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Resumo

Esta tese apresenta uma parametrização no espaço de estados para a transformada wavelet
rápida. Esta parametrização é baseada em funções de base ortonormal e filtros de resposta
finita ao impulso simultaneamente, uma vez que, a transformada rápida wavelet é um algo-
ritmo que consiste em decompor sinais no domínio do tempo em sequências de coeficientes
baseados numa base ortogonal de funções wavelet. Deste modo, vantagens apresentadas por
ambas as propostas são incorporadas. Modelos de resposta finita ao impulso têm propriedades
atrativas como vantagens computacionais e analíticas, garantia de estabilidade BIBO e ro-
bustez para a mudança de alguns parâmetros, dentre outras. Por outro lado, séries de funções
de base ortonormal têm características que as fazem atrativas para a modelagem de sistemas
dinâmicos, como ausência de recursão da saída, a não necessidade de se conhecer previamente
a estrutura exata do vetor de regressão, possibilidade de aumentar a capacidade de represen-
tação do modelo aumentando-se o número de funções ortonormais utilizadas, desacoplamento
natural das saídas em modelos multivariáveis; tolerância a dinâmicas não modeladas. Além
disso, a realização no espaço de estados é mínima. A contribuição deste trabalho consiste no
desenvolvimento de uma realização no espaço de estados para bancos de filtros wavelet, em
que há a presença explícita de parâmetros que podem ser livremente ajustados mantendo
as propriedades de reconstrução perfeita e ortonormalidade. Para ilustrar o funcionamento
e as vantagens da técnica proposta, alguns exemplos de decomposição de sinais no contexto
de processamento de sinais mostrando que ela proporciona os mesmos coeficientes wavelet
que a transformada wavelet rápida, e uma aplicação em controle através de realimentação
dinâmica de estados também são apresentados nesta tese.

Palavras-chave: Filtros de resposta finita ao impulso. Bases de funções ortonormais. Des-
crição no espaço de estados. Bancos de filtros wavelet. Regulador linear quadrático discreto.





Abstract

This thesis presents a state-space parameterization for the fast wavelet transform. This pa-
rameterization is based on orthonormal basis functions and finite impulse response filters at
the same time, since the fast wavelet transform is an algorithm which converts a signal in
the time domain into a sequence of coefficients based on an orthogonal basis of small finite
wavelet functions. Advantages presented by both proposals are incorporated. Finite impulse
response systems have attractive properties, for instance, computational and analytical ad-
vantages, BIBO stability and robustness guarantee to some parameter changes, and others.
On the other hand, orthonormal basis functions have some characteristics that make them
attractive for dynamic systems modeling, examples are, output recursion absence, not re-
quiring prior regression vector exact structure knowledge; possibility of increasing the model
representation capacity by increasing the number of orthonormal functions employed; natural
outputs uncoupling in multivariable models; tolerance to unmodeled dynamics, and others.
Furthermore, the state-space realization is minimal. The contribution of this work consists
in the development of a state-space realization for a wavelet filter bank, with the explicit
presence of the parameters that can be freely adjusted, keeping perfect-reconstruction and
orthonormality guarantees. In order to illustrate advantages and how the proposed technique
works, some decomposition examples in signal processing context are presented showing that
it provides the same wavelet coefficients as the fast wavelet transform, and an application on
dynamic state feedback control is also presented in this thesis.

Keywords: Finite impulse response filters. Orthonormal basis functions. State-space de-
scription. Wavelet filter banks. Discrete linear quadratic regulator.
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1 Introduction

Modeling, analysis and control of dynamic systems have been of great interest for

engineers for a long time (PALM III, 1983). In a few years, the study of these areas has

grown tremendously for several reasons, e.g., advances in computer and information sciences.

Nowadays, the use of computers has been expanded allowing the study of more detailed

models and complex algorithms for system design and analysis (DECARLO, 1989). With

the increase in computational power, it can impose stricter performance specifications in

engineering designs, leading to the need of more detailed models to the process under study,

especially with regards to forecasting their transient behavior (DA ROSA, 2009).

Real system modeling is of great importance in almost all science fields, it is mainly

of interest to engineers, and its importance has grown a lot in recent years. Models help in

understanding the characteristics of an analyzed process. Especially in engineering, models

are needed for new process designs and for analyzing existing ones. In general, advanced

techniques of controller design, optimization and supervision are based on process models,

and model quality directly influences solution quality to the problem (MACHADO, 2011;

PALM III, 1983).

