470-NA|S-adenosyl-L-methionine-dependent methyltransferases superfamily protein|cytosol 

SGR EuBR03s19349239 3 48609424 5.11 × 10-7 Eucgr.C01233 
(M=1) KOG1081 - Transcription factor NSD1 and related SET domain proteins;AT4G30860-
ASHR3,SDG4|SET domain group 4|nucleus 

SGR EuBR01s14426556 1 11173430 7.81 × 10-7 NA NA 

SOL EuBR01s1482744 10 30533938 7.68 × 10-14 Eucgr.A00114 ;AT5G24360-ATIRE1-1,IRE1-1|inositol requiring 1-1|multiple 

SOL EuBR01s18411052 1 24353087 1.49 × 10-10 
Eucgr.J02542 NA 
Eucgr.A01183 NA 

SOL EuBR06s42411988 6 44910850 5.37 × 10-9 

Eucgr.F03346 
(M=13) PF06830 - Root cap;AT5G54370-NA|Late embryogenesis abundant (LEA) protein-
related|extracellular 

Eucgr.F03347 
(M=13) PF06830 - Root cap;AT5G54370-NA|Late embryogenesis abundant (LEA) protein-
related|extracellular 

Eucgr.F03348 
(M=18) K14496 - abscisic acid receptor PYR/PYL family;AT1G70880-NA|Polyketide cyclase/dehydrase 
and lipid transport superfamily protein|cytosol 

Eucgr.F03349 
(M=18) K14496 - abscisic acid receptor PYR/PYL family;AT1G70880-NA|Polyketide cyclase/dehydrase 
and lipid transport superfamily protein|cytosol 

Eucgr.F03351 ;AT2G20825-ULT2|Developmental regulator, ULTRAPETALA|nucleus 
Eucgr.F03352 ;AT4G27390-NA|NA|plastid 
Eucgr.F03352 ;AT4G27390-NA|NA|plastid 
Eucgr.F03352 ;AT4G27390-NA|NA|plastid 
Eucgr.F03352 ;AT4G27390-NA|NA|plastid 

Eucgr.F03353 
(M=3) K12486 - stromal membrane-associated protein;AT5G54310-AGD5,NEV|ARF-GAP domain 
5|nucleus 

Eucgr.F03354 NA 

SOL EuBR02s56837794 2 52149729 7.79 × 10-8 

Eucgr.B03164 ;AT1G26610-NA|C2H2-like zinc finger protein|nucleus 

Eucgr.B03165 
(M=79) PF03106 - WRKY DNA -binding domain;AT1G69310-ATWRKY57,WRKY57|WRKY DNA-binding 
protein 57|nucleus 

Eucgr.B03166 
(M=3) 2.4.1.1 - Glycogen phosphorylase.;AT3G29320-NA|Glycosyl transferase, family 
35|plastid;AT3G29320-NA|Glycosyl transferase, family 35|plastid 

Eucgr.B03166 ;AT3G29320-NA|Glycosyl transferase, family 35|plastid 
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SOL EuBR02s56837794 2 52149729 7.79 × 10-8 

Eucgr.B03166 ;AT3G29320-NA|Glycosyl transferase, family 35|plastid 
Eucgr.B03166 ;AT3G29320-NA|Glycosyl transferase, family 35|plastid 
Eucgr.B03166 ;AT3G29320-NA|Glycosyl transferase, family 35|plastid 

Eucgr.B03167 
(M=4) K08509 - synaptosomal-associated protein, 29kDa;AT5G61210-
ATSNAP33,ATSNAP33B,SNAP33,SNP33|soluble N-ethylmaleimide-sensitive factor adaptor protein 
33|nucleus 

Eucgr.B03168 
(M=34) PTHR22953 - ACID PHOSPHATASE RELATED;AT1G13900-NA|Purple acid phosphatases 
superfamily protein|vacuole 

Eucgr.B03169 
(M=4) K08509 - synaptosomal-associated protein, 29kDa;AT5G61210-
ATSNAP33,ATSNAP33B,SNAP33,SNP33|soluble N-ethylmaleimide-sensitive factor adaptor protein 
33|nucleus 

Eucgr.B03170 
(M=34) PTHR22953 - ACID PHOSPHATASE RELATED;AT1G13900-NA|Purple acid phosphatases 
superfamily protein|vacuole 

Eucgr.B03171 
(M=104) PF11721 - Di-glucose binding within endoplasmic reticulum;AT1G25570-NA|Di-glucose binding 
protein with Leucine-rich repeat domain|vacuole 

Eucgr.B03172 

(M=1) PTHR12993 - N-ACETYLGLUCOSAMINYL-PHOSPHATIDYLINOSITOL DE-N-ACETYLASE-
RELATED;AT3G58130-NA|N-acetylglucosaminylphosphatidylinositol de-N-acetylase family protein|plasma 
membrane;AT3G58130-NA|N-acetylglucosaminylphosphatidylinositol de-N-acetylase family 
protein|plasma membrane 

Eucgr.B03172 
;AT3G58130-NA|N-acetylglucosaminylphosphatidylinositol de-N-acetylase family protein|plasma 
membrane 

Eucgr.B03172 
;AT3G58130-NA|N-acetylglucosaminylphosphatidylinositol de-N-acetylase family protein|plasma 
membrane 

Eucgr.B03173 
(M=1) PTHR24420//PTHR24420:SF518 - LEUCINE-RICH REPEAT RECEPTOR-LIKE PROTEIN 
KINASE;AT5G61240-NA|Leucine-rich repeat (LRR) family protein|multiple;AT5G61240-NA|Leucine-rich 
repeat (LRR) family protein|multiple 

Eucgr.B03173 ;AT5G61240-NA|Leucine-rich repeat (LRR) family protein|multiple 

Eucgr.B03174 
(M=8) PTHR14363 - HEPARANASE-RELATED;AT5G61250-AtGUS1,GUS1|glucuronidase 1|plasma 
membrane 

Eucgr.B03175 (M=18) PF03763 - Remorin, C-terminal region;AT1G13920-NA|Remorin family protein|nucleus 

Eucgr.B03176 
(M=2) PTHR13139 - RING FINGER AND CCCH-TYPE ZINC FINGER DOMAIN-CONTAINING 
PROTEIN;AT1G69330-NA|RING/U-box superfamily protein|nucleus 

SOL EuBR03s57703759 3 61561917 1.73 × 10-7 

Eucgr.C03075 (M=5) PF01578 - Cytochrome C assembly protein;ATMG00960-NA|Cytochrome C assembly protein|NA 

Eucgr.C03076 
(M=46) KOG0617 - Ras suppressor protein (contains leucine-rich repeats);AT1G69550-NA|disease 
resistance protein (TIR-NBS-LRR class)|plasma membrane;AT1G69550-NA|disease resistance protein 
(TIR-NBS-LRR class)|plasma membrane 

Eucgr.C03076 ;AT1G69550-NA|disease resistance protein (TIR-NBS-LRR class)|plasma membrane 
Eucgr.C03076 ;AT1G69550-NA|disease resistance protein (TIR-NBS-LRR class)|plasma membrane 
Eucgr.C03076 ;AT1G69550-NA|disease resistance protein (TIR-NBS-LRR class)|plasma membrane 
Eucgr.C03076 ;AT1G69550-NA|disease resistance protein (TIR-NBS-LRR class)|plasma membrane 
Eucgr.C03076 ;AT1G69550-NA|disease resistance protein (TIR-NBS-LRR class)|plasma membrane 
Eucgr.C03076 ;AT1G69550-NA|disease resistance protein (TIR-NBS-LRR class)|plasma membrane 
Eucgr.C03077 NA 

SOL EuBR09s24197228 9 24161506 3.69 × 10-7 Eucgr.I01375 (M=1) K13119 - protein FAM50;AT2G21150-XCT|XAP5 family protein|nucleus 
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TSC EuBR10s1696823 10 1696763 6.93 × 10-14 Eucgr.J00155 
(M=7) PF07107 - Wound-induced protein WI12;AT3G10985-ATWI-12,SAG20,WI12|senescence 
associated gene 20|plasma membrane 

TSC EuBR01s39512949 1 44180804 1.52 × 10-8 

Eucgr.A02909 
(M=140) PF00083 - Sugar (and other) transporter;AT5G61520-NA|Major facilitator superfamily 
protein|plasma membrane 

Eucgr.A02909 ;AT5G61520-NA|Major facilitator superfamily protein|plasma membrane 

Eucgr.A02910 
(M=3) 1.6.5.5 - NADPH:quinone reductase.;AT5G61510-NA|GroES-like zinc-binding alcohol 
dehydrogenase family protein|cytosol 

Eucgr.A02910 ;AT5G61510-NA|GroES-like zinc-binding alcohol dehydrogenase family protein|cytosol 

Eucgr.A02911 
(M=84) KOG0254 - Predicted transporter (major facilitator superfamily);AT5G61520-NA|Major facilitator 
superfamily protein|plasma membrane 

Eucgr.A02912 
(M=4) PTHR23176 - RHO/RAC/CDC GTPASE-ACTIVATING PROTEIN;AT5G61530-NA|small G protein 
family protein / RhoGAP family protein|multiple 

TSC EuBR04s22295129 4 25830558 2.70 × 10-8 

Eucgr.D01237 
(M=2) K12180 - COP9 signalosome complex subunit 7;AT1G02090-
ATCSN7,COP15,CSN7,FUS5|Proteasome component (PCI) domain protein|multiple 

Eucgr.D01238 
(M=2) K13127 - RING finger protein 113A;AT1G01350-NA|Zinc finger (CCCH-type/C3HC4-type RING 
finger) family protein|nucleus 

Eucgr.D01238 NA 
Eucgr.D01238 NA 

Eucgr.D01239 
(M=3) 3.1.2.22 - Palmitoyl-protein hydrolase.;AT3G60340-NA|alpha/beta-Hydrolases superfamily 
protein|extracellular;AT3G60340-NA|alpha/beta-Hydrolases superfamily protein|extracellular 

Eucgr.D01239 NA 

Eucgr.D01240 
(M=157) KOG4412 - 26S proteasome regulatory complex, subunit PSMD10;AT1G03670-NA|ankyrin 
repeat family protein|multiple 

Eucgr.D01241 NA 
Eucgr.D01243 ;AT4G03460-NA|Ankyrin repeat family protein|cytosol 

Eucgr.D01244 
(M=157) KOG4412 - 26S proteasome regulatory complex, subunit PSMD10;AT1G03670-NA|ankyrin 
repeat family protein|multiple 

TSC EuBR07s252985 7 252925 2.69 × 10-7 Eucgr.G00025 
(M=11) PTHR13943 - HRAS-LIKE SUPPRESSOR - RELATED;AT3G02700-NA|NC domain-containing 
protein-related|multiple 

TSC EuBR03s7498452 3 6469424 6.10 × 10-7 NA NA 

TSC EuBR08s57640594 8 54276404 1.33 × 10-6 NA NA 

TSC EuBR04s14035937 4 13563332 1.39 × 10-6 Eucgr.D00751 
(M=172) K09422 - myb proto-oncogene protein, plant;AT4G21440-ATM4,ATMYB102,MYB102|MYB-like 
102|nucleus 
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Table S3 - Significant SNP markers and candidate genes for growth traits for the 1,772 Eucalyptus grandis individuals 
using the multi-trait analysis. 

 
Traits Model SNP name Chr Position P.value Gene name Description 

HEI3-HEI6 Common EuBR03s22449999 3 24421549 8.41 × 10-6 NA   

HEI3-HEI6 
Common 
and Full 

EuBR04s246324 4 246264 9.05 × 10-7 Eucgr.D00028 
(M=1) PTHR10438:SF14 - THIOREDOXIN-RELATED;AT2G35010-
ATO1,TO1|thioredoxin O1|mitochondrion 

HEI3-HEI6 Full EuBR11s2322411 11 1333920 1.07 × 10-5 

Eucgr.K00190 
(M=55) PTHR11945:SF19 - MADS BOX PROTEIN;AT5G51870-
AGL71|AGAMOUS-like 71|nucleus 

Eucgr.K00191 
(M=55) PTHR11945:SF19 - MADS BOX PROTEIN;AT5G62165-
AGL42|AGAMOUS-like 42|multiple 

Eucgr.K00192 
(M=55) PTHR11945:SF19 - MADS BOX PROTEIN;AT5G62165-
AGL42|AGAMOUS-like 42|multiple 

Eucgr.K00193 
(M=55) PTHR11945:SF19 - MADS BOX PROTEIN;AT5G62165-
AGL42|AGAMOUS-like 42|multiple;AT5G62165-AGL42|AGAMOUS-like 
42|multiple 

Eucgr.K00193 ;AT5G62165-AGL42|AGAMOUS-like 42|multiple 

Eucgr.K00194 
(M=55) PTHR11945:SF19 - MADS BOX PROTEIN;AT5G62165-
AGL42|AGAMOUS-like 42|multiple;AT5G62165-AGL42|AGAMOUS-like 
42|multiple 

Eucgr.K00194 
(M=55) PTHR11945:SF19 - MADS BOX PROTEIN;AT5G62165-
AGL42|AGAMOUS-like 42|multiple;AT5G62165-AGL42|AGAMOUS-like 
42|multiple 

Eucgr.K00195 NA 

HEI3-DBH6 Common EuBR06s39120397 6 41619218 7.57 × 10-6 

Eucgr.F02939 NA 

Eucgr.F02940 
(M=14) KOG0131 - Splicing factor 3b, subunit 4;AT4G10110-NA|RNA-
binding (RRM/RBD/RNP motifs) family protein|nucleus;AT4G10110-
NA|RNA-binding (RRM/RBD/RNP motifs) family protein|nucleus 

Eucgr.F02940 
;AT4G10110-NA|RNA-binding (RRM/RBD/RNP motifs) family 
protein|nucleus 

