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The increased production of reactive oxygen species (ROS) plays a key role in pathogenesis of diabetic complications. ROS are
generated by exogenous and endogenous factors such as during hyperglycemia. When ROS production exceeds the detoxification
and scavenging capacity of the cell, oxidative stress ensues. Oxidative stress induces DNA damage and when DNA damage exceeds
the cellular capacity to repair it, the accumulation of errors can overwhelm the cell resulting in cell death or fixation of genome
mutations that can be transmitted to future cell generations.These mutations can lead to and/or play a role in cancer development.
This review aims at (i) understanding the types and consequences of DNAdamage during hyperglycemic pregnancy; (ii) identifying
the biological role of DNA repair during pregnancy, and (iii) proposing clinical interventions to maintain genome integrity. While
hyperglycemia can damage the maternal genetic material, the impact of hyperglycemia on fetal cells is still unclear. DNA repair
mechanisms may be important to prevent the deleterious effects of hyperglycemia both in mother and in fetus DNA and, as such,
prevent the development of diseases in adulthood.Hence, in clinical practice,maternal glycemic controlmay represent an important
point of intervention to prevent the deleterious effects of maternal hyperglycemia to DNA.

1. Introduction

Diabetes mellitus (DM) is a metabolic disease characterized
by hyperglycemia resulting from a defect in insulin action
and/or production [1]. In pregnancy, hyperglycemia poses a
risk to maternal, fetal, and perinatal health [2–4]. Perinatal
complications of a diabetic pregnancy include malforma-
tions, macrosomia, hypoxia, hypoglycemia, cardiomyopathy,
hyperbilirubinemia, and hyperinsulinemia [3, 5–9]. The cur-
rent literature acknowledges this adverse environment as
associated with increased long-term risk for the development
of diabetes, obesity, cardiovascular, and malignant diseases
(Figure 1) [9–14].

Previous findings by our group have shown that maternal
hyperglycemia is also adversely involved in fetal development
by changing the placental production of proinflammatory
cytokines, that is, TNF-𝛼 (tumor necrosis factor alpha) [15,
16]. The cellular redox status may be an important connec-
tion between inflammation and adverse perinatal outcomes
in hyperglycemic pregnancies [17]. There is considerable
evidence that hyperglycemia and inflammation results in
the generation of reactive oxygen species (ROS), ultimately
leading to increased oxidative stress. In the absence of
an appropriate antioxidant response, the system becomes
overwhelmed leading to production of reactive molecules
that can cause cellular damage and are responsible for the
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Figure 1: Schematic representation of outcomes classically associated with hyperglycemic pregnancies. The representation does not show
all possible relationships between the characteristics that are depicted. Adapted from Metzger et al. [75], Negrato et al. [11], and Fraser and
Lawlor [52].

late complications of diabetes [17, 18]. During pregnancy
the placenta is an additional source of ROS generation,
contributing to oxidative stress even in normal pregnancies.
This is increased in pregnancies complicated by preeclampsia,
intrauterine growth restriction, and pregestational diabetes
where oxidative and nitrative stress have been clearly docu-
mented [19, 20].

Oxidative stress induces protein oxidation, lipid peroxi-
dation, and DNA damage both in mitochondrial and nuclear
DNA. Degradation processes can remove lipids and proteins
but not DNA, which needs conversely to be repaired. When
DNA damage exceeds the cellular capacity to repair it, the
accumulation of errors can overwhelm the cell and result
in cell death or the incorporation of genome mutations that
can be transmitted to future cell generations if they occur in
germ cells (Figure 2). In addition, mutations in somatic cells
can promote genome instability and directly lead to various
humandiseases including cancer, neurological abnormalities,
immunodeficiency, and premature aging [21–25].

Considering that hyperglycemia may alter genomic
integrity and the consequences of this relationship to mater-
nal and fetus genome is unclear, this review aims at (i)
assessing the types and consequences of DNA damage during
hyperglycemic pregnancy and lifelong risks, (ii) identifying
the biological role of DNA repair during pregnancy, and
(iii) proposing clinical interventions to maintain genome
integrity.