Among the several modeling techniques of dynamic systems available in the litera-

ture, it can be mentioned as one of the most important, models obtained by using orthogonal

functions that form a complete basis for the Lebesgue space and orthonormal basis func-

tions that includes Laguerre, Kautz and Takenaka-Malquimist functions (MACHADO, 2011;

HEUBERGER; VAN DEN HOF; WAHLBERG, 2005).

Modeling with orthonormal basis functions has presented interesting results as shown

by many researches (MACHADO, 2011; WAHLBERG, 1991; DUMONT; FU, 1993; WAHL-

BERG, 1994; VAN DEN HOF; HEUBERGER; BOKOR, 1995; HEUBERGER; VAN DEN HOF;

BOSGRA, 1995; BOKOR; SHIPP, 1998; OLIVEIRA et al., 2000). These models’ features

make them attractive for dynamical systems modeling: output recursion absence, no vector

regression exact structure prior knowledge requirement; possibility to increase the model rep-

resentation capacity by increasing the number of orthonormal functions employed; natural

outputs uncoupling in multivariable models; tolerance to unmodeled dynamics, and others

(HEUBERGER; VAN DEN HOF; WAHLBERG, 2005).

The finite impulse response (FIR) system is a common way to represent the trans-

fer function for linear time-invariant dynamical systems. These finite expansion representa-

tions are very useful dynamical models in many areas of engineering. Applications examples



26 Chapter 1. Introduction

are signal processing, filter design, communication, control design and system identification

(HEUBERGER; VAN DEN HOF; WAHLBERG, 2005).

Finite impulse response systems are widely used in discrete signal processing tasks,

which include denoising, subband and multirate filtering, prediction, control, etc. FIR struc-

ture does not only guarantee both BIBO (Bounded Input - Bounded Output) stability and ro-

bustness to some parameter changes, but also improves the filter divergence problem, and they

are naturally stable and robust even for higher order designs (TUQAN; VAIDYANATHAN,

2000; VAIDYANATHAN, 1990a; VAIDYANATHAN, 1990b; UZINSKI et al., 2015b).

Another mathematical tool extensively used in signal processing and control systems

is the Wavelet Transform (WT). The algorithm to work with the discrete wavelet transform

is known as Fast Wavelet Transform (MALLAT, 1998; MALLAT, 1989c). There exist many

applications using this technique, which has several advantages except for cases where the

state-space approach is more suitable than other classical modeling methods (ELALI, 2012;

ELALI, 2008).

Considering Sherlock and Monro (1998) studies on the space of orthonormal wavelets

functions and its relation with finite impulse response, a possibility of parameterization of

these basis functions with several promising properties is considered.

1.1 Objectives and justification

The present work brings out a study about orthonormal functions and orthonor-

mal basis functions (MACHADO, 2011; DA ROSA, 2009; HEUBERGER; VAN DEN HOF;

WAHLBERG, 2005). However, the main objective is to explore the space of orthonormal

functions used by Sherlock and Monro (1998) in order to formulate a set of orthonormal

filter banks and parameterize it in the state-space, and, from this initial parameterization, to

extend this idea to the case of M decomposition levels. In every case, properties that make

the state-space realization attractive like observability, reachability and minimality, besides

those advantages previously mentioned for orthonormal basis functions and finite impulse

response filters may be kept.

The main justification for orthonormal functions parameterization in the state-space is

given by the possibility of applications with interesting results (MACHADO, 2011; DA ROSA,

2009; HEUBERGER; VAN DEN HOF; WAHLBERG, 2005). On the other hand, the FIR

structure guarantees BIBO stability, robustness to some parameter changes and improves the

filter divergence problem (TUQAN; VAIDYANATHAN, 2000; VAIDYANATHAN, 1990a).

The objective in this work combines these two ideas and their advantages.
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Sherlock and Monro (1998) orthonormal basis functions, in their turn, have been stud-

ied in terms of wavelets filter banks (DUARTE; GALVÃO; PAIVA, 2013; MURUGESAN;

TAY, 2012; PAIVA; GALVÃO, 2012; PAIVA; GALVÃO; RODRIGUES, 2009; HADJILOU-

CAS et al., 2014; PAIVA et al., 2008; GALVÃO et al., 2004; FROESE et al., 2006; UZINSKI,

2013; PAIVA et al., 2009; UZINSKI et al., 2013). This formulation’s origin is very related

to the study of wavelets and multirate systems (VAIDYANATHAN, 1993; VETTERLI; KO-

VAČEVIĆ, 1995; STRANG; NGUYEN, 1996).