Eucgr.F02940 
;AT4G10110-NA|RNA-binding (RRM/RBD/RNP motifs) family 
protein|nucleus 

Eucgr.F02940 
;AT4G10110-NA|RNA-binding (RRM/RBD/RNP motifs) family 
protein|nucleus 

Eucgr.F02941 
(M=25) 3.2.1.4 - Cellulase.;AT1G71380-ATCEL3,ATGH9B3,CEL3|cellulase 
3|extracellular 

Eucgr.F02942 ;AT5G66460-NA|Glycosyl hydrolase superfamily protein|extracellular 

Eucgr.F02943 
(M=27) PF00150 - Cellulase (glycosyl hydrolase family 5);AT5G66460-
NA|Glycosyl hydrolase superfamily protein|extracellular 

Eucgr.F02944 
(M=2) K03635 - molybdopterin synthase catalytic subunit;AT4G10100-
CNX7,SIR5|co-factor for nitrate, reductase and xanthine dehydrogenase 
7|cytosol 

Eucgr.F02945 ;AT4G13530-NA|NA|nucleus 
Eucgr.F02945 ;AT4G13530-NA|NA|nucleus 
Eucgr.F02945 ;AT4G13530-NA|NA|nucleus 
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HEI3-DBH6 Common EuBR06s39120397 6 41619218 7.57 × 10-6 

Eucgr.F02946 
(M=4) 6.1.1.21 - Histidine--tRNA ligase.;AT3G02760-NA|Class II aaRS and 
biotin synthetases superfamily protein|cytosol 

Eucgr.F02946 
;AT3G02760-NA|Class II aaRS and biotin synthetases superfamily 
protein|cytosol 

Eucgr.F02947 NA 

HEI3-VOL6 Common EuBR06s39120397 6 41619218 1.14 × 10-5 

Eucgr.F02939 NA 

Eucgr.F02940 
(M=14) KOG0131 - Splicing factor 3b, subunit 4;AT4G10110-NA|RNA-
binding (RRM/RBD/RNP motifs) family protein|nucleus 

Eucgr.F02940 
;AT4G10110-NA|RNA-binding (RRM/RBD/RNP motifs) family 
protein|nucleus 

Eucgr.F02940 
;AT4G10110-NA|RNA-binding (RRM/RBD/RNP motifs) family 
protein|nucleus 

Eucgr.F02940 
;AT4G10110-NA|RNA-binding (RRM/RBD/RNP motifs) family 
protein|nucleus 

Eucgr.F02941 
(M=25) 3.2.1.4 - Cellulase.;AT1G71380-ATCEL3,ATGH9B3,CEL3|cellulase 
3|extracellular 

Eucgr.F02942 ;AT5G66460-NA|Glycosyl hydrolase superfamily protein|extracellular 

Eucgr.F02943 
(M=27) PF00150 - Cellulase (glycosyl hydrolase family 5);AT5G66460-
NA|Glycosyl hydrolase superfamily protein|extracellular 

Eucgr.F02944 
(M=2) K03635 - molybdopterin synthase catalytic subunit;AT4G10100-
CNX7,SIR5|co-factor for nitrate, reductase and xanthine dehydrogenase 
7|cytosol 

Eucgr.F02945 ;AT4G13530-NA|NA|nucleus 
Eucgr.F02945 ;AT4G13530-NA|NA|nucleus 
Eucgr.F02945 ;AT4G13530-NA|NA|nucleus 

Eucgr.F02946 
(M=4) 6.1.1.21 - Histidine--tRNA ligase.;AT3G02760-NA|Class II aaRS and 
biotin synthetases superfamily protein|cytosol 

Eucgr.F02946 
;AT3G02760-NA|Class II aaRS and biotin synthetases superfamily 
protein|cytosol 

Eucgr.F02947 NA 

HEI6-VOL6 
Common 
and Full 

EuBR03s43394028 3 44908926 9.33 × 10-7 

Eucgr.C02324 
(M=60) PTHR23070 - BCS1 AAA-TYPE ATPASE;AT5G57480-NA|P-loop 
containing nucleoside triphosphate hydrolases superfamily 
protein|endoplasmic reticulum 

Eucgr.C02326 
(M=12) KOG0251 - Clathrin assembly protein AP180 and related proteins, 
contain ENTH domain;AT4G25940-NA|ENTH/ANTH/VHS superfamily 
protein|nucleus 

Eucgr.C02327 
(M=18) K13428 - LRR receptor-like serine/threonine-protein kinase 
EFR;AT5G20480-EFR|EF-TU receptor|plasma membrane 

Eucgr.C02328 
(M=55) PF00560//PF07714//PF08263 - Leucine Rich Repeat // Protein 
tyrosine kinase // Leucine rich repeat N-terminal domain;AT3G47570-
NA|Leucine-rich repeat protein kinase family protein|plasma membrane 

Eucgr.C02329 
(M=39) PF02309 - AUX/IAA family;AT5G57420-IAA33|indole-3-acetic acid 
inducible 33|nucleus 

HEI6-VOL6 Full EuBR02s12845338 2 10920732 1.45 × 10-5 NA  NA 
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DBH3-DBH6 Full EuBR03s72654230 3 73723975 1.59 × 10-5 
Eucgr.C03882 

(M=90) PTHR22950 - AMINO ACID TRANSPORTER;AT1G77380-
AAP3,ATAAP3|amino acid permease 3|plasma membrane 

Eucgr.C03884 
(M=90) PTHR22950 - AMINO ACID TRANSPORTER;AT1G77380-
AAP3,ATAAP3|amino acid permease 3|plasma membrane 

DBH3-VOL3 
Full and 
Interaction 

EuBR05s62102817 5 58629530 2.19 × 10-6 

Eucgr.E03571 
(M=74) PF01397//PF03936 - Terpene synthase, N-terminal domain // 
Terpene synthase family, metal binding domain;AT4G16740-
ATTPS03,TPS03|terpene synthase 03|cytosol 

Eucgr.E03572 
(M=74) PF01397//PF03936 - Terpene synthase, N-terminal domain // 
Terpene synthase family, metal binding domain;AT1G61680-
ATTPS14,TPS14|terpene synthase 14|plastid 

Eucgr.E03573  

DBH3-VOL6 Common EuBR08s53916832 8 50764014 6.55 × 10-6 
Eucgr.H03708  

Eucgr.H03709 ;AT3G62450-NA|NA|extracellular 

DBH3-VOL6 Full EuBR03s72654230 3 73723975 1.02 × 10-5 
Eucgr.C03882 

(M=90) PTHR22950 - AMINO ACID TRANSPORTER;AT1G77380-
AAP3,ATAAP3|amino acid permease 3|plasma membrane 

Eucgr.C03884 
(M=90) PTHR22950 - AMINO ACID TRANSPORTER;AT1G77380-
AAP3,ATAAP3|amino acid permease 3|plasma membrane 

VOL3-HEI6 
Common 
and Full 

EuBR02s12845338 2 10920732 7.23 × 10-6 NA  NA 

VOL3-HEI6 Common EuBR03s43394028 3 44908926 1.01 × 10-5 

Eucgr.C02324 
(M=60) PTHR23070 - BCS1 AAA-TYPE ATPASE;AT5G57480-NA|P-loop 
containing nucleoside triphosphate hydrolases superfamily 
protein|endoplasmic reticulum 

Eucgr.C02326 
(M=12) KOG0251 - Clathrin assembly protein AP180 and related proteins, 
contain ENTH domain;AT4G25940-NA|ENTH/ANTH/VHS superfamily 
protein|nucleus 

Eucgr.C02327 
(M=18) K13428 - LRR receptor-like serine/threonine-protein kinase 
EFR;AT5G20480-EFR|EF-TU receptor|plasma membrane 

Eucgr.C02328 
(M=55) PF00560//PF07714//PF08263 - Leucine Rich Repeat // Protein 
tyrosine kinase // Leucine rich repeat N-terminal domain;AT3G47570-
NA|Leucine-rich repeat protein kinase family protein|plasma membrane 

Eucgr.C02329 
(M=39) PF02309 - AUX/IAA family;AT5G57420-IAA33|indole-3-acetic acid 
inducible 33|nucleus 

VOL3-DBH6 Common EuBR05s73512379 5 75396072 1.22 × 10-5 

Eucgr.E04289 
(M=194) PTHR24420//PTHR24420:SF473 - LEUCINE-RICH REPEAT 
RECEPTOR-LIKE PROTEIN KINASE // SUBFAMILY NOT 
NAMED;AT1G58190-AtRLP9,RLP9|receptor like protein 9|multiple 

Eucgr.E04290 NA 

Eucgr.E04291 

(M=194) PTHR24420//PTHR24420:SF473 - LEUCINE-RICH REPEAT 
RECEPTOR-LIKE PROTEIN KINASE // SUBFAMILY NOT 
NAMED;AT1G74190-AtRLP15,RLP15|receptor like protein 15|plasma 
membrane 

VOL3-DBH6 Common EuBR07s16969079 7 15429939 1.38 × 10-5 
Eucgr.G00982 

(M=101) PF00226 - DnaJ domain;AT5G64360-NA|Chaperone DnaJ-domain 
superfamily protein|cytosol 

Eucgr.G00985 NA 
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VOL3-DBH6 
Full and 
Common 

EuBR02s2712998 2 1260315 9.68 × 10-6 Eucgr.B00184 
(M=261) KOG0156 - Cytochrome P450 CYP2 subfamily;AT5G25120-
CYP71B11|ytochrome p450, family 71, subfamily B, polypeptide 
11|endoplasmic reticulum 

VOL3-DBH6 Interaction EuBR05s40135536 5 39939948 1.42 × 10-5 Eucgr.E02580 
(M=52) PTHR11695:SF285 - L-THREONINE 3-
DEHYDROGENASE;AT4G37980-ATCAD7,CAD7,ELI3,ELI3-1|elicitor-
activated gene 3-1|cytosol 

VOL3-VOL6 Common EuBR05s73512379 5 75396072 1.40 × 10-5 

Eucgr.E04289 
(M=194) PTHR24420//PTHR24420:SF473 - LEUCINE-RICH REPEAT 
RECEPTOR-LIKE PROTEIN KINASE // SUBFAMILY NOT 
NAMED;AT1G58190-AtRLP9,RLP9|receptor like protein 9|multiple 

Eucgr.E04290 
(M=52) PTHR11695:SF285 - L-THREONINE 3-
DEHYDROGENASE;AT4G37980-ATCAD7,CAD7,ELI3,ELI3-1|elicitor-
activated gene 3-1|cytosol 

Eucgr.E04291 

(M=194) PTHR24420//PTHR24420:SF473 - LEUCINE-RICH REPEAT 
RECEPTOR-LIKE PROTEIN KINASE // SUBFAMILY NOT 
NAMED;AT1G74190-AtRLP15,RLP15|receptor like protein 15|plasma 
membrane 

VOL3-VOL6 Full EuBR02s2712998 2 1260315 3.41 × 10-6 Eucgr.B00184 
(M=261) KOG0156 - Cytochrome P450 CYP2 subfamily;AT5G25120-
CYP71B11|ytochrome p450, family 71, subfamily B, polypeptide 
11|endoplasmic reticulum 

VOL3-VOL6 Interaction EuBR05s40135536 5 39939948 6.29 × 10-6 Eucgr.E02580 
(M=52) PTHR11695:SF285 - L-THREONINE 3-
DEHYDROGENASE;AT4G37980-ATCAD7,CAD7,ELI3,ELI3-1|elicitor-
activated gene 3-1|cytosol 

DBH6-HEI6 
Common 
and Full 

EuBR02s12845338 2 10920732 5.92 × 10-6 NA  NA 

DBH6-HEI6 
Common 
and Full 

EuBR03s43394028 3 44908926 1.54 × 10-6 

Eucgr.C02324 
(M=60) PTHR23070 - BCS1 AAA-TYPE ATPASE;AT5G57480-NA|P-loop 
containing nucleoside triphosphate hydrolases superfamily 
protein|endoplasmic reticulum 

Eucgr.C02326 
(M=12) KOG0251 - Clathrin assembly protein AP180 and related proteins, 
contain ENTH domain;AT4G25940-NA|ENTH/ANTH/VHS superfamily 
protein|nucleus 

Eucgr.C02327 
(M=18) K13428 - LRR receptor-like serine/threonine-protein kinase 
EFR;AT5G20480-EFR|EF-TU receptor|plasma membrane 

Eucgr.C02328 
(M=55) PF00560//PF07714//PF08263 - Leucine Rich Repeat // Protein 
tyrosine kinase // Leucine rich repeat N-terminal domain;AT3G47570-
NA|Leucine-rich repeat protein kinase family protein|plasma membrane 

Eucgr.C02329 
(M=39) PF02309 - AUX/IAA family;AT5G57420-IAA33|indole-3-acetic acid 
inducible 33|nucleus 

DBH6-VOL6 Common EuBR01s116241 1 2688124 4.31 × 10-6 Eucgr.A00011 ;AT2G30695-NA|NA|plastid 

DBH6-VOL6 Common EuBR02s2712998 2 1260315 1.09 × 10-5 Eucgr.B00184 
(M=261) KOG0156 - Cytochrome P450 CYP2 subfamily;AT5G25120-
CYP71B11|ytochrome p450, family 71, subfamily B, polypeptide 
11|endoplasmic reticulum 

 
  



76 
 

Table S4 - Significant SNP markers and candidate genes for wood-quality traits for the 1,772 Eucalyptus grandis 
individuals using the multi-trait analysis. 