2. Hyperglycemia-Induced Oxidative Stress
and Its Effects on DNA Structure

Hyperglycemia causes many of the major complications
of diabetes including nephropathy, retinopathy, neuropathy,
and macro- and microvascular damage [1]. To date, there

is emerging evidence that oxidative stress significantly con-
tributes to the progression of diabetes and its complications
and induces alterations in embryonic and fetal development
during pregnancy [18, 26]. Li and collaborators [27] found
thatmotherswithGDMand their newborns had higher levels
of 8-Isoprostaglandin F2𝛼 (an oxidative stress marker) than
control group. Hyperglycemia induces ROS production dur-
ing such processes as nonenzymatic glycosylation, increased
generation of superoxide anion radical by the mitochondrial
respiratory chain and the overactivation of NADPH oxidase
(nicotinamide adenine dinucleotide phosphate-oxidase) [28,
29].

Overproduction of ROS is capable of altering the struc-
ture and function of all types of molecules including pro-
teins, membrane lipids, and nucleic acids with serious con-
sequences to cell viability [21, 30]. Different degradation
processes can remove oxidized lipids and proteins. DNA,
however, has to be repaired or in the case of mitochondrial
DNA may even be removed. The latter is intrinsic to the
various copies of mitochondrial genome present in each
mitochondrion and the fact that many mitochondria pop-
ulate a cell [21, 31]. ROS are able to induce DNA lesions
as abasic sites (AP sites), single strand breaks, and double
strand breaks and oxidize DNA bases. All four bases are
susceptible to oxidative damage by ROS. However, due to the
lower redox potential of guanine this base is more susceptible
to oxidation [23, 30, 32]. The oxidized guanine (8-oxodG)
has great biological importance as this is a mutagenic lesion
that induces G-T transversions. It may also impair DNA
replication and transcription and may be an intermediate for
other types of lesions in DNA [23, 33].

Substantial evidence suggests that mitochondrial DNA
may be more vulnerable than nuclear DNA to certain kinds
of damage, in particular, ROS-mediated lesions [31, 34, 35].
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Figure 2: Hyperglycemia and inflammation are able to increased
ROS production. When ROS production exceeds the detoxification
and scavenging capacity of the cell, oxidative stress ensues.Oxidative
stress inducesDNAdamage andwhenDNAdamage exceeds the cel-
lular capacity to repair it, the accumulation of errors can overwhelm
the cell resulting in apoptosis, cell senescence, or fixation of genome
mutations that will be transmitted to future cell generations. These
mutations can lead to and/or play a role in cancer development.

Several reasons may underline this affirmation, including the
immediate proximity of mitochondrial DNA to the electron
transport chain in the innermitochondrialmembrane, which
is the main source of endogenous ROS production. In
addition, the repair of mitochondrial DNA lesions occurs
only via base excision repair and unlike the nuclear genome,
the mitochondrial DNA is not protected by histones [31, 34,
35].

It is important to remember that the genomes of all organ-
isms are constantly being modified by reactive molecules
that are produced endogenously, primarily via mitochondrial
respiration or by environmental/exogenous physical, chemi-
cal, and biological agents including ultraviolet light, ionizing
radiation, heavy metals, air pollutants, chemotherapeutic
drugs, and inflammatory responses [25, 36].

3. Hyperglycemia, DNA Damage, and
Pregnancy: Results of Experimental and
Clinical Studies

In nonpregnant context, the relationship between type 1
diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM),

and DNA damage is well established [42–48]. Little is known
about DNA damage in pregnancy, especially in pregnancy
complicated by pregestational (T1DM or T2DM) or gesta-
tional diabetes mellitus (GDM) [7, 37–39, 41, 49].