In order to achieve the central work objective, which means the parameterization for

the Sherlock and Monro (1998) formulation functions in the state-space and its extension for

M decomposition levels with expected features that make it minimal, in addition to the fact

that it should be able to be adjusted by the designer and all the advantages deriving from

orthonormal basis functions and finite impulse response filters, some secondary objectives are

proposed:

• firstly, writing a highly didactic and well structured text, in this way making the redac-

tion simple and objective, but keeping the scientific rigor. In this sense, some more

abstract parts were carefully organized, objectives and didactic examples are also pre-

sented;

• making an introduction to the systems in study, and at the same time reviewing the

involved applied mathematics concepts, facilitating text reading, as well as introduc-

ing basic algebra concepts that are fundamental to the study and comprehension of

orthonormal basis functions. Presenting the wavelet and filter bank theory that is of

great importance in this work, and after this, elaborating a widely detailed text about

Sherlock and Monro (1998) formulation;

• presenting applications of the proposed state-space parameterization in order to illus-

trate how it works and its advantages.

1.2 Outline of the thesis

Almost everything in this text was written in the discrete-time domain, in some

sections or paragraphs it can be changed depending on the necessity. What follows is an

explanation of how the text is organized, in order to facilitate its reading.

• Chapter 2: the redaction is about the main concepts on dynamical discrete systems,

more accurately the description in the state-space and its properties, presenting an
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introductory text, addressing an introduction to the state-space functions parameteri-

zation. In the unique section, basic concepts on discrete-time systems are presented;

• Chapter 3: a review on the topics related to the orthogonality and orthonormality

for continuous functions and vectors that can represent discrete functions is done. This

chapter is divided as follows:

– in Section 3.1, the main concepts and definitions about orthogonality and or-

thonormality are presented in a brief way,

– in Section 3.2, it is presented the Gram-Schmidt procedure, which is an orthogo-

nalization vector set method in a space with inner product,

– a general idea of orthonormal basis functions is presented in Section 3.3,

– Section 3.4 presents the corresponding orthogonal state-space model for finite

impulse response networks,

– Laguerre functions and their state-space description are presented in Section 3.5,

– Kautz Functions and their state-space description are presented in Section 3.6,

– Section 3.7 presents Takenaka-Malmquist Functions, also known as Generalized

Orthonormal Basis Functions (GOBF).

• Chapter 4: Filter bank theory, wavelets basic theory, wavelets filter banks concepts

and Sherlock and Monro (1998) formulation are presented. The main idea is to present

the filter bank theory related to the Wavelet Transform, especially the Discrete Wavelet

Transform (DWT). All of them are presented focusing on Sherlock and Monro (1998)

formulation.

• Chapter 5: The parameterization proposed in this work for those functions presented

in Section 4.5 is performed in Chapter 5. This chapter proposes two different parame-

terization possibilities for a particular orthonormal basis functions in the state-space:

– a state-space single filter parameterization using the specified basis functions is

presented in Section 5.1,

– the main idea in this work is the specified basis functions parameterization to the

system implementation in a lattice structure, presented in Section 5.2.

After presenting the parameterizations in Sections 5.1 and 5.2, they are extended to

the multilevel decomposition case in Section 5.3.

• Chapter 6: In order to illustrate how the proposed state-space parameterization works

and its advantages, some decomposition examples and an application example are pre-

sented in Chapter 6.
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• Final remarks, conclusions, contributions and future works are presented in Chapter 7.

References and an appendix are presented at the end of the thesis.
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2 Models for dynamical discrete systems

This chapter discusses the main concepts of dynamical discrete-time systems, state-

space description and its properties. For further discussions, proofs and all concepts involved

see Elali (2012), and the version to continuous systems can be seen in Elali (2008).

2.1 The discrete-time systems

A system is the combination of components acting together to achieve a determined

objective. The system concept is not restricted to the physics, it can be applied to abstract

dynamical phenomena, and they are mathematically modelled for study and applications.

Dynamic systems can be described by differential equations, which can be obtained through

physics laws that govern them (OGATA, 2010).

Linear systems are defined by the superposition principle. Let k be an arbitrary con-

stant and the system T{u} with y, y1 and y2 being the system outputs for the inputs u, u1

and u2, respectively. This system is linear if, and only if,

T{u1 + u2} = T{u1} + T{u2} = y1 + y2

and

T{ku} = kT{u} = ky.