 

Traits Model SNP name Chr Position P.value Gene name Description 

SOL-TEX 
Common 
and Full 

EuBR06s19529730 6 20443484 2.66 × 10-7 

Eucgr.F01519 NA 

Eucgr.F01520 NA 

Eucgr.F01521 NA 

Eucgr.F01522 NA 

Eucgr.F01523 NA 

SOL-TEX 
Common 
and Full 

EuBR06s52964694 6 56543212 5.06 × 10-6 

Eucgr.F04390 (M=281) PTHR24420//PTHR24420:SF474 - LEUCINE-RICH REPEAT 
RECEPTOR-LIKE PROTEIN KINASE // SUBFAMILY NOT 
NAMED;AT3G47570-NA|Leucine-rich repeat protein kinase family 
protein|plasma membrane 

Eucgr.F04391 (M=281) PTHR24420//PTHR24420:SF474 - LEUCINE-RICH REPEAT 
RECEPTOR-LIKE PROTEIN KINASE // SUBFAMILY NOT 
NAMED;AT3G47570-NA|Leucine-rich repeat protein kinase family 
protein|plasma membrane 

Eucgr.F04392 NA 

Eucgr.F04393 (M=281) PTHR24420//PTHR24420:SF474 - LEUCINE-RICH REPEAT 
RECEPTOR-LIKE PROTEIN KINASE // SUBFAMILY NOT 
NAMED;AT3G47570-NA|Leucine-rich repeat protein kinase family 
protein|plasma membrane 

Eucgr.F04394 NA 

Eucgr.F04395 ;AT1G72500-NA|NA|cytosol 

Eucgr.F04396 (M=281) PTHR24420//PTHR24420:SF474 - LEUCINE-RICH REPEAT 
RECEPTOR-LIKE PROTEIN KINASE // SUBFAMILY NOT 
NAMED;AT3G47570-NA|Leucine-rich repeat protein kinase family 
protein|plasma membrane 

Eucgr.F04397 (M=2) PTHR10338 - VON WILLEBRAND FACTOR, TYPE A DOMAIN 
CONTAINING;AT1G72500-NA|NA|cytosol;AT1G72500-NA|NA|cytosol 

Eucgr.F04397 NA 

Eucgr.F04397 NA 

Eucgr.F04397 NA 

Eucgr.F04397 NA 

       Continue... 
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Traits Model SNP name Chr Position P.value Gene name Description 

SOL-TEX 
Common 
and Full 

EuBR06s52964694 6 56543212 5.06 × 10-6 
Eucgr.F04398 (M=1) K02730 - 20S proteasome subunit alpha 1;AT2G05840-PAA2|20S 

proteasome subunit PAA2|multiple 

      Eucgr.F04400 NA 

      
Eucgr.F04401 (M=15) PF07911 - Protein of unknown function (DUF1677);AT1G72510-

NA|Protein of unknown function (DUF1677)|plasma membrane;AT1G72510-
NA|Protein of unknown function (DUF1677)|plasma membrane 

      Eucgr.F04401 NA 

SGR-TEX 
Full and 
Interaction 

EuBR11s43922247 11 43248389 7.26 × 10-6 
Eucgr.K03483 (M=2) PF00271//PF00642 - Helicase conserved C-terminal domain // Zinc 

finger C-x8-C-x5-C-x3-H type (and similar);AT2G47680-NA|zinc finger 
(CCCH type) helicase family protein|nucleus 

SGR-TEX 
Full and 
Interaction 

EuBR11s44284539 11 43610681 1.16 × 10-5 

Eucgr.K03516 NA 

Eucgr.K03517 ;AT3G62650-NA|NA|cytosol 

SGR-TEX Interaction EuBR03s16484895 3 16899795 9.83 × 10-6 

Eucgr.C01030 ;AT3G24630-NA|NA|nucleus 

Eucgr.C01031 (M=4) PTHR11886//PTHR11886:SF22 - DYNEIN LIGHT CHAIN // 
SUBFAMILY NOT NAMED;AT1G52240-
ATROPGEF11,PIRF1,ROPGEF11|RHO guanyl-nucleotide exchange factor 
11|multiple 

Eucgr.C01032 (M=4) PF04367 - Protein of unknown function (DUF502);AT2G20120-
COV1|Protein of unknown function (DUF502)|multiple 

Eucgr.K03517 ;AT3G62650-NA|NA|cytosol 

SGR-SOL 
Full and 
Interaction 

EuBR08s49045121 8 63920596 6.88 × 10-6 

Eucgr.H03343 (M=49) PF03492 - SAM dependent carboxyl methyltransferase;AT5G66430-
NA|S-adenosyl-L-methionine-dependent methyltransferases superfamily 
protein|cytosol 

Eucgr.H03343 ;AT5G66430-NA|S-adenosyl-L-methionine-dependent methyltransferases 
superfamily protein|cytosol 

Eucgr.H03343 ;AT5G66430-NA|S-adenosyl-L-methionine-dependent methyltransferases 
superfamily protein|cytosol 

Eucgr.H03343 ;AT5G66430-NA|S-adenosyl-L-methionine-dependent methyltransferases 
superfamily protein|cytosol 

Eucgr.H03343 ;AT5G66430-NA|S-adenosyl-L-methionine-dependent methyltransferases 
superfamily protein|cytosol 
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Table S5 - Significant SNP markers and candidate genes for growth traits and wood-quality traits for the 1,772 Eucalyptus 
grandis individuals using the multi-trait analysis. 

 
Traits Model SNP name Chr position P.value Gene name description 

PCY/DBH3 Common/Full EuBR04s12292131 4 12520123 2.60 × 10-6 Eucgr.D00674 
(M=26) 3.4.16.5 - Carboxypeptidase C.;AT1G11080-scpl31|serine 
carboxypeptidase-like 31|extracellular 

PCY/HEI6 Common EuBR04s510275 4 510215 7.22 × 10-6 NA NA 

TSC/HEI6 Interaction EuBR09s38638406 9 38502871 1.54 × 10-5 

Eucgr.I02760 
(M=3) PF06241 - Protein of unknown function (DUF1012);AT5G49960-
NA|NA|mitochondrion;AT5G49960-NA|NA|mitochondrion 

Eucgr.I02761 
(M=17) PF05078 - Protein of unknown function (DUF679);AT3G02430-
NA|Protein of unknown function (DUF679)|plasma membrane 

Eucgr.I02762 

(M=19) PTHR22880 - FALZ-RELATED BROMODOMAIN-CONTAINING 
PROTEINS;AT1G58025-NA|DNA-binding bromodomain-containing 
protein|nucleus;AT1G58025-NA|DNA-binding bromodomain-containing 
protein|nucleus 

Eucgr.I02764 
(M=3) K06173 - tRNA pseudouridine synthase A 
[EC:5.4.99.12];AT1G09800-NA|Pseudouridine synthase family 
protein|cytosol 

TSC/DBH6 Full/interaction EuBR01s28498846 1 33181710 1.00 × 10-6 NA NA 

TSC/DBH6 Interaction EuBR10s6097228 10 6097168 1.48 × 10-5 Eucgr.J00554 
(M=1) PF00954//PF07714//PF11883 - S-locus glycoprotein family // Protein 
tyrosine kinase // Domain of unknown function (DUF3403);AT4G21380-
ARK3,RK3|receptor kinase 3|plasma membrane 

TSC/VOL6 Full EuBR01s28498846 1 33181710 5.21 × 10-6 NA NA 

TSC/VOL6 Full/Interaction EuBR10s6097228 10 6097168 8.66 × 10-7 Eucgr.J00554 
(M=1) PF00954//PF07714//PF11883 - S-locus glycoprotein family // Protein 
tyrosine kinase // Domain of unknown function (DUF3403);AT4G21380-
ARK3,RK3|receptor kinase 3|plasma membrane 

TSC/DBH3 Interaction EuBR06s44029558 6 46528420 8.17 × 10-6 
Eucgr.F03545 

(M=2) K01164 - ribonuclease P/MRP protein subunit POP1;AT2G47300-
NA|ribonuclease Ps|multiple 

Eucgr.F03546 
(M=11) PF04783 - Protein of unknown function (DUF630);AT4G35240-
NA|Protein of unknown function (DUF630 and DUF632)|nucleus 

TSC/VOL3 Interaction EuBR01s28498846 1 33181710 8.46 × 10-7 Eucgr.J00554 
(M=1) PF00954//PF07714//PF11883 - S-locus glycoprotein family // Protein 
tyrosine kinase // Domain of unknown function (DUF3403);AT4G21380-
ARK3,RK3|receptor kinase 3|plasma membrane 

TSC_VOL3 Interaction EuBR10s6097228 10 6097168 
1.16 × 10-5 

 
NA NA 
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Table S6 - Number of significant single nucleotide polymorphism (SNP) associations considering Bonferroni correction (p-
value = 1.63 × 10-5) for growth and wood-quality traits using multi-trait mixed model (MTMM) for the Eucalyptus grandis 
breeding population 
 

Traits 1 and 2 SNP(s) Position Ch. 
 p-values 

Full Interaction Common Trait 1 Trait 2 

DBH3 and DBH6 EuBR03s72654230 73723975 3 1.59 × 10-5 1.98 × 10-4 4.07× 10-3 0.079 1.05 × 10-3 

DBH3 and VOL3 EuBR05s62102817 58629530 5 2.18 × 10-6 8.60 × 10-6 0.012 0.23 0.050 

DBH3 and VOL6 EuBR08s53916832 50764014 8 2.24 × 10-5 0.29 6.55 × 10-6 0.0014 0.0051 
 EuBR03s72654230 73723975 3 1.02 × 10-5 2.01 × 10-4 0.0025 0.077 9.32 × 10-4 

HEI3 and HEI6 EuBR03s22449999 24421549 3 8.46 × 10-6 0.83 8.41× 10-6 0.0034 0.0023 
 EuBR04s246324 246264 4 9.05 × 10-7 0.36 3.79 × 10-6 0.14 0.0065 
 EuBR11s2322411 1333920 11 1.07 × 10-5 0.018 3.25 × 10-5 0.028 3.48 × 10-5 

HEI3 and DBH6 EuBR06s39120397 41619218 06 3.69 × 10-5 0.54 7.57 × 10-6 0.0018 0.00035 

HEI3 and VOL6 EuBR06s39120397 41619218 06 6.04 × 10-5 0.69 1.14 × 10-5 0.0018 0.00065 

HEI6 and VOL6 EuBR03s43394028 44908926 03 5.07 × 10-6 0.57 9.33 × 10-7 0.0038 0.0023 
 EuBR02s12845338 10920732 02 1.45 × 10-5 0.0059 0.00012 0.14 0.025 

VOL3 and HEI6 EuBR02s12845338 10920732 2 1.30 × 10-5 0.12 7.23 × 10-6 0.0060 0.046 
 EuBR03s43394028 44908926 3 5.83 × 10-5 0.98 1.01 × 10-5 0.015 6.29 × 10-3 

VOL3 and DBH6 EuBR05s73512379 75396072 5 6.95 × 10-5 0.87 1.22 × 10-5 0.039 0.051 
 EuBR07s16969079 15429939 7 4.01 × 10-5 0.24 1.38 × 10-5 4.66 × 10-4 2.77× 10-3 
 EuBR02s2712998 1260315 2 9.68 × 10-6 0.025 2.09 × 10-5 0.50 0.11 
 EuBR05s40135536 39939948 5 0.84 1.42 × 10-5 7.95 × 10-5 0.66 0.27 

VOL3 and VOL6 EuBR05s73512379 75396072 5 1.40 × 10-5 0.9743 1.39 × 10-5 0.0352 0.0376 
 EuBR02s2712998 1260315 2 3.41 × 10-6 0.0172 1.00 × 10-5 0.4773 0.0849 
 EuBR05s40135536 39939948 5 3.70 × 10- 6.29 × 10-6 0.9303 0.6377 0.2492 

DBH6 and HEI6 EuBR02s12845338 10920732 2 1.56 × 10-7 9.97 × 10-4 5.92 × 10-6 0.0031 0.066 
 EuBR03s43394028 44908926 3 4.26 × 10-6 0.20053 1.54 × 10-6 0.0016 0.0045 

DBH6 and VOL6 EuBR01s116241 2688124 1 2.44 × 10-5 0.7304 4.31 × 10-6 0.0012 0.0014 
 EuBR02s2712998 1260315 2 5.81 × 10-5 0.6922 1.09 × 10-5 0.1061 0.0966 

SOL and TEX EuBR06s19529730 20443484 6 1.56 × 10-6 0.6076 2.66 × 10-7 6.61 × 10-5 0.0011 
 EuBR06s52964694 56543212 6 1.40 × 10-5 0.21 5.06 × 10-6 0.00080 0.12 

SGR and TEX EuBR11s43922247 43248389 11 7.26 × 10-6 2.17 × 10-6 0.27 0.11 0.00085 
 EuBR11s44284539 43610681 11 1.16 × 10-5 1.88 × 10-6 0.97 0.00087 0.0055 
 EuBR03s16484895 16899795 3 1.26 × 10-5 9.84 × 10-6 0.86 5.60 × 10-5 0.0023 

SGR and SOL EuBR08s49045121 63920596 8 6.88 × 10-6 5.97 × 10-6 0.070 0.014 2.33 × 10-5 

PCY and DBH3 EuBR04s12292131 12520123 4 1.23 × 10-5 0.47 2.59 × 10-6 0.00012 0.0037 

PCY and ALT6 EuBR04s510275 510215 4 4.22 × 10-5 0.90 7.21 × 10-6 0.030 0.089 

TSC and HEI6 EuBR09s38638406 38502871 9 5.16 × 10-5 1.54 × 10-5 0.30 0.11 0.0025 

TSC and DBH6 EuBR01s28498846 33181710 1 1.00 × 10-6 1.86 × 10-7 0.51 0.0023 0.00013 
 EuBR10s6097228 6097168 10 8.40 × 10-5 1.48 × 10-5 0.98 0.0036 0.0025 

TSC and VOL6 EuBR01s28498846 33181710 1 5.21 × 10-6 8.66 × 10-7 0.58 0.90 0.60 
 EuBR10s6097228 6097168 10 5.81 × 10-5 1.02 × 10-5 0.86 0.003 0.0008 