Experimental studies conducted in our laboratory with
streptozotocin-induced diabetic rats showed that the levels
of basal DNA damage in leukocyte of mothers with severe
diabetes (blood glucose ≥ 300mg/dL) and their respective
fetus was higher when compared with the control group
[37, 38]. Subsequently, Lima et al. [7] demonstrated that rats
with severe diabetes and their offspring showed higher oxida-
tively generated DNA damage in leukocyte detected by Fpg
(formamidopyrimidine-DNA glycosylase) and endonuclease
III-sensitive sites when compared to mild diabetes group
(blood glucose levels between 120 and 299mg/dL). Taken
together, these experimental results suggest that the intensity
of diabetes is related to the levels of oxidative DNA damage.
Thus, hyperglycemia may have repercussions at the DNA
level that go beyond the pregnant mother.

In a pilot study, Qiu and collaborators [39] evaluated,
in early pregnancy, levels of urinary 8-oxodG trying to
determine an association with the risk of GDM develop-
ment. They observed that the risk for GDM was higher
in overweight women with urine 8-oxodG concentrations
≥8.01 ng/creatinine mg (OR = 5.36; 95% Cl 1.33–21.55) when
compared with lean women who had 8-oxodG concentra-
tions <8.01 ng/creatinine mg. Interestingly, levels of 8-oxodG
in umbilical vein plasma in pregestational and control groups
were reported to be similar [40].

Evaluation of telomere length is another way to estimate
the stability of the genetic material. Telomeric length and
telomerase activity (a reverse transcriptase that limits telom-
ere attrition) were studied inmononuclear cells isolated from
umbilical cord blood of pregnant women with pregestational
diabetes (T1DM and T2DM) and GDM. No difference was
found in cord blood telomere length in pregnancies ofwomen
with diabetes compared with control subjects, but higher
telomerase activity was observed in Type 1 and GDM groups.
The upregulation of telomerase may be a compensatory
response to in utero oxidatively generated DNA and telomere
damage [41].

Previous study demonstrated that telomerase is found
in nuclei and mitochondria. Telomerase is able to decrease
mitochondrial levels of ROS, especially in mitochondria
[34, 50]. Recently, Li and collaborators [27] evaluated the
mitochondrial translocation of human telomerase reverse
transcriptase (hTERT) in mononuclear cells isolated from
umbilical cord blood during pregnancies complicated by
GDM with confirmed oxidative stress. They found that the
ratio of mitochondrial/nuclei hTERT was increased signif-
icantly in the newborn of GDM mothers, suggesting that
mitochondrial hTERT in cord blood mononuclear cells may
have a protective effect on neonatal mitochondrial DNA in
GDM pregnancies. The authors concluded that this dynamic
translocation could be an in utero adaptive response of a fetus
that is suffering from elevated oxidative stress and could help
our understanding of the roles of oxidative stress in fetal
programming.
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Table 1: Maternal and fetal DNA integrity in hyperglycemic environment.

Reference Study type Type of diabetes Sample Evaluation Main results

[37] Experimental Severe Maternal leukocytes Comet assay Basal DNA damage in
severe diabetes

[38] Experimental Severe Fetal leukocytes Comet assay Basal DNA damage in
severe diabetes

[7] Experimental Mild and severe Maternal and fetal
leukocytes

Comet Assay with Fpg and
Endo III enzymes∗

Oxidative DNA damage in
severe diabetes

[39] Clinical GDM Maternal urine 8-oxodG levels Elevated in early pregnancy
that results in GDM

[40] Clinical Pregestational Umbilical vein plasma 8-oxodG levels No difference

[41] Clinical Pregestational
and GDM

Cord blood
mononuclear cell

Telomere length and
telomerase activity

Telomerase activity higher
in cord blood from T1DM

and GDM

[27] Clinical GDM Cord blood
mononuclear cells

Mitochondrial
translocation of hTERT

Increased mitochondrial
hTERT levels in GDM

GDM: gestational diabetes mellitus; hTERT: human telomerase reverse transcriptase. ∗The endonuclease III (Endo III) and formamidopyrimidine-DNA
glycosylase (FPG) are enzymes used to detect oxidative DNA damage.