An important class of systems are the Linear Time-invariant (LTI) systems. These

systems obey the superposition principle to be linear. In this way, they can be completely

characterized by the impulse response. Besides, they satisfy the time invariance propriety,

namely, if h[k] is the response to δ[k], the response to δ[k−m] is h[k−m]. In other words, Lin-

ear Time-Invariant systems are composed of linear time-invariant components, for instance,

the spring-mass system that depends on mass and spring constant (CHEN, 1999).

2.1.1 State-space

The state-space approach can be superior to many other classic models of modeling.

This theory can handle linear and nonlinear systems, besides, it can handle systems with

nonzero initial conditions. Moreover, systems with single input and single output (SISO),

single input and multiple outputs (SIMO), multiple inputs and single output (MISO) and

multiple inputs and/or multiple outputs (MIMO) can be handled by this approach (ELALI,

2012).
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This section introduces the continuous time systems, then the discrete-time systems

can be presented through the discretization.

The state of a dynamic system is the smallest set of variables such that the knowledge

of these variables at t = t0, together with the input for t ≥ t0, completely determines the

behavior of the system for any time t ≥ t0 (OGATA, 2010).

Considering that the state vector has n state variables, the axis formed by the coor-

dinates of these variables form the n-dimensional space, denominated state-space. Any state

can be represented by a point in the state-space. Analysis in the state-space involves three

types of variables that are present in the dynamical systems modeling: input variables, output

variables and state variables (OGATA, 2010).

Considering a continuous time system with r inputs u1(t), u2(t), · · · , ur(t) and m

outputs y1(t), y2(t), · · · , ym(t) involving n integrator. Defining the n integrators outputs as

state variables x1(t), x2(t), · · · , xn(t), the system can be written as

ẋ1(t) = f1(x1, x2, · · · , xn; u1, u2, · · · , ur; t)
ẋ2(t) = f2(x1, x2, · · · , xn; u1, u2, · · · , ur; t)

...

ẋn(t) = fn(x1, x2, · · · , xn; u1, u2, · · · , ur; t),

(1)

and the outputs y1(t), y2(t), · · · , ym(t) can be written as

y1(t) = g1(x1, x2, · · · , xn; u1, u2, · · · , ur; t)
y2(t) = g2(x1, x2, · · · , xn; u1, u2, · · · , ur; t)

...

ym(t) = gm(x1, x2, · · · , xn; u1, u2, · · · , ur; t).

(2)

Equations (1) and (2) can be rewritten as

ẋ(t) = f(x,u, t), (3)

y(t) = g(x,u, t), (4)

where x(t) = [x1(t), x2(t), · · · , xn(t)]T , y(t) = [y1(t), y2(t), · · · , ym(t)]T and

u(t) = [u1(t), u2(t), · · · , ur(t)]T . Equation (3) is the state equation and (4) is the output

equation.

Equations (3) and (4) when linearised around an operation point are written as

ẋ(t) = Ac(t)x(t) + Bc(t)u(t), (5)

y(t) = Cc(t)x(t) + Dc(t)u(t), (6)



2.1. The discrete-time systems 33

where A(t) is the state matrix, B(t) is the input matrix, C(t) is the output matrix and D(t)

is the feedthrough or feedforward matrix.

If the system is time-invariant, equations (5) and (6) can be simplified to

ẋ(t) = Acx(t) + Bcu(t), (7)

y(t) = Ccx(t) + Dcu(t). (8)

Considering the continuous time system given by (7) and (8), if the set of equations

is to be computed on a digital computer, it must be discretized. Since

ẋ(t) = lim
T→0

x(t+ T ) − x(t)
T

, (9)

(7) can be approximated as

x(t+ T ) = x(t) + Ax(t)T + Bu(t)T. (10)

Computing x(t) and y(t) only at t = kT for k = 0, 1, · · · , then (10) and (8) become

x((k + 1)T ) = (I + TA)x(kT ) + TBu(kT )

y(kT ) = Cx(kT ) + Du(kT ).