        Continue… 
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Traits 1 and 2 SNP(s) Position Ch. 
 p-values 

Full Interaction Common Trait 1 Trait 2 

TSC and DBH3 EuBR06s44029558 46528420 6 3.16 × 10-5 8.17 × 10-6 0.36 0.0038 4.33 × 10-5 

TSC and VOL3 EuBR01s28498846 33181710 1 4.48 × 10-6 8.46 × 10-7 0.53 0.0021 0.00025 
 EuBR10s6097228 6097168 10 1.55 × 10-5 1.15 × 10-5 0.60 0.0058 0.0051 

Where: SNP: Single nucleotide polymorphism; Ch.: Chromossome; Diameter at breast height at 3 years; DBH6: Diameter at breast 
height at 6 years; VOL3: Volume at 3 years, VOL6: Volume at 6 years; HEI3: Height at 3 years; HEI6: Height at 6 years; Pure cellulose 
yield (PCY); Wood basic density (WBD); Syringyl/guaiacyl ratio (SGR); Soluble lignin (SOL); Total solid content (TSC); and Total 
extractives (TEX). P-values below the Bonferroni correction cutoff (5%) of 1.63 × 10-5 are highlighted in bold. 
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CHAPTER 2 
IMPROVEMENT OF GENOMIC PREDICTION MODELS AND TRAINING SETS 

FOR Eucalyptus grandis W. Hill BREEDING 
 

ABSTRACT 

Few studies have discussed methods to optimize genomic selection models for tree 
species. Using the genomic best linear unbiased prediction (GBLUP) model, we 
evaluated five different methods and tested seven different training set sizes (30, 40, 
50, 60, 70, 80, and 90% of the total population). The study population was an open-
pollinated seed orchard of Eucalyptus grandis consisting of 1,772 individuals 
genotyped using the Illumina Infinium EuCHIP60K chip. Individuals were evaluated for 
12 different growth and wood quality traits. A sequential analysis was developed based 
on the best predictive ability of the previous model. The highest accuracy was observed 
when 80% of the population was used for the training set. Meanwhile, the inclusion of 
dominance variance was effective in increasing the predictive ability of GS models. 
Additionally, the mean of the prediction error variance statistic (PEVmean) for the 
optimization of the training set methodology was able to select the best genotypes with 
high accuracy. Further, multi-trait analysis showed that using the entire set of 
information from growth traits offered the highest predictive ability values, indicating 
that growth traits can be used in GS models to increase the predictive ability for wood 
quality traits. The multi-trait method with optimization of the training set improved 
predictive accuracy of the models, further indicating the efficiency of both strategies in 
GS models for E. grandis. Our results offer tree breeding companies and research 
institutes optimization strategies to reduce phenotyping costs and increase the 
accuracy of GS models.  
 

Key words: eucalypt; breeding; growth traits; wood quality traits; dominance effects; 

genomic selection 
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2.1 INTRODUCTION  

 

 Genomic selection (GS) is a genetic prediction method proposed by Meuwissen 

et al. (2001), which uses a phenotyped and a genotyped training set to predict the 

genomic estimated breeding value (GEBV) of a non-phenotyped validation set. The 

methodology considers information across the complete genome using the vast array 

of data acquired through the genotyping of individuals. Several studies have proven 

the superior performance of GS over traditional breeding methods to accelerate the 

breeding cycle, maintain genetic diversity, and increase selection gains for each cycle 

(CROSSA et al., 2017; FRISTCHE-NETO; AKDEMIR; JANNINK, 2018; CROS et al., 

2019). The performance of GS models is commonly assessed by estimating predictive 

ability (PA), which is the correlation between the predicted GEBVs and the true 

breeding values. Nevertheless, it is important to identify new approaches to accelerate 

genetic gains, improve costs per unit of time (HESLOT; JANNINK; SORRELLS, 2015), 

and enhance predictive accuracy (DE LOS CAMPOS et al., 2013).  

On the other hand, the application of GS models with a high selection intensity 

may result in low-performance genotypes, despite a high predictive ability 

(MENDONÇA et al., 2020). Considering that GS models can present different rankings 

of the best performing genotypes, the selection coincidence (SC) represents the 

efficiency of the GS model to identify the best genotypes using different selection 

intensities (SABADIN et al., 2021). Therefore, a well-designed training population may 

result in higher predictive ability values (BERRO et al., 2019; OU; LIAO, 2019). As 

such, it is necessary to develop optimized genomic selection methods to improve 

resource allocation and efficiently achieve selection gains (RIEDELSHEIMER; 

MELCHINGER, 2013). 

Studying dominance, which is the mean value of the comparison between 

homozygous and heterozygous genotypes, has become relevant in genomic selection 

studies for several species (VITEZICA; VARONA; LEGARRA, 2013) . Not surprisingly, 

including the effects of dominance on GS models can increase the accuracy of the 

predictions and genetic responses (SUN et al., 2014; VARONA et al., 2018). For 

eucalypts, several studies have shown a strong influence of dominance on growth but 

a weak impact on wood quality traits (DENIS; BOUVET, 2013; RESENDE et al., 2017 

PALUDETO et al., 2021). The effects of dominance and epistasis are important to 

consider for species with vegetative propagation, such as species of the Eucalyptus 
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genus, since they can be fixed in the population (MAKOUANZI et al., 2014). According 

to Varona et al. (2018), non-additive effects can also contribute to mate allocation in 

breeding programs and enhance non-additive variation in breeding schemes.  

Several authors have found that the accuracy of genomic selection models is 

strongly correlated with the accurate definition of the training set (ISIDRO et al., 2015; 

NORMAN et al., 2018; ZHU et al., 2021). In general, large and randomly selected 

training set populations tend to increase the predictive ability since the models are 

trained using the majority of the variation in the population. On the other hand, studies 

have shown that an optimized small training set can be effective in maintaining 

predictive accuracy, with the potential to reduce costs associated with phenotyping in 

plant breeding programs (ISIDRO et al., 2015; AKDEMIR et al., 2019; BERRO et al., 

2019; CROSSA et al., 2021; HE et al., 2022). In this sense, Akdemir et al. (2015) 

developed a genomic algorithm to select an optimized training set from a group of 

candidate individuals. These authors used the mean of the prediction error variance 

(PEVmean) (HENDERSON, 1975) and the mean of the coefficient of determination 

(CDmean) (LALOË; PHOCAS; MENISSIER, 1996) to assess the predictive reliability 

of GEBVs for individuals in the validation set.  

The predicted error variance (PEV) is defined as the error variance of the 

estimated genotypic value of individuals (HENDERSON, 1975). However, a limitation 

in the use of the estimated PEV for training set optimization studies is the possibility of 

sampling individuals that are related, as it does not consider genetic variance within 

the population. Meanwhile, the CDmean is an estimate based on the square correlation 

between the observed and predicted genetic values (ISIDRO et al., 2015). Thus, 

CDmean may increase selection accuracy with different sample sizes, which can be 

represented as a relationship between the PEV and the genetic variance of individuals 

(RINCENT et al., 2012). The performance of CDmean in relation to PEVmean is related 

to the population structure and the covariance between genotypes of the training 

population (ISIDRO et al., 2015). 

Genomic selection commonly uses single trait models; however, for correlated 

traits it is possible to increase the predictive accuracy through multi-trait analysis 

(FERNANDES et al., 2021). Furthermore, one of the main limitations in using univariate 

analyses is related to the evaluation of the complex interactions among phenotypic 

characteristics (FLORES; MORENO; CUBERO, 1998). Multi-trait (MT) analyses allow 

us to consider the association among several genes in phenotypic traits of interest by 
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using strongly correlated traits to improve the model’s predictive capacity (ZHOU; 

STEPHENS, 2014). Overall, multi-trait methods are applied when the primary trait 

presents low heritability values, thus taking advantage of the heritability of secondary 

traits (WARD et al., 2019). Several studies have shown that multi-trait GS are superior 

to single trait methods when using highly correlated traits (BERRO et al., 2019; 

BUDHLAKOTI et al., 2019; LOZADA; CARTER, 2019). However, no information is 

available in the literature on analyzing the optimization of training sets (OTS) alongside 

a multi-trait strategy. Nevertheless, it is possible to use the optimized training set 

genotypes to improve the predictive accuracy of genomic selection.  

To optimize genomic best linear unbiased prediction (GBLUP) models for 

Eucalyptus grandis, the most commonly planted tree species in the world, we studied 

the effectiveness of multiple methodologies to increase predictive ability and the 

accuracy of GS models. Thus, this study aims to: i) analyze the influence of additive 

and additive-dominance models on growth and wood quality traits; ii) compare the 

efficiency of two training set optimization strategies; iii) evaluate the influence of two 

cross-validation schemes on multi-trait GS models; and iv) test the most efficient 

methods from steps i, ii, and iii to generate an optimized prediction accuracy multi-trait 

model with training set optimization. 

 

2.2 MATERIAL AND METHODS  
 

2.2.1 Phenotypic data 
 

Genomic prediction models were performed using 1,772 individuals from an 

open-pollinated seed orchard of E. grandis located in the municipality of São Miguel 

Arcanjo, São Paulo state, Brazil. The study population was established in September 

2012 using a randomized complete block design with four blocks of 27 different families 

(treatments). Each treatment consisted of four plots with 20 genotypes each (5 plants 

per plot) and a spacing between plants of 3 × 2 m, in four rows of 5 plants each. The 

seed orchard contains selected individuals that originate from two regions in Australia 

(Coff’s Harbour and Atherton). 

Phenotypic information was collected for six growth and six wood quality traits 

at three and six years after planting. The growth traits were diameter at breast height 

in centimeters (DBH3 and DBH6), height in meters (HEI3 and HEI6), and volume in 
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cubic meters (VOL3 and VOL6). DBH and height at three and six years were used to 

estimate tree volume (VOL3 and VOL6) in cubic meters according to the formula 

(Equation 1) described by Schumacher and Hall (1933):  

 

 

𝑉𝑂𝐿 =  𝐷𝐵𝐻2 ×
𝜋

40000
× 𝐻𝐸𝐼 × 𝑓 (1) 

 

where 𝐷𝐵𝐻 is the diameter at breast height at three or six years (DBH3 or DBH6); 𝑓 is 

the taper factor (assumed to be 0.45); and 𝜋 is the ratio between the circumference 

and the diameter; 𝐻𝐸𝐼 is the total height at three or six years (HEI3 or HEI6). 

Wood quality traits were estimated at six years of age using near-infrared (NIR) 

spectroscopy. Non-destructive wood samples were collected at breast height using a 

12 mm increment borer. The samples were stored at room temperature in a controlled 

atmosphere (50% moisture and temperature of 23 ºC ± 2 ºC). Subsequently, samples 

were ground using a Wiley mill to achieve a uniform particle size. The sawdust was 

then placed in the spectrophotometer sample chamber, calibrated with the equipment’s 

SUZANO’s internal reference standards. The estimated wood quality traits were 

percentage of pure cellulose yield (PCY), basic wood density in kilograms per cubic 

meter (BWD), Syrigil/Guayacil ratio (SGR), percentage of soluble lignin (SOL), total 

solid content (TSC), and percentage of total extractives (TEX). 

 

2.2.2 Quality control and effective population size 
 

SNP genotypes were obtained using the Illumina Infinium EuCHIP60K 

Eucalyptus SNP chip (SILVA‐JUNIOR; FARIA; GRATTAPAGLIA, 2015). The first step 

of the quality control process was removing duplicate SNP markers. Then, genotypic 

data were filtered considering a call rate lower than 95% and monomorphic markers. 

The markers with a minor allele frequency (MAF) lower than or equal to 0.01, and those 

that showed high deviation from Hardy-Weinberg equilibrium (p-value < 1x10-6) were 

also excluded (GRANATO et al., 2018). The genotypes were coded as “0” and “2” for 

homozygotes and “1” for heterozygotes. These processes were performed using the 

SNPReady package in the R environment (GRANATO et al., 2018). Finally, the 

remaining filtered markers were subject to linkage disequilibrium (LD) pruning, 

removing markers with a pairwise r2 greater than 0.99. This step was performed using 
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the SNPRelate package in R (ZHENG et al., 2012). After the quality control process, 

we estimated the effective population size ( 𝑁𝑒 ) using the molecular linkage 

disequilibrium method (WAPLES; DO, 2008) as implemented in NeEstimator V2.1 (DO 

et al., 2014). 