A few years ago, epigenetic processes have been suggested
as a link between maternal pregnancy diabetes and long-
term offspring outcomes. Epigenetic modifications, such as
DNA methylation, regulate gene expression without altering
the DNA sequence. These alterations occur in response to
environmental stimuli [51–54]. Recent studies compared the
levels of globalmethylation in the placenta andumbilical cord
blood among women with and without gestational diabetes,
preeclampsia, and obesity. They found that the mother’s
metabolic problems during pregnancy may influence the
epigenome in the offspring [51]. del Rosario et al. [54] found
that epigenetic changes (DNAmethylation) may increase the
risk of type 2 diabetes; studies support this association but
research in this area is still inconclusive [52].

In summary, the results found in the literature indicate
that maternal and fetal cells, especially mononuclear cells of
blood, respond differently to the hyperglycemic environment
(Table 1). While it is clear that hyperglycemia can damage
the maternal genetic material, the results in umbilical cord
blood (fetal cells) remain unclear. It seems that umbilical
cord blood cells have more efficient mechanisms working to
protect the genome. Future investigations on themechanisms
involved in genome protection in fetal cells as well as the role
of epigenetic changes may shed new light on the outcome on
offspring born from women with gestational diabetes.

4. DNA Repair Mechanisms Are Important to
Maintain the Genetic Stability

To maintain genetic stability organisms possess cellular
mechanisms collectively termed the DNA damage response
(DDR) to detect DNA lesions and signal their presence
and promote their repair. Cells with DDR defects display
higher sensitivity toward DNA damaging agents and many
such defects lead to mutagenesis, cytotoxicity, cell death,
and disease. In fact, genomic instability and defects in
DDR are known to play a role in disease processes such
as carcinogenesis, neurodegenerative disorders, immune

deficiencies, infertility, aging, cardiovascular disease, and
metabolic syndrome [30, 55]. In this session we will focus on
DNA repair.

To repair different types of DNA lesions the cell counts
on a variety of proteins that presumably undergo crosstalk to
form a network for protection of the cellular genome. [25, 56–
59].

Nucleotide excision repair (NER), mismatch repair
(MMR), and base excision repair (BER) have been implicated
in the repair of ROS-induced lesions in DNA. However,
BER is the main mechanism involved in the removal of
these lesions in nuclear DNA and is the unique mechanism
demonstrated for mitochondria damaged DNA [31, 34, 35,
60]. BER predominantly repairs oxidized bases, AP sites, and
single strand breaks. In general, BER initiates with the action
of a DNA glycosylase that is able to remove the damaged
base resulting in an AP site. The AP site is then cleaved by
the AP-endonuclease, allowing the DNA polymerase (𝛽 in
the nucleus or gamma in the mitochondria) to synthesize the
repair patch. The latter is relegated based on DNA ligase III
activity [60].

5. The Possible Role of DNA Repair during
Pregnancy and Diabetes Disease

Studies have demonstrated the importance of DNA repair
genes in pregnancy and perinatal development. Patients
with mutations in XPD (Xeroderma pigmentosum D) and
GTF2H5 (general transcription factor IIH, polypeptide 5),
genes involved in the NER pathway and in transcription-
couple repair, have the DNA repair diseases: trichothiodys-
trophy (TTD), xeroderma pigmentosum (XP), Cockayne
syndrome (CS), cerebro-ocular facial syndrome (COFS),
or a combination [24, 61, 62]. The pregnancies in which
the fetus had TTD were at significantly increased risk of
preeclampsia,HELLP (hemolysis, elevated liver enzymes, and
low platelet count) syndrome, and elevated mid-trimester
maternal serum human chorionic gonadotropin levels. The
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affected fetus had decreased fetal movement and preterm
delivery with higher index of small for gestational age fetus
[63]. The authors hypothesized that mutations observed in
TTD patients affect placental development. Two years later,
the same group revealed that only a specific subset of XPD
mutations, which lead to TTD but are unrelated to XP, results
in higher risk to develop preeclampsia and other gestational
complications [64]. A functional polymorphism (199 Arg-
399Gln) in XRCC1 (X-ray repair complementing defective
repair in Chinese hamster cells 1), a gene involved in the
BER pathway, showed higher frequency among patients with
preeclampsia (OR 1.65; 95% CI 1.23–2.19) in an Iranian pop-
ulation [65]. However, this polymorphismwas not associated
with T2DM in a Polish population [66].