Another discretization could be u(t) = u(kT ), and defining this input as

u(kT ) = u(t) = u[k] for kT ≤ t < (k + 1)T (11)

where k = 0, 1, · · · . Values will be changed only at discrete-time instants. For this input, the

solution of (7) still is the same for (5), i.e.,

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)Bu(τ)dτ, (12)

where τ denotes the time at which the impulse input is applied. Computing (12) at t = kT

and t = (k + 1)T and defining x[k] = x(kT ), x[k + 1] = x((k + 1)T ), leads to

x[k] = x(kT ) = eAkTx(0) +
∫ kT

0
eA(kT−τ)Bu(τ)dτ (13)

and

x[k + 1] = x((k + 1)T ) = eA(k+1)Tx(0) +
∫ (k+1)T

0
eA((k+1)T−τ)Bu(τ)dτ. (14)

Equation (14) can be written as

x[k + 1] = eAT

[

eAkTx(0) +
∫ kT

0
eA(kT−τ)Bu(τ)dτ

]

+
∫ (k+1)T

kT
eA(kT+T−τ)Bu(τ)dτ. (15)
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Substituting (11) and (13) and defining a new variable η = kT + T − τ (15) becomes

x[k + 1] = eATx[k] +

(
∫ T

0
eAηdη

)

Bu[k]. (16)

Therefore, if an input changes values only at discrete-time instants kT and if it is computed,

only the responses at t = kT , (7) and (8) become

x[k + 1] = Adx[k] + Bdu[k], (17)

y[k] = Cdx[k] + Ddu[k], (18)

where

Ad = eAT ,

Bd =

(
∫ T

0
eAτdτ

)

B,

Cd = C

and

Dd = D,

(CHEN, 1999).

2.1.2 State-space descriptions properties

State and output equations will be denoted in this text as (ELALI, 2012)

x[k + 1] = Ax[k] + Bu[k], (19)

y[k] = Cx[k] + Du[k], (20)

respectively.

Input and output system behaviors are completely determined by the state-space de-

scription (A, B, C, D). This affirmation can be reasoned by writing the transfer matrix in the

time domain related to inputs and outputs to matrices A, B, C and D (VAIDYANATHAN,

1993).

Taking the z-transform of both sides in (19) and (20) one obtains, considering the

initial state vector (initial condition) x(0) = 0,

zX(z) = AX(z) + BU(z), (21)

Y(z) = CX(z) + DU(z). (22)

From equations (21) and (22) we have Y(z) = H(z)U(z), where

H(z) = D + C(zI − A)−1B. (23)
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In order to express the output y[k] in terms of A, B, C, D and the input, it is firstly

necessary to write y[k] in terms of the initial state vector (initial condition) x[0] and the

input u[m], 0 ≤ m ≤ k. Again, from (19) it is found

x[k] = Akx[0] +
k−1∑

m=0

AmBu[k −m− 1], k ≥ 1, (24)

and from (20)

y[k] = CAkx[0] +
k−1∑

m=0

CAmBu[k −m− 1] + Du[k]. k ≥ 1. (25)

Particularly, if x[0] = 0, (25) becomes

y[k] = Du[k] +
k∑

i=1

CAk−1Bu[k − i]. (26)

Comparing (26) to the next equation

y[k] =
∞∑

i=−∞
h[i]u[k − i] =

∞∑

i=−∞
h[k − i]u[i], (27)

the impulse response can be written as

h[k] =







D, k = 0,

CAk−1B, k > 0.
(28)

Equation (28) implies that all impulse response coefficients can be computed based on ma-

trices A, B, C and D (VAIDYANATHAN, 1993).

If zp is a pole of at least one element Hkm(z) in the matrix H(z), zp is a pole of H(z).

From equation (23)

H(z) = D +
CR(z)B

det(zI − A)
, (29)

where R(z) is the adjugate matrix of (zI − A). Then, if zp is a pole, it is a zero of the

determinant that appears in (29). Therefore,

zp is a pole ⇒ det(zpI − A) = 0

⇒ (zpI − A)v = 0 (for some v 6= 0) (30)

⇒ Av = zpv, v 6= 0, (31)

which shows that the poles of H(z) are eigenvalues of A. All eigenvalues of A are poles of

H(z) when the state-space description is minimal. In this way, system H(z) is stable if all

of its eigenvalues satisfy |λi| < 1 (i.e., all these eigenvalues are inside the unit circle). It is
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possible that all eigenvalues of A are zero, this would be the FIR case (VAIDYANATHAN,

1993).

The definition of minimal realization is presented from the following lemmas. Proofs

and further discussion can be found in Vaidyanathan (1993).

Lemma 1. (VAIDYANATHAN, 1993) A structure with n delays (i.e., n state variables) is

reachable if, and only if, the matrices A and B are such that the matrix

RA,B =
[

B AB A2B · · · An−1B
]

(32)

has full rank n.

Lemma 2. (VAIDYANATHAN, 1993) A structure with n delays (i.e., n state variables) is

observable if, and only if, the matrices C and A are such that the matrix

SC,A =














C

CA

CA2

...