 

2.2.3 Phenotypic analysis 
 

We estimated the restricted maximum likelihood/best linear unbiased prediction 

(REML/BLUP) for the 12 phenotypic traits using the breedR package in R (MUNOZ; 

RODRIGUEZ, 2014). For each trait, BLUPs were predicted separately according to the 

following mixed model (Equation 2):  

 

𝑌𝑖𝑗𝑘  =  𝜇 +  𝑋𝑏𝑗 + 𝑍𝑡𝑗 + 𝑍𝑝𝑘 +  𝜀𝑖𝑗 (2) 

where 𝜇 is the average mean; 𝑏𝑗 is the fixed effect of the 𝑗𝑡ℎ block; 𝑡𝑗 is the fixed effect 

of the 𝑗𝑡ℎ progeny; 𝑃𝑘 is the random effect of the 𝑗𝑡ℎ plot with p ~ N(0, 𝜎𝑃
2); and 𝜀𝑖𝑗 is 

the residual error that represents the nongenetic effects. The matrices 𝑋 and 𝑍 are the 

incidence matrices for the fixed and random effects, respectively. We then estimated 

the deregressed best linear unbiased prediction/predictor (dBLUP) to avoid shrinkage 

properties (HENDERSON, 1975) using the formula 
𝑔̂

𝑟2  (GARRICK; TAYLOR; 

FERNANDO, 2009), where: 𝑔̂ is the BLUP values and 𝑟2 is the reliability, estimated as 

1 − (𝑃𝐸𝑉/𝜎𝑔
2), where 𝑃𝐸𝑉  is the prediction error variance and 𝜎𝑔

2  is the genotypic 

variance. Pearson correlation tests were then estimated using the BLUPs to verify the 

correlation between the 12 growth and wood quality traits. Correlation distributions 

were plotted using the metan package in R (OLIVOTO; LÚCIO, 2020), as follows 

(Equation 3): 

 

𝑟𝑔(𝑥,𝑦) =  
𝐶𝑜𝑣𝑔(𝑥,𝑦)

√𝜎2(𝑥), 𝜎2(𝑦)
 (3) 

where, 𝑟𝑔(𝑥,𝑦) is the correlation between primary (𝑥) and secondary traits (𝑦); 𝐶𝑜𝑣𝑔(𝑥,𝑦) 

is the covariance between trait 𝑥 and 𝑦; 𝜎2(𝑥) is the variance associated with trait 𝑥; 

and 𝜎2(𝑦) is the variance associated with trait 𝑦. 
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2.2.4 Genomic prediction 
 

2.2.4.1 Additive and additive-dominant models 
 

The additive (𝐺𝑎) and dominance (𝐺𝑑) genomic kinship matrices were obtained 

according to VanRaden (2008): 𝐺𝑎 =
𝑍𝐴𝑍𝐴

𝑇

2 ∑ 𝑝𝑖(1−𝑝𝑖)
𝑚𝑖
1

 and 𝐺𝑑 =
𝑍𝐷𝑍𝐷

𝑇

4 ∑ {𝑝𝑖(1−𝑝𝑗)}
2𝑚𝑖

1

, where 𝑝𝑖 is 

the frequency of an allele from locus 𝑖;  𝑍 is an n × m matrix of marker incidence (n is 

the number of genotypes and m is the number of markers); and 𝑍𝐴 is a matrix coded 

as 0 for homozygote 𝐴1𝐴1, 1 for heterozygote 𝐴1𝐴2, and 2 for homozygote 𝐴2𝐴2. For 

the 𝑍𝐷  matrix, 0 was allocated to both homozygotes (𝐴1𝐴1 and 𝐴2𝐴2) and 1 to the 

heterozygote (𝐴1𝐴2). The genomic kinship matrices (𝐺𝑎 and 𝐺𝑑) were estimated using 

the SNPReady package in R (GRANATO et al., 2018). 

The first step of this study was to compare the efficiency of the additive (A) and 

additive-dominant (AD) genomic best linear unbiased prediction (GBLUP) models for 

growth and wood quality traits individually (j = 1, …, 12). The additive and additive-

dominant GBLUP were used by fitting the following models (Equations 4 and 5): 

𝑦 = 𝑋𝛽 + 𝑍𝑎𝑎 + 𝑒 (4) 

𝑦 = 𝑋𝛽 +  𝑍𝑎𝑎 + 𝑍𝑑𝑑 + 𝑒 (5) 

 

where 𝑦 is a vector of BLUP values of genotypes obtained from the single-trait model; 

𝛽 is a vector of fixed effects; 𝑎 is a vector of additive genetic effects of the markers, 

where 𝑎 ∼ 𝑁(0, σ𝑎
2𝐺𝑎) and 𝐺𝑎 is the additive genomic kinship matrix; 𝑑 is the vector of 

dominance effect, where 𝑑 ∼ 𝑁(0, σ𝑑
2 𝐺𝑑) and 𝐺𝑑  is the dominance genomic kinship 

matrix; 𝑍𝑎 and 𝑍𝑑 are incidence matrices for 𝑎 and 𝑑. Finally, 𝑒 is the model residual, 

where 𝑒 ∼ 𝑁(0, σ𝑒
2). 

 
2.2.4.2 Predictive accuracies and genetic parameters 
 

For the additive (A) and additive-dominant (AD) GBLUP models, we applied a 

repeated random sub-sampling cross-validation to investigate GS prediction 

accuracies with varying training set sizes. Individuals were randomly assigned to either 

the training or validation set. The GBLUP model was used as described above with the 
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training size defined at 30% (530), 40% (710), 50% (885), 60% (1,065), 70% (1,240), 

80% (1,420), and 90% (1,595) of the total number of individuals. Variance components 

and genetic parameters were estimated using an average of 50 runs of repeated 

random sub-sampling cross validation for each training size. The variance components 

were estimated using the ASReml-R package (BUTLER et al., 2017). 

Predictive abilities (PA) were calculated considering the Pearson correlation 

coefficient (ρ) between the genomic estimated breeding values (GEBV) and observed 

adjusted means from the validation set. The coincidence of selection (CS) was also 

computed for each TS size. The CS refers to the Pearson correlation coefficient (or 

percentage) of the shared set of individuals that would have been selected considering 

their adjusted means from the phenotypic analysis and their GEBV from the genomic 

prediction model under the same selection intensity. Furthermore, to verify the 

efficiency of GS methods to select the best genotypes, we considered five different 

selection intensities. The estimated efficiency of the models to select the best 20 (top 

20), 30 (top 30), 50 (top 50), 100 (top 100), and 150 (top 150) individuals of the 1,772 

genotypes that the GS model selected based on the ranking of adjusted means. To 

confirm genetic gains through GS, we estimated the selection gain (SG) as the 

percentage gain of the selected individuals beyond the population average for the 

different training sizes and methods, as (Equation 6): 

 

𝑆𝐺 = (𝑋̅𝑠 − 𝑋̅0)ℎ𝑎
2 (6) 

 

where, 𝑋̅𝑠 is the average of genotypes selected by the genomic selection model; 𝑋̅0 is 

the average of the original population; and ℎ𝑎
2 is narrow-sense heritability. According 

to Jia and Jannink (2012), trait heritability of the predictive model is influenced by the 

genetic structure of the training set. Thus, after fitting each model, for each training 

size (30, 40, 50, 60 70, 80, and 90%) and for each of the five different methods 

(additive, additive-dominant, optimization of the training set, multi-trait, and multi-trait 

with optimization of the training set), we estimated the narrow-sense heritability (ℎ𝑎
2 =

 𝜎𝑎
2/ 𝜎𝑝

2 ), where  𝜎𝑎
2  represents the additive variance and 𝜎𝑝2 is the phenotypic 

variance. Broad-sense heritability (ℎ𝑔
2 = (𝜎𝑎

2 + 𝜎𝑑
2) 𝜎𝑝

2⁄ ) was also estimated for the five 

different models, where  𝜎𝑎
2  represents the additive variance, 𝜎𝑑

2  represents the 

dominance variance, and 𝜎𝑝
2 is the phenotypic variance. 
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2.2.4.3 Optimization of the training set with a genetic algorithm 
 

The main goal of the optimizing the training set (OTS) analysis was to assess 

whether the OTS models can increase the predictive accuracy of the GBLUP model 

using smaller training set sizes. Thus, we compared the multi-trait results for two OTS 

statistics (coefficient of determination and prediction error variance) with repeated 

random sub-sampling validation. Defined by Laloë (1993), the coefficient of 

determination (CDmean) is the squared correlation between the true and predicted 

genetic values. The prediction error variance (PEVmean) is defined as the contrast 

between all selected genotypes and the mean of the population (RINCENT et al., 

2012).  

To select the most representative individuals and optimize the size of the 

training set, we compared the efficiency of the GS model considering the same training 

set sizes used in the previous analysis (30, 40, 50, 60, 70, 80, and 90%). We 

implemented two optimization algorithms (PEVmean and CDmean) using the STPGA 

package in R (AKDEMIR, 2017), repeated 10 times to minimize stochastic variation. 

The best training population for each of the seven different training set sizes was 

selected after 20 iterations of the genetic algorithm; other parameters in the function 

were set to default values. Then, using the predictive ability results from the random 

repeated subsampling, the best GBLUP method (A or AD) was selected to run the OTS 

model for all growth and wood quality traits using the two OTS algorithms (PEVmean 

and CDmean). Genetic parameters, predictive ability (PA), coincidence of selection 

(CS), and selection gain (SG) were then estimated for the two OTS algorithms. 

Afterward, the OTS analysis results were compared with a randomly selected training 

set (A or AD GBLUP), and the best OTS statistic was identified for use in the 

subsequent optimization process. 

 

2.2.4.4 Multi-trait analysis 
 

An additive-dominance GBLUP model was used for multi-trait (MT) genomic 

selection models (j = 1,..., n traits) (Figure 1). The main goal of the MT analysis was to 

use growth traits to increase the accuracy of GS models for wood quality traits. The 

MT-GS and additive-dominant GBLUP models were used to estimate the genomic 
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estimated breeding values (GEBVs) considering a bivariate linear mixed model of two 

correlated traits (Equation 7), as follows: 

 

[
𝑦1

𝑦2
] = [

𝑋𝛽1

𝑋𝛽2
] + [

𝑍𝑎𝑎 0
0 𝑍𝑎𝑎

] + [
𝑍𝑑𝑑 0

0 𝑍𝑑𝑑
] +  [

𝑒1

𝑒2
] (7) 

 

where 𝑦1 and 𝑦2 are the BLUP values for traits 1 (growth) and 2 (wood-quality), 

𝛽1 and 𝛽2 are the vector of fixed effects; 𝑎 is a vector of additive genetic effects of the 

individuals, where 𝑎 ∼ 𝑁(0, σ𝑎
2 𝐺𝑎) ; 𝑑  is the vector of dominance effect, where 𝑑 ∼

𝑁(0, σ𝑑
2 𝐺𝑑) ; 𝑍𝑎  and 𝑍𝑑  are incidence matrices for 𝑎  and 𝑑 . Further, 𝑒  is the model 

residual, and it was considered that 𝑒 ∼ 𝑁(0, σ𝑒
2).  

 

Figure 1 - Illustration of the two multi-trait (MT) cross-validation schemes (MT-
CV1 and MT-CV2) in genomic selection models for Eucalyptus grandis. 
Genotypic and phenotypic data were divided into training and 
validation sets. The green boxes represent the existing phenotypic 
information, white boxes represent absent phenotypic information, 
and red boxes represent the predicted phenotypic information. 

 

Trait Type  Training set Validation set CV-scheme 

1th GWT  80% - 
MT-CV1 

2th WQT  80% 20% 

       

1th GWT  80% 20% 
MT-CV2 

2th WQT  80% 20% 

MT-CV-1 = multi-trait cross-validation scheme 1; MT-CV-2 = multi-trait cross-validation 
scheme 2; 1 and 2 are the primary and secondary traits, respectively; GWT = Growth-
trait; WQT = Wood quality trait. 
 

For the multi-trait analysis, we used a 5-fold, 5-replicate cross-validation 

scheme to randomly select the training and validation sets using two different cross-

validation strategies (MT-CV1 and MT-CV2) (Figure 1). In the first scheme (MT-CV1), 

we used 80% of the phenotypic information from the training set for primary (growth) 

and secondary (wood quality) traits and the remaining 20% of the validation set had 

no phenotypic information. For the second cross-validation scheme (MT-CV2), we 

used 100% of the information for the primary trait for both training and validation sets 

and 80% of phenotypic information of the secondary trait for the training set. 
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2.2.4.5 Multi-trait with optimization of the training set model 
 

Subsequently, we performed a multi-trait analysis using the individuals selected 

by the training set optimization model (MT-OTS) to compare the performance of the 

optimization of the training set in a multi-trait genomic prediction scenario. The 

algorithm used for the MT-OTS analysis was selected considering the best predictive 

accuracy achieved in the previous step (multi-trait) as well as the best training set size 

based on predictive accuracy. The genetic parameters (PA, CS, SG, ℎ𝑎
2, and ℎ𝑔

2) were 

also estimated for the MT-OTS analysis and compared with previous results (single-

trait, OTS, and multi-trait). 

 

2.3 RESULTS 
 

2.3.1 Genotypic and phenotypic data 
 

A total of 21,254 SNPs were used for the genomic selection analysis after 

quality control. We found an effective population size (𝑁𝑒) of 31.5 considering linkage 

disequilibrium between markers (𝐿𝐷𝑁𝑒 ). The heatmap showed that the strength of 

genomic relationships between the different genotypes is relatively low. Three large 

groups with genetically related individuals were identified, along with small clusters of 

more closely related individuals. Only a few genotypes showed kinship comparable to 

parent-offspring or full-sibs (Figure 2a). As expected for mixed-mating species, the 

dominance variance indicated a small contribution for phenotypic variation but with 

some clusters among genotypes. However, several blocks of genotypes were 

identified with high dominance patterns (Figure 2b). 
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Figure 2 - Heatmaps for the (a) additive and (b) dominance genetic variances of 
the 1,772 Eucalyptus grandis genotypes obtained following VanRaden 
(2008). Red indicates a limited relationship and yellow represents a high 
additive/dominance relationship between individuals 

 

 

(b) 

(a) 
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The genetic correlation indicates that growth traits are highly correlated, with 

values ranging from 0.83 (HEI3 and HEI6) to 1 (DBH6 and VOL6). Wood quality traits 

did not show a strong correlation, although there was a significant association for most 

traits (Figure 3). The highest positive association between wood quality traits was 

found between SOL and TEX (0.62). Further, a strong and negative correlation was 

found between traits PCY and TSC (-0.96). Only two trait combinations showed no 

significant Pearson’s correlation coefficient TEX and DBH3 (-0.05) and WBD and TSC 

(0.02). 