DNA repair was evaluated in lymphocytes of nonpreg-
nant patients with T1DM and T2DM [45, 46]. The results
of Blasiak et al. [45] suggest that T2DM may be associated
not only with elevated levels of oxidative DNA damage but
also with decreased efficacy of DNA repair. In an elegant
study Pácal et al. [46] compared DNA damage and repair
in lymphocytes of T1DM children, T1DM adults, and T2DM
adults. The T2DM diabetics exhibited a significant increase
in DNA damage and decreased DNA repair capacity when
compared with T1DM (both children and adults). T1DM
children displayed a significant decrease of DNA damage and
increase in DNA repair when compared with diabetic adults
(both T2DM and T1DM). These findings indicate significant
age- andDM type-related changes ofDNAdamage and repair
capacity in diabetic subjects.

In summary, the data available suggest that DNA repair
mechanisms are involved in the long-term consequences
of diabetes in T1DM and T2DM subjects. In pregnancy,
DNA repair genes may affect the harmony of maternal-fetal
interface resulting in adverse perinatal results.

6. Diabetes and Cancer

Epidemiologic evidence suggests that diabetic patients are at
significantly higher risk for many types of cancer. T2DM,
GDM, and cancer share many risks factors but potential
biological links between the two diseases are unclear [67,
68]. Meta-analyses have reported an increased risk of liver,
pancreatic, renal, endometrial, colorectal, bladder, and breast
cancer as well as an increase in the incidence of non-Hodgkin
lymphoma in T2DM subjects [68]. For those with T2DM
compared with those without diabetes, the greatest increase
in risk is for hepatocellular carcinoma (RR 2.5; 95% CI 1.8–
3.5), with the relative risk for cancer at other sites being
between 1.18 (95% CI 1.05–1.32) for breast cancer and 2.22
(95% CI 1.8–2.74) for endometrial cancer in those with
diabetes [68, 69]. A prospective cohort study with 37.926
women in Jerusalem observed no cases of pancreatic cancer
in the women with T1DM; however, women with a history
of GDM showed a relative risk of pancreatic cancer of 7.1
(95% confidence interval 2.8–18.0) [70]. Similar results were
observed with a late cohort in Israel [71]. In addition to
the relationship between GDM and pancreatic cancer, the
authors observed an increased risk of hematologic malignan-
cies like non-Hodgkin’s lymphoma, Hodgkin’s lymphoma,

and acute myeloid leukemia in the same population [71].
A relationship between GDM and breast cancer was found
in a New Zealand population, but when studying the U.S.
population this association was not observed [72, 73].

Experts assembled jointly by the American Diabetes
Association (ADA) and the American Cancer Society (ACS)
reviewed the possible biological links between diabetes and
cancer risk. They suggested that diabetes may influence
the neoplastic process by several mechanisms, including
hyperinsulinemia, hyperglycemia, or chronic inflammation
without reference to DNA damage and repair [67]. However,
the increase in DNA damage and decrease in DNA repair
observed in T2DM subjects may provide a new link between
diabetes and cancer [45, 60, 74].

7. Proposed Clinical Intervention Strategy for
Maintenance of Genomic Integrity

7.1. Control of Maternal Hyperglycemia. Maternal hyper-
glycemia is able to induce fetal hyperglycemia [1, 4] (Figure 1),
increase the release of proinflammatory cytokines [15, 16],
and ROS production [17, 18] (Figure 2). Thus, it appears that
maternal glycemic control during hyperglycemic pregnancies
is an old and safe strategy to assure maintenance of genomic
integrity. Clinical studies have already demonstrated the
benefits of maternal glycemic control during pregnancy and
how to maintain optimal glucose levels without gestational
risk [75, 76].