 

Figure 3 - Pearson’s correlation coefficient of genetic values for 12 growth and 
wood quality traits evaluated for 1,772 Eucalyptus grandis genotypes 
from a open-pollinated seed orchard located in São Miguel Arcanjo, 
São Paulo, Brazil 

 

DBH3: Diameter at breast height (DBH) at 3 years; DBH6: DBH at 6 years; VOL3: 
Volume at 3 years, VOL6: Volume at 6 years; HEI3: Height at 3 years; HEI6: Height at 
6 years; PCY: Pure cellulose yield; WBD: Basic wood density; SGR: Syringyl/guaiacyl 
ratio; SOL: Soluble lignin; TSC: Total solid content; and TEX :Total extractives. 
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2.3.2 Heritabilities 

 

 As expected, the narrow-sense heritability (ℎ𝑎
2) tended to increase for all studied 

growth traits (DBH3, HEI3, VOL3, DBH6, HEI6, and VOL6) with an increase in the 

training set size (Figure 4). The same pattern was found for two wood quality traits 

(PCY and TSC) but was less pronounced than the others. On the other hand, three 

wood quality traits (WBD, SGR, and TEX) did not show the same trend of increased 

ℎ𝑎
2  when the training set size increased. Only soluble lignin (SOL) decreased the 

narrow-sense heritability when the training set size increased considering the additive 

model. In general, traits that increased the ℎ𝑎
2 also showed a reduction in standard 

deviation with an increase in the training set size. The same pattern was identified for 

narrow-sense heritability considering both the additive and additive-dominant models. 

This indicates that the genomic selection performed better with a larger training set. 

Figure 4 - Broad-sense (pink) and narrow-sense (blue) heritabilities for the six 
growth (DBH3, HEI3, VOL3, DBH6, HEI6, VOL6) and six wood quality 
traits (PCY, WBD, SGR, SOL, TSC, and TEX) considering the additive-
dominant models for the seven different training set sizes (30, 40, 50, 
60, 70, 80, and 90%) 

 

DBH3: DBH at 3 years; DBH6: DBH at 6 years; VOL3: Volume at 3 years, VOL6: 
Volume at 6 years; HEI3: Height at 3 years; HEI6: Height at 6 years; PCY: Pure 
cellulose yield; WBD: Basic wood density; SGR: Syringyl/guaiacyl ratio; SOL: Soluble 
lignin; TSC: Total solid content; and TEX :Total extractives. 
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Similarly, dominance did not significantly increase broad-sense heritability (ℎ𝑔
2) 

for growth traits compared with narrow-sense heritability. Considering the height at 

three years (HEI3), dominance increased the trait heritability for GS models, which 

were more evident using larger training set sizes. Furthermore, for DBH at three years 

of age (DBH3), a high broad-sense heritability was found using the two largest training 

set sizes (80 and 90%). The results also showed a higher ℎ𝑔
2 for the additive-dominant 

model for most wood quality traits, indicating that dominance has a greater influence 

on these traits than on growth traits. Comparing the narrow-sense and broad-sense 

heritabilities, the traits WBD, SGR, SOL, and TEX showed a strong influence of 

dominance. However, a high standard deviation for those traits was also found, 

indicating that ℎ𝑔
2 is not representative, especially for smaller training set sizes. 

In general, the standard deviation decreased when the size of the training set 

increased (Figure 5). We found a more evident increase in standard deviation for 

broad-sense heritability considering wood quality traits, which can be seen by the 

interquartile range of the boxplots, especially for WBD, SGR, SOL, and TEX. Also, 

traits PCY and TSC showed an increase in heritability related to dominance. However, 

the result was not as high as the others, and the effect on standard deviation was less 

evident. The remaining models (OTS, MT, and MT-OTS) presented similar broad- and 

narrow-sense heritabilities (Table S1). 

 

2.3.3 Training set size 
 

The predictive ability increased with an increase in the size of the training set 

(Figure 5). Although there was an effect on PA after increasing the size of the training 

set for all evaluated traits and categories (growth and wood quality), growth traits 

generally responded better to an increase in training set size compared to wood quality 

traits. This pattern may be related to the lower heritability levels for growth traits, which 

benefit more from an increase in training set size. The highest predictive ability among 

all growth and wood quality traits was achieved for VOL3 (0.52) and PCY (0.63), 

respectively. HEI3 (0.41) and TEX (0.32) showed the lowest predictive ability values 

for all analyzed traits. For DBH6, the predictive ability increased from 0.33 (30%) to 

0.46 (90%) for the additive GBLUP model and from 0.42 (30%) to 0.51 (90%) for the 

additive dominant GBLUP model. Similarly, the predictive ability for TSC ranged from 

0.48 (30%) to 0.55 (90%) and 0.51 (30%) to 0.57 (90%) for the additive and additive-
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dominant models, respectively. Since we found no significant difference in predictive 

ability between training set sizes of 80% and 90% for most traits, we chose 80% as the 

best size to perform GS analyses to obtain the best predictive accuracies. 

 

2.3.4 Predictive ability 
 

2.3.4.1 Additive and additive-dominant model 
 

The PA for the additive and additive-dominant GBLUP models indicated that the 

additive-dominant model performed better, suggesting that dominance increased the 

ability to predict phenotypes. Specifically, we observed that growth traits were more 

heavily influenced by dominance than wood quality traits (Figure 5), while the additive-

dominant model did not increase PA for four wood quality traits (WBD, SGR, SOL, and 

TEX). For DBH6, considering the selected training set size (80%), the predictive ability 

increased from 0.46 to 0.51 when comparing the additive (Model 3) and additive-

dominant (Model 4) models, respectively. Similarly, for TSC, considering a training size 

of 80%, the PA increased from 0.51 (additive) to 0.56 (additive-dominant). Since most 

traits presented an increase in predictive ability using dominance, we developed the 

subsequent procedures (OTS, MT, and MT-OTS) using the additive-dominant model. 
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Figure 5 - Predictive ability of GBLUP model considering additive (pink) and 
additive-dominant (blue) variances. The x-axis represents different 
training set sizes, which were determined as 30, 40, 50, 60, 70, 80, and 
90% of the total number of individuals.  

 

DBH3: DBH at 3 years; DBH6: DBH at 6 years; VOL3: Volume at 3 years, VOL6: 
Volume at 6 years; HEI3: Height at 3 years; HEI6: Height at 6 years; PCY: Pure 
cellulose yield; WBD: Basic wood density; SGR: Syringyl/guaiacyl ratio; SOL: Soluble 
lignin; TSC: Total solid content; and TEX :Total extractives. 
 

2.3.4.2 Optimization of the training set 
 

In general, the OTS methods CDmean and PEVmean performed well by 

selecting similar individuals between training and target sets, even when the training 

sizes were smaller (Figure 6). The PEVmean statistic increased the predictive ability 

of the open-pollinated eucalypt population when compared with random sampling. 

However, the CDmean statistic did not enhance genomic prediction since most PA 

values were lower than the values for the AD model. As a result, an increase in the 

predictive ability was only found for soluble lignin, which increased from 0.4829 (AD) 

to 0.5340 (CDmean). A comparison between the two statistics across the seven 

different training set sizes indicate that, for most traits, the predictive accuracy using 

PEVmean was generally higher than CDmean. Similarly, the PEVmean statistic was 

effective in predicting genetic values since the PA values increased for most traits. 

Only traits SGR (0.3530) and TEX (0.2999) showed slight decreases in PA when 
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comparing the PEVmean with the AD method (0.3604 and 0.3053, for SGR and TEX, 

respectively). 

Figure 6 - Predictive ability for optimizing the training set model for Eucalyptus 
grandis using the CDmean (pink) and PEVmean (blue) metrics. The 
x-axis represents different sizes of the training set 

 

DBH3: DBH at 3 years; DBH6: DBH at 6 years; VOL3: Volume at 3 years, VOL6: 
Volume at 6 years; HEI3: Height at 3 years; HEI6: Height at 6 years; PCY: Pure 
cellulose yield; WBD: Basic wood density; SGR: Syringyl/guaiacyl ratio; SOL: Soluble 
lignin; TSC: Total solid content; and TEX: Total extractives. 
 

2.3.4.3 Multi-trait genomic selection 
 

The predictive ability using multi-trait models for wood quality traits was similar 

to the single trait model considering cross-validation scheme 1 (MT-CV1). Regarding 

MT-CV2, we found that an increase in PA was related to the intensity of the correlation 

(positive or negative) between traits. Traits PCY and TSC had the highest positive 

(0.32) and negative correlation (-0.37), respectively, with growth trait DBH3. The 

highest PA values for MT analysis were found with cross-validation scheme 2 (MT-

CV2) (Figure 7). Traits PCY (0.66; MT-CV2) and TSC (0.64; MT-CV2) showed the 

greatest increase in predictive ability when comparing the two cross-validation 

schemes, while the predictive ability for three traits (SGR, SOL, and TEX) remained 

the same for the two schemes. However, the predictive ability for traits SGR (0.400) 

and TEX (0.450) increased when compared to both the additive-dominant method 
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(SGR: 0.360; TEX: 0.303) and the PEVmean (SGR: 0.351; TEX: 0.299). Both SGR 

and TEX showed the lowest predictive ability for wood quality traits. These results 

indicate the effectiveness of using growth traits to predict wood quality traits. 

 

Figure 7 - Predictive ability for 1,772 Eucalyptus grandis genotypes using the 
GBLUP models with multi-trait analysis considering the two cross-
validation schemes (CV1 and CV2) 

 

PCY: Pure cellulose yield; WBD: Basic wood density; SGR: Syringyl/guaiacyl ratio; 
SOL: Soluble lignin; TSC: Total solid content; and TEX: Total extractives. 
 

Generally, the predictive ability for the MT-OTS method increased for three traits 

that showed the highest heritabilities (PCY, WBD, and TSC) compared to the multi-

trait method (MT). Furthermore, these traits show the highest positive and negative 

Pearson correlation coefficients (0.32, 0.14, and -0.35, respectively) with the growth 

trait DBH3. As a result, the MT-OTS method did not increase the PA for traits with low 

heritabilities or weak Pearson correlation coefficients. In terms of SGR, we found a 

slight increase when compared with the MT method. However, compared with the 

additive-dominant method, the PA for SGR values showed an increase from 0.3604 

(AD) to 0.4193 (MT-OTS). The traits soluble lignin and total extractives showed no 

increase in PA when compared with the MT method.  

Thus, the MT-OTS method also indicates that it is possible to optimize the 

number of phenotyped individuals and that growth traits can be used to increase the 

predictive ability of wood quality traits. However, this process is more efficient with 

traits that have high heritability levels. Additionally, we found that some traits (PCY, 
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SGR, and TSC) achieve their highest predictive abilities when a training size of around 

60% of the total population is used. These results indicate that the optimization of the 

training set using multi-trait analysis may also be effective in optimizing training set 

size, suggesting that resources in tree breeding programs can be efficiently allocated. 

 

Figure 8 - Predictive ability of GBLUP model using a multi-trait model 
considering the optimization of the training set (PEVmean) for a 
Eucalyptus grandis breeding population. The x-axis represents 
different sizes of the training set 

 

PCY: Pure cellulose yield; WBD: Basic wood density; SGR: Syringyl/guaiacyl ratio; 
SOL: Soluble lignin; TSC: Total solid content; and TEX: Total extractives. 
 

2.3.4.4 Selection coincidence and predicted selection gains 
 

The selection coincidence increased substantially with an increase in selection 

intensity (Figure 9). Following from the results among all traits analyzed, we found that 

GS models have a weak ability to select the best individuals (e.g., top 20) with selection 

coincidence values ranging from 0 (TSC; MT-CV2) to 0.40 (HEI6; Additive). 

Nevertheless, considering all methods analyzed, GS was efficient in discarding 

progenies with low potential when using high selection intensity (e.g., top 150), with 

values ranging from 0.35 (TSC; MT-CV2) to 0.73 (PCY; MT-OTS). We assessed the 

performance of all traits and training set sizes for all studied methods. 

The inability of GS to select the best genotypes using a high intensity was 

evident in MT-CV2 since almost all traits obtained a selection coincidence of only about 

5% for the top 20 (1.13% of the total population). In general, we found was minimal 

difference in selection coincidence values when comparing the additive and additive-

dominant models. Similarly, coincidence values were very similar between MT and MT-

OTS. Regarding the A and AD methods (Figures 9a and 9b), the highest coincidence 
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of selection was found for trait HEI6, and the lowest was found for wood basic density. 

For the OTS PEVmean method, the trait DBH3 obtained the highest coincidence 

values, and trait HEI6 presented some of the lowest values (Figure 9c). Conversely, 

considering the two cross-validation schemes (CV1 and CV2) for MT, CV1 achieved a 

higher selection coincidence when compared with CV2 (Figure 9a). For multi-trait and 

multi-trait with OTS (Figure 9d), PCY and TSC presented the highest selection 

coincidence values. Additionally, trait TSC showed one of the highest coincidence 

considering CV1, but the lowest values for all training set sizes using CV2. 

Figure 9 - The coincidence of selection for traits considering the (a) additive, (b) 
additive-dominant, (c) OTS, (d) multi-trait, and (e) multi-trait with OTS 
models for growth and wood quality traits in Eucalyptus grandis. For 
the multi-trait analysis, circles and triangles represent cross-
validation schemes 1 (CV1) and 2 (CV2), respectively. Different colors 
represent different traits. 

 

 

DBH3: DBH at 3 years; DBH6: DBH at 6 years; VOL3: Volume at 3 years, VOL6: 
Volume at 6 years; HEI3: Height at 3 years; HEI6: Height at 6 years; PCY: Pure 
cellulose yield; WBD: Basic wood density; SGR: Syringyl/guaiacyl ratio; SOL: Soluble 
lignin; TSC: Total solid content; and TEX: Total extractives. 

(a) (b) (c) 

(d) (e) 
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 Although a low coincidence was found for high selection intensity scenarios, 

most of the selection gains were positive (greater than 2%), indicating clear gains 

achieved by the GS models (Figure 10). Generally, restrictive scenarios presented the 

highest values, and low-intensity selection scenarios presented the lowest SG. For A 

(training set of 80%), AD (training set of 80%), and OTS models, growth traits VOL6, 

VOL3, and DBH3 showed the greatest gains, while PCY presented the lowest selection 

gains (Figure 10a, 10b, and 10c).  

 

Figure 10 - Selection gains for traits considering the (a) additive, (b) additive-
dominant, (c) Optimization of the Training Set (OTS), (d) multi-trait, 
and, (e) multi-trait with OTS models for growth and wood quality 
traits in Eucalyptus grandis. For the multi-trait models, circles and 
triangles represent cross-validation schemes 1 (CV1) and 2 (CV2), 
respectively. Different colors represent different traits. 

 

 
DBH3: DBH at 3 years; DBH6: DBH at 6 years; VOL3: Volume at 3 years, VOL6: 
Volume at 6 years; HEI3: Height at 3 years; HEI6: Height at 6 years; PCY: Pure 
cellulose yield; WBD: Basic wood density; SGR: Syringyl/guaiacyl ratio; SOL: Soluble 
lignin; TSC: Total solid content; and TEX: Total extractives. 
 

(d) (e) 

(c) (b) (a) 
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For MT-CV2, TEX did not show a positive selection gain across different TS 

sizes. Regarding multi-trait and MT-OTS, the traits TEX and SGR showed a greater 

selection gain, and trait PCY had the lowest selection gain. Specifically, the MT method 

showed high selection gains for traits SGR, SOL, and TEX. There was no clear 

differentiation between cross-validation schemes. 

 

2.3.5 Workflow analysis  
 

Considering our results, we propose a flowchart based on increases in 

predictive ability (Figure 11). All growth and several wood quality traits showed an 

increase in PA due to dominance. The PA for several wood quality traits also 

increased, but none showed a reduction in predictive ability using dominance variance. 

Although the two OTS statistics (PEVmean and CDmean) were effective in predicting 

the genotypic value, some traits had higher PA values when using PEVmean. In 

addition, we found that some traits showed that MT-CV2 was more efficient than MT-

CV1 in increasing PA. MT-OTS can be considered the best method to improve 

predictive ability. Therefore, based on the model’s predictive ability, we suggest the 

following workflow: Additive-dominant, OTS-PEVmean, and MT-CV2. 

Figure 11 - Flowchart of optimization of genomic prediction methods for 
Eucalyptus grandis. In green, the methods with the highest 
predictive abilities; orange represents methods that were tested but 
not selected for subsequent analyses 

 

A = Additive GBLUP model; AD = Additive-dominant GBLUP model; PEV = Mean 
prediction error variance (PEVmean); CD = Mean coefficient of determination 
(CDmean); CV1 = Cross-validation scheme 1; CV2 = Cross-validation scheme 2. 
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2.4 DISCUSSION 
 

Due to the time required for breeding cycles and the extensive costs associated 

with phenotypic and genotypic data acquisition, it is desirable to optimize genomic 

selection models to reduce costs and breeding program cycles (RIEDELSHEIMER; 

MELCHINGER, 2013; HESLOT; JANNINK; SORRELLS, 2015). Furthermore, 

increases in the predictive accuracy of GS models can be enhanced by developing 

methodologies that consider non-additive and other effects (VITEZICA; VARONA; 

LEGARRA, 2013; SUN et al., 2014; VARONA et al., 2018), size optimization, selection 

of genotypes to be used in the training set (AKDEMIR; SANCHEZ; JANNINK, 2015; 

BERRO et al., 2019; ISIDRO et al., 2015), and multi-trait analyses (JIA; JANNINK, 

2012; RAMBOLARIMANANA et al., 2018; LENZ et al., 2020). 

According to Tan et al. (2017), the power of predictive accuracy in GS is mainly 

related to the composition and size of the training set. Here, we found that Eucalyptus 

breeding programs can be optimized by using GS models that have previously 

analyzed genetic parameters, such as predictive ability, selection coincidence, and 

selection gains. As a result, to optimize the resources used for phenotyping, it is 

recommended to estimate the accuracy of a prediction scenario before collecting the 

phenotypic information since it is possible to optimize the training set (RINCENT; 

CHARCOSSET; MOREAU, 2017). The efficiency of GS is mainly influenced by factors 

related to trait heritability (CALUS et al., 2008; RESENDE et al., 2012), population 

structure (ISIDRO et al., 2015; NORMAN et al., 2018; WERNER et al., 2020), kinship 

among genotypes (HESLOT et al., 2012; SCUTARI; MACKAY; BALDING, 2013), the 

method applied (HESLOT et al., 2012; WANG et al., 2018), and training set 

composition (AKDEMIR; SANCHEZ; JANNINK, 2015; ISIDRO et al., 2015; 

RIEDELSHEIMER; MELCHINGER, 2013). Of these, the composition and size of the 

training set and the methodology and statistical model used can help to optimize GS 

predictive accuracy.  

According to Grattapaglia et al. (2018), the training set size has a distinct effect 

on GS accuracy and should be large enough to guarantee good predictive abilities. 

However, our results suggest that most growth traits have a less significant impact on 

the predictive accuracy of a population in GS (Figure 5). Similar to the results of 

previous studies ( ZHAO et al., 2012; NORMAN et al., 2018; OU; LIAO, 2019), a 

training set size of 80% of the total population was sufficient to enhance the most 
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powerful predictive accuracies of GS models for all methods analyzed. When selecting 

genotypes using dominance and the OTS algorithm, the predictive accuracy of smaller 

training set sizes increased, offering a possible opportunity to optimize the genotyping 

step of a breeding program. Indeed, GS is influenced by kinship and population 

structure (BASTIAANSEN et al., 2012; ISIDRO et al., 2015; WERNER et al., 2020). 

  Our results indicate that the AD model is the most effective for predicting growth 

traits. Considering the results found by Thumma et al. (2022) for a progeny test of 

Eucalyptus nitens (H. Deane & Maiden) Maiden, significant inbreeding depression was 

found for the traits DBH and kraft pulp yield due to dominance and epistasis, 

respectively. Thus, these authors conclude that it is possible to use the dominance 

effect to select the best parents and improve selection gains. Additionally, it is 

important to include dominance in GS models for Eucalyptus breeding since all 

variance (additive and dominance) is captured by vegetative propagation. 

Furthermore, dominance increased the heritability of wood quality traits, such as the 

SGR and TEX, but we found no evident increase in the PA of these traits, which may 

be related to an overestimation of the variances in GS models (JIA, 2017).  

 According to Rezende et al. (2014), the genetic control of growth and wood 

quality traits is mainly additive, but there is an influence of dominance on growth traits. 

Previous studies have found a more pronounced dominance effect on growth variables 

(DENIS; BOUVET, 2013; TAN et al., 2018), but less so for wood quality traits 

(PALUDETO et al., 2021; RESENDE et al., 2017). On the other hand, among all traits 

evaluated in our study (growth and wood quality), predictive abilities were generally 

higher for two wood quality traits (PCY and TSC). As expected, these traits present 

both the most positive and negative genetic correlations (Figure 3) and were also the 

only two wood quality traits that showed an increase in predictive ability when adding 

dominance (Figure 5). 

Our study shows that identifying a suitable subset of individuals for phenotyping 

improved the predictive accuracy of GS models for a Eucalyptus breeding program. 

Defining the training set and its size is a trade-off between model accuracy and the 

resources available for phenotyping (OU; LIAO, 2019). Herein, the optimization of the 

training set demonstrated that both CDmean and PEVmean statistics were effective in 

selecting the best genotypes to be used as the training set in different training 

populations. However, consistent with previous studies, PEVmean achieved better 

predictive abilities than CDmean and random sampling (RINCENT et al., 2012; 
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KADAM; RODRIGUEZ; LORENZ, 2021). Nevertheless, several studies have found 

that CDmean outperformed PEVmean (ISIDRO et al., 2015; ZHANG et al., 2021). 

Thus, the efficiency of each OTS statistic should be evaluated for each scenario. 

The CDmean and PEVmean have been successfully tested in a range of 

different species including maize, wheat, and oat, with populations presenting several 

levels of kinship and population structures (ASORO et al., 2011; KADAM; 

RODRIGUEZ; LORENZ, 2021; RINCENT et al., 2012; SARINELLI et al., 2019; 

ZHANG et al., 2021). However, to the best of our knowledge, no similar study has 

compared the effectiveness of using the two criteria for eucalypts. Isidro et al. (2015) 

reported that CDmean showed weak performance in highly structured populations. 

Here, the impact of the genotypic information and the population structure was not 

considered when applying the optimization criteria, which may explain the inferior 

performance of CDmean compared to PEVmean.  

Further studies should be done to evaluate the efficiency of OTS in highly 

structured populations for complex traits to predict the effectiveness of GS and 

optimize the training set according to the targeted breeding population. Thus, the 

application of this methodology is indicated for use in GS models, especially for wood 

quality traits, which are expensive and difficult to collect. Further, our testing of OTS 

with smaller training sizes indicates that, for traits that are costly to analyze, we could 

obtain similar predictive accuracies by randomly selecting the TS, which may be an 

interesting option for breeding programs. Indeed, we have shown that the models 

select the most representative genotypes to be used as the training set. However, even 

when using OTS, for very small training set sizes (e.g., 30%), all models (A, AD, MT, 

and MT-OTS) were inefficient in obtaining high accuracy since a small number of 

genotypes cannot effectively represent the whole population. On the other hand, 

considering medium training set sizes (e.g., 60 and 70%), the OTS, MT, and MT-OTS 

methods effectively increased and optimized the predictive ability and selection gains 

in GS. 

Understanding the correlation among traits is important to develop accurate 

multi-trait predictions (MONTESINOS-LÓPEZ et al., 2018; WARD et al., 2019). Apart 

from the increase in DBH, a significant increase in height and volume are determined 

by plant growth. Previous studies reported positive and negative correlations between 

growth (OSORIO; WHITE; HUBER, 2003; WEI; BORRALHO, 1998) and wood quality 

traits (GALLO et al., 2018; MPHAHLELE et al., 2020), respectively, in Eucalyptus 
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species. Meanwhile, research has also indicated positive correlations between growth 

traits and cellulose yield (PCY) and basic wood density (WBD) (WU et al., 2011). 

However, a negative correlation between growth and wood quality traits indicates 

possible negative effects when selecting for fast-growth and ideal cellulose pulp 

production. Strong negative correlation patterns between total extractives and pulp 

production with total solid content are expected since they are inversely proportional 

(RAYMOND, 2002). According to Silva et al. (2020), the strong negative correlation 

between PCY and TSC is expected because when cellulose production is increased, 

the total solid content decreases. 

Multi-trait analysis showed the effectiveness of using growth traits to increase 

the predictive ability of wood quality traits compared to a single trait model. However, 

the cross-validation schemes showed a weak improvement in predictive ability for 

wood quality traits when only phenotypic information was included in the training set 

(MT-CV1). A similar result was found by Arojju et al. (2020) when analyzing the 

efficiency of multi-trait models in perennial ryegrass, where the predictive ability using 

MT-CV1 was comparable to the single-trait model. Similarly, Gill et al. (2021) found no 

improvement in predictive ability for MT-CV1 in relation to single trait analysis 

considering five wheat traits in the different growing seasons evaluated.  

The increase in predictive ability resulting from MT-CV2 might be related to the 

high correlation between traits and the amount of information used to predict the wood 

quality traits. According to Rambolarimanana et al. (2018), the higher the correlation 

between traits, the greater the efficiency of the multi-trait approach. Additionally, the 

efficiency of multi-trait models is related to high levels of heritability between primary 

and secondary traits. Moreover, according to Jia and Jannink (2012), the predictive 

ability of GS models using multi-trait analysis can be increased when the heritability of 

the primary trait is high. Thus, using all information from growth traits can increase the 

predictive ability for wood quality traits. 

Including the phenotypic information of the secondary trait in both training and 

validation sets considerably increased the predictive ability for two important wood 

quality traits (PCY and TSC). Not surprisingly, we found that these traits are most 

negatively correlated (-0.96), indicating that they are inversely proportional, as noted 

above. In addition, the narrow-sense heritabilities for PCY and TSC are some of the 

highest for wood quality traits, even though WBD also presents high narrow-sense 

heritability. However, we believe that the high levels of correlation between TSC (-
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0.35), PCY (0.33), and WBD (0.14) with growth trait DBH3 could explain the limited 

differentiation in predictive ability between CV1 and CV2 for this trait. Consequently, 

the weak improvement in predictive ability using multi-trait analysis for SGR, SOL, and 

TEX are likely related to the weak genetic correlation with DBH3 (-0.13, -0.12, and 

0.05, respectively), which presented the lowest correlations among all analyzed traits. 

Another explanation for the limited increase in predictive ability might be related to the 

methods used to analyze wood quality traits. According to Schwanninger et al. (2011), 

near-infrared (NIR) spectroscopy models might perform poorly for complex molecules 

such as wood, since these models represent the correlation with atom vibration, or 

chemical properties, which may be altered from its natural state.  

Cellulose pulp yield is an important wood quality trait for tree species since it is 

directly correlated with the manufacturing process for cellulose production 

(RAYMOND, 2002; KIEN et al., 2009). Similarly, the total solid content is also important 

since its presence or absence directly impacts the number of chemicals used in the 

cellulose pulp production process (DUTT; TYAGI, 2011), which has an impact on 

production costs. Thus, the development of multi-trait analysis using phenotypic 

information for growth traits, such as DBH3, can be effective in optimizing the predictive 

ability of GS models, potentially reducing the costs associated with breeding programs. 

Finally, multi-trait analysis using the optimization of the training set (MT-OTS) 

also showed an increase in predictive ability estimates. Similar to the results for the 

random multi-trait model, PCY and TSC demonstrated the highest predictive 

accuracies (0.672 and 0.644, respectively). Thus, the high heritability of those traits 

and their genetic correlation might have the same effect on the MT-OTS models. 