Nonpregnant adults with diabetes and pregnant women
with GDM or pregestational diabetes (T1DM or T2DM)
presented different glycemic recommendations [1]. During
pregnancy, the glycemic limits are stricter than in non-
pregnant state to prevent alteration in both maternal and
fetal health [1, 75, 76]. Based on recommendations from
the Fifth InternationalWorkshop-Conference on Gestational
DiabetesMellitus [77] and ADA’s statement [1] it is important
to maintain maternal capillary glucose concentrations at
<95mg/dL (<5.3mmol/L) in the fasting state, <140mg/dL
(<7.8mmol/L) at 1 h, and <120mg/dL (<6.7mmol/L) 2 h
after starting the meal. For women with overt diabetes who
become pregnant, the optimal glycemic goals are premeal,
bedtime, and overnight glucose between 60 and 99mg/dL
(3.3–5.4mmol/L) and peak postprandial glucose between 100
and 129mg/dL (5.4–7.1mmol/L) and HbA1C of 6.0% [78].

Diet therapy, control of weight gain, and increasing phys-
ical activity are the standard treatment of GDM [77]. Insulin
administration is only performed for pregnant women who
fail to maintain glycemic goals as well as to the ones who
show signs of excessive fetal growth or overt diabetes. It is
recommended that insulin administration be individualized
to achieve the glycemic goals stated [77]. During the last
decade, there was an increased interest in the use of oral
antihyperglycemic agents as an alternative to insulin in
achieving good glycemic control. However, the results are
inconclusive [79, 80].

7.2. Antioxidant Supplementation during Pregnancy. Antiox-
idant supplementation is a questionable strategy during
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pregnancy.The effects of vitaminC supplementation, alone or
in combination with other supplements, have been evaluated
on pregnancy outcomes. No difference was seen in the risk
of stillbirth, perinatal death, birth weight, or intrauterine
growth restriction between women supplemented with vita-
min C alone or in combination with other supplements
and placebo. In fact, women supplemented with vitamin C
alone or combined with other supplements were at increased
risk of giving preterm birth [81]. The same researchers
also determined the effectiveness and safety of any vitamin
supplementation on the risk of spontaneous miscarriage,
maternal adverse outcomes, and fetal and infant adverse
outcomes. The results indicated that vitamin supplements,
alone or in combination, prior to pregnancy or in early
pregnancy, did not prevent miscarriage or stillbirth. How-
ever, it was found that women taking vitamin supplements
were less likely to develop preeclampsia while more likely
to have multiple pregnancies [82, 83]. Mothers that have
taken antioxidant supplementation during pregnancy had
decreased frequency of micronucleus (a test used to quantify
chromosomal damage) in peripheral blood mononuclear
cells prior to and after hydrogen peroxide exposure. The
additional antioxidants intake during pregnancy was also
beneficial to reduce the frequency of micronucleus after
hydrogen peroxide exposure in cord blood cells. The data
demonstrated a positive effect of antioxidant supplementa-
tion on micronucleus frequency [84]. Experimental results
in a model of diabetic pregnancy indicate that high doses of
dietary antioxidants were need to normalize the development
of offspring. However, treatment with such high doses may
also have adverse effects in nondiabetic pregnancy [85].

It is clear based on the above findings that results
about antioxidant supplementation during pregnancy are still
inconclusive, and little is known about their impact at the
DNA level. Despite this fact, taken together the data support
the notion that maternal glycemic control is a good and safe
plan to reduce the factors associated to genomic instability in
hyperglycemic pregnancy.

8. Conclusions

Although it is clear that hyperglycemia can damage the
maternal genetic material, the results obtained for cord blood
are not yet clear.The data seem to support the hypothesis that
umbilical cord blood cells have more efficient mechanisms to
protect the genome than the mother’s cells. DNA repair may
be thus considered an important mechanism to prevent the
deleterious effects of hyperglycemia in the genetic material.
However, functional studies demonstrating the ability of
DNA repair mechanisms in dealing with insults resulting
from hyperglycemia during pregnancy need to be developed.
For the time being, the control of maternal hyperglycemia
seems a safe and important strategy to prevent the deleterious
effects of hyperglycemia on maternal and potentially fetal
DNA.
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