Compared with the additive model, these traits showed the highest increase for 

predictive ability (7.2% and 9.7% for PCY and TSC, respectively). To the best of our 

knowledge, this is the first analysis involving both multi-trait and OTS models. It is also 

important to note that predictive ability for those traits reached a plateau with a TS size 

of 60%. These results indicate that MT-OTS can increase predictive ability and improve 

resource allocation in breeding programs since phenotyping can include a smaller 

number of individuals. 

 Most studies involving genomic selection have analyzed the success of 

selection considering only the correlation between the predicted and observed 

genotypes (HE et al., 2016). However, when only the predictive ability is analyzed, the 

result can produce several different rankings which do not necessarily identify the best 
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individuals. As with traditional selection strategies based only on phenotype, GS 

should focus on accurately ranking the best genotypes (BLONDEL et al., 2015) since 

high selection coincidence can provide a more accurate selection. Several studies 

have shown that predictive ability is not necessarily strictly correlated with CS 

(MENDONÇA; FRITSCHE‐NETO, 2020; SABADIN et al., 2021). Blondel et al. (2015) 

showed that the same predictive ability could be obtained from different rankings. 

Thus, looking only at the CS, our study shows that a high selection intensity can lead 

to the inclusion of genotypes with low performance, indicating that the success of GS 

in Eucalyptus is improved with a high selection percentage. Although a high selection 

intensity may lead to the selection of low performance genetic materials, it also 

guarantees that the best genotypes are not discarded (MENDONÇA et al., 2020).  

Although we found a relatively low selection coincidence, the selection gains for 

all methods and training set sizes were positive, demonstrating that even though the 

best progenies were not selected with low selection intensity, genomic selection 

showed positive gains. According to Heffner et al. (2010), moderate selection intensity 

can drastically increase genetic gains since there is a shorter breeding cycle when 

compared to traditional selection. Mendonça et al. (2020) offered two options for 

breeding using genomic selection: first, the impact of high selection intensity on 

genomic selection could be explored using a small number of plots, which could lead 

to the same selection gains; or second, the same number of plots is maintained, thus 

exploiting all variation from the population, which could increase selection gains. We 

suggest that different fields of research, such as microbiomics, metabolomics, and 

enviromics, should be combined with genomic evaluation to better predict genotype 

performance. Over time, new optimization methodologies will offer an improved 

understanding of genetic and environmental effects on the performance of individuals 

and will contribute to the development of more accurate prediction models. 

 

2.5 CONCLUSION 
 

Herein, we provide insights on strategies to analytically optimize the accuracy 

and resource allocation in breeding programs using different genomic selection 

methods. Generally, the GBLUP model was effective in predicting individual breeding 

values using different training set sizes and methods. First, we showed that dominance 

variance appears to have more of an effect on growth than on wood quality traits. Then, 
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we found moderate to high predictive ability with the GS model able to obtain selection 

gains using the suggested optimization methods. Further, the selection coincidence 

was more efficient when selecting around 3 to 5% of the best individuals (top 100 and 

top 150). Concerning the optimization of the training set, both methods were effective 

in predicting individual breeding values, but with relatively greater accuracy using the 

PEVmean statistic. In general, the multi-trait analysis showed high predictive ability 

and selection gains, indicating that growth traits can be used to increase the model’s 

capacity to predict wood quality traits. As expected, MT-OTS achieved better results 

for both predictive accuracy and selection gains. Also, size of the training set can be 

optimized according to the method applied. Thus, they should be used together in 

genomic selection models to better optimize and allocate resources in Eucalyptus 

breeding programs. 
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APPENDIX A - SUPPLEMENTARY MATERIAL FOR CHAPTER 2 
 

Figure S1. Narrow-sense heritability for growth and wood-quality traits in a 
Eucalyptus grandis population located in São Miguel Arcando, São 
Paulo, Brazil. 
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FINAL CONSIDERATIONS 
 

Using genomic information associated with phenotypic data is an effective 

option to improve Eucalyptus breeding programs. This study shows that both genome-

wide association as well as genomic selection models can be key strategies to improve 

Eucalyptus breeding. Both GWAS and GS methods can be effective in selecting 

superior genotypes in two principal ways: i) using marker-assisted selection to identify 

genotypes with genes significantly linked to the expression of economically-relevant 

traits; and ii) reducing the time spent on tree breeding through early selection. 

Furthermore, this study highlights the importance of using accurate genomic 

information to improve tree breeding programs.  

In terms of GWAS, the SNP repositioning using the second version of the 

Eucalyptus genome enabled us to accurately perform GWAS and identify the genes 

associated with trait expression. Additionally, both methods (single-trait - farmCPU and 

multi-trait - MTMM) were effective in finding significant candidate genes associated 

with the expression of phenotypic traits. Spurious associations were not evident since 

we found no significant deviation from the expected and observed p-values, as shown 

by the QQ-plots of significant markers. As expected, the phenotypic variance explained 

by the markers (PEV) were minimal for most significant SNPs, indicating that many 

genes are related to phenotypic expression in E. grandis. Furthermore, the pleiotropic 

effect of markers was evident for some traits using farmCPU since the same markers 

were identified as significant for more than one trait. Similarly, the MTMM model 

identified several significant markers related to the expression between and within 

growth and wood-quality traits. Through gene ontology analysis, we were able to 

identify several markers with different functions related to trait expression. 

Considering the optimization of the selection models, the different 

methodologies applied proved to be effective in improving the GS prediction ability. In 

general, all applied methodologies (A, AD, MT, OTS, and MT-OTS) effectively 

improved the prediction ability of GS models. For most traits, the additive-dominant 

GBLUP model, using a training set of 80% of all genotypes, achieved the best 

prediction ability. Additionally, both OTS statistics (PEVmean and CDmean) were able 

to select the best genotypes to be used as the training set. However, the PEVmean 

statistic provided better results when considering the prediction ability. In terms of the 

MT analysis, the MT-CV2 scheme generally presented higher PA when compared with 
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the MT-CV1. The MT analysis also demonstrated the effectiveness of using growth 

trait information to improve the prediction ability for wood-quality traits, as well as using 

OTS information to increase the PA (MT-OTS; PEVmean). Considering the low 

coincidence of selection (CS) for top the genotypes (e.g., top20 and top30), we 

observed that the GS models tended to not select the best genotypes, but it proved to 

be effective for tree breeding since the worse performing genotypes were not selected 

due to the high CS for the other categories (top50, top100, and top150). Furthermore, 

the superiority of GS was achieved by the relatively high selection gains for all analyzed 

models. The results found here show that it is possible to use genomic selection 

models for early selection with a relatively high accuracy in Eucalyptus breeding 

programs. 
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IBÁ - Indústria Brasileira de Árvores. Relatório 2019. 80 p. Disponível em: 
<https://iba.org/datafiles/publicacoes/relatorios/iba-relatorioanual2019.pdf>. 
Acessado em: 13 de setembro de 2021. 
 
JABBARI, M. et al. GWAS analysis in spring barley (Hordeum vulgare L.) for 
morphological traits exposed to drought. PloS one, v. 13, n. 9, 2018.  
 
JIA, Y.; JANNINK, J.-L. Multiple-trait genomic selection methods increase genetic 
value prediction accuracy. Genetics, v. 192, n. 4, p. 1513-1522, 2012.  
 
KAINER, D. et al. High marker density GWAS provides novel insights into the 
genomic architecture of terpene oil yield in Eucalyptus. New Phytologist, v. 223, n. 
3, p. 1489–1504, 2019.  
 
LEBEDEV, V. G. et al. Genomic selection for forest tree improvement: Methods, 
achievements and perspectives. Forests, v. 11, n. 11, p. 1190, 2020.  
 
LEGARRA, A. et al. Improved Lasso for genomic selection. Genetics research, v. 
93, n. 1, p. 77-87, 2011.  
 
LI, Z.; SILLANPÄÄ, M. J. Overview of LASSO-related penalized regression methods 
for quantitative trait mapping and genomic selection. Theoretical and applied 
genetics, v. 125, n. 3, p. 419-435, 2012.  
 
MACKAY, T. F. C. The genetic architecture of quantitative traits. Annual review of 
genetics, v. 35, n. 1, p. 303-339, 2001.  
 
MAMMADOV, J. et al. SNP markers and their impact on plant breeding. 
International journal of plant genomics, v. 2012, 2012.  
 
MEUWISSEN, T.; HAYES, B. J.; GODDARD, M. E. Prediction of total genetic value 
using genome-wide dense marker maps. Genetics, v. 157, n. 4, p. 1819-1829, 2001.  
 
MISZTAL, I.; STEIN, Y.; LOURENCO, D. A. L. Genomic evaluation with multibreed 
and crossbred data. JDS Communications, 2022.  
 
MOSTERT‐O'NEILL, M. M. et al. Genomic evidence of introgression and adaptation 
in a model subtropical tree species, Eucalyptus grandis. Molecular Ecology, v. 30, 
n. 3, p. 625-638, 2021. 
 
MPHAHLELE, M. M. et al. Expected benefits of genomic selection for growth and 
wood quality traits in Eucalyptus grandis. Tree Genetics & Genomes, v. 16, n. 4, p. 



124 
 

1-12, 2020.  
 
MÜLLER, B. S. F. et al. Genomic prediction in contrast to a genome-wide association 
study in explaining heritable variation of complex growth traits in breeding 
populations of Eucalyptus. BMC genomics, v. 18, n. 1, p. 524, 2017.  
 
MYBURG, A. A. et al. The genome of Eucalyptus grandis. Nature, v. 510, n. 7505, p. 
356-362, 2014.  
 
NAMKOONG, G.; BARNES, R. D.; BURLEY, J. Screening for yield in forest tree 
breeding. The Commonwealth Forestry Review, p. 61-68, 1980.  
 
NOVAES, E. et al. High-throughput gene and SNP discovery in Eucalyptus grandis, 
an uncharacterized genome. BMC genomics, v. 9, n. 1, p. 312, 2008.  
 
O’MALLEY, D. M.; MCKEAND, S. E. Marker assisted selection for breeding value 
in forest trees. [s.l.] Citeseer, 1994.  
 
PALUDETO, J. G. Z. et al. Genomic relationship–based genetic parameters and 
prospects of genomic selection for growth and wood quality traits in Eucalyptus 
benthamii. Tree Genetics & Genomes, v. 17, n. 4, p. 1-20, 2021.  
 
POTTS, B. M.; DUNGEY, H. S. Interspecific hybridization of Eucalyptus: key issues 
for breeders and geneticists. New Forests, v. 27, n. 2, p. 115-138, 2004. 
 
RAFALSKI, A. Applications of single nucleotide polymorphisms in crop genetics. 
Current opinion in plant biology, v. 5, n. 2, p. 94-100, 2002.  
 
REZENDE, G. D. S. P.; DE RESENDE, M. D. V.; DE ASSIS, T. F. Eucalyptus 
Breeding for Clonal Forestry. In: Challenges and Opportunities for the World's 
Forests in the 21st Century. Springer, 2014, p. 393-424. 
 
SILVA‐JUNIOR, O. B.; FARIA, D. A.; GRATTAPAGLIA, D. A flexible multi‐species 
genome‐wide 60K SNP chip developed from pooled resequencing of 240 Eucalyptus 
tree genomes across 12 species. New Phytologist, v. 206, n. 4, p. 1527–1540, 
2015.  
 
TAO, Y. et al. Large‐scale GWAS in sorghum reveals common genetic control of 
grain size among cereals. Plant Biotechnology Journal, v. 18, n. 4, p. 1093–1105, 
2020.  
 
TAYEH, N. et al. Genomic prediction in pea: effect of marker density and training 
population size and composition on prediction accuracy. Frontiers in plant science, 
v. 6, p. 941, 2015.  
 
THAVAMANIKUMAR, S. et al. Dissection of complex traits in forest trees—
opportunities for marker-assisted selection. Tree Genetics & Genomes, v. 9, n. 3, p. 
627–639, 2013. 
 
USAI, M. G.; GODDARD, M. E.; HAYES, B. J. LASSO with cross-validation for 



125 
 

 

genomic selection. Genetics research, v. 91, n. 6, p. 427-436, 2009.  
 
VARSHNEY, R. K.; ROORKIWAL, M.; SORRELLS, M. E. Genomic Selection for 
Crop Improvement: An Introduction. In: Genomic Selection for Crop Improvement. 
[s.l.] Springer, 2017. p. 1-6.  
 
WALDRON, L. et al. Optimized application of penalized regression methods to 
diverse genomic data. Bioinformatics, v. 27, n. 24, p. 3399-3406, 2011.  
 
WANG, M. et al. Genome-wide association study (GWAS) of resistance to head smut 
in maize. Plant science, v. 196, p. 125-131, 2012.  
 
WANG, W. Y. S. et al. Genome-wide association studies: theoretical and practical 
concerns. Nature Reviews Genetics, v. 6, n. 2, p. 109, 2005.  
 
WANG, X.; YANG, Z.; XU, C. A comparison of genomic selection methods for 
breeding value prediction. Science Bulletin, v. 60, n. 10, p. 925-935, 2015.  
 
WHITTAKER, J. C.; THOMPSON, R.; DENHAM, M. C. Marker-assisted selection 
using ridge regression. Genetics Research, v. 75, n. 2, p. 249-252, 2000.  
 
WU, H. X. et al. Study of early selection in tree breeding. Silvae Genetica, 
Frankfurt, v. 47, n. 2–3, p. 146-155, 1998.  
 
WU, X. et al. Genome wide association studies for body conformation traits in the 
Chinese Holstein cattle population. BMC genomics, v. 14, n. 1, p. 897, 2013.  
 
XU, S. An empirical Bayes method for estimating epistatic effects of quantitative trait 
loci. Biometrics, v. 63, n. 2, p. 513-521, 2007.  
 
XU, Y.; XU, C.; XU, S. Prediction and association mapping of agronomic traits in 
maize using multiple omic data. Heredity, v. 119, n. 3, p. 174-184, 2017.  

 