CAn−1














(33)

has full rank n.

Lemma 3. (VAIDYANATHAN, 1993) Suppose that a realization (A, B, C, D) is reachable

and observable. Then it is minimal, i.e., it does not exist an equivalent structure for the same

transfer function with fewer delays.

An interesting property of minimal realizations is that all of them for a system H(z)

are related by similarity transformations.

Lemma 4. (VAIDYANATHAN, 1993) Let (A, B, C, D) and (a, b, c, D) be two minimal

realizations of a system H(z). Then there exists a unique similarity transformation T which

transforms (A, B, C, D) to (a, b, c, D).

From Lemma 4 another important fact can be stated:

Lemma 5. (VAIDYANATHAN, 1993) Let (A, B, C, D) be reachable. Then (a, b, c, D)

obtained by a similarity transformation T is also reachable. Same holds for observability.

The stability of A can be expressed in terms of a simple algebraic equation:

Lemma 6. Discrete-time Lyapunov lemma (VAIDYANATHAN, 1993)
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1. Let A be n× n, C p× n and C, A observable. Let the equation

A†PA + C†C = P, (34)

be satisfied for some Hermitian positive definite P. Then A is stable.

2. Let Q be some n×n Hermitian positive semidefinite matrix so that it can be written as

Q = C†C for some C. Let A be n× n stable with C, A observable. Then the algebric

equation (34) has an unique solution P, and this solution is positive definite.

A Hermitian matrix Q is a square matrix with complex entries that is equal to its

own conjugate transpose, namely, qi,j = q∗
j,i. Besides, Q is positive definite if for an arbitrary

n × 1 vector x it has x 6= 0 ⇒ xTQx > 0, if x 6= 0 ⇒ xTQx ≥ 0 then matrix Q is positive

semidefinite (SLOTINE; LI, 1991).

2.2 Further comments

A continuous time system accepts continuous time inputs and generates continuous

time outputs. On the other hand, a discrete-time system starts with discrete-time inputs

and it has discrete-time outputs. In both cases, the system can be causal or non-causal,

memoryless or non-memoryless, linear or nonlinear, time-invariant or time-variant.

There are several approaches to work on linear systems theory. One of them is the

transfer functions concept, which is used to describe the relations among inputs and outputs

in linear time-invariant systems. However, the applicability of this concept is limited to this

kind of system. The trend in real system modeling increases its complexity to guarantee

high precision. Along with many other features, more complex systems can have multiple

inputs and outputs, can be time-varying, etc. An alternative to work with multiple inputs

and multiple outputs systems or time-variant systems is the state-space realization (OGATA,

2010).

In this thesis, alternatives to transfer functions through state-space realizations are

presented. For this reason, the state-space theory for continuous and discrete-time systems

was presented in Subsection 2.1.1. Stability, controllability, observability and minimality are

important concepts concerning state-space theory. These concepts were presented in Section

2.1.2 and will also be utilized in Chapter 5. Nevertheless, for a complete review of these

contents, refer to the following sources: Chen (1999), Slotine and Li (1991), Elali (2012),

Elali (2008).
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3 Orthonormal basis functions

When approaching the impulse response of a time-invariant linear system by a finite

sum of exponentials, the modeling problem and identification are considerably simplified. In

most cases, approximations by finite impulse response are used. However, when using the

orthonormal filters with infinite impulse response (IIR) as basis functions, the structures of

models, which are much more effective, can be obtained (HEUBERGER; VAN DEN HOF;

WAHLBERG, 2005).

Some of the main orthonormal basis functions (OBF) applications are in system iden-

tification and adaptive signal processing, where models parameterizations in terms of finite

expansion coefficients are attractive in spite of the linear structure of the model parameters.

The orthonormal series functions study in signal representation is important in automation,

control and signal processing, and it is subject of extensive study nowadays (TANGUY et

al., 2002).

The first mention of rational orthonormal basis functions seems to have occurred at

the end of the 1920s with the independent work developed by Takenaka (1925) and Malmquist

(1926). The basis functions that were considered are now called generalized orthonormal basis

functions (GOBF).

In the 1930s and 1940s, applications of the Malmquist’s study in discrete and continuous-

time were presented in various studies by Walsh, especially Walsh (1935), which brings the

majority of his studies. At the same time, Wiener started his studies about continuous-time

Laguerre basis, although his work just appeared in 1949, (WIENER, 1949), there are men-

tions of his ideas in Wiener (1933) and in a publication of one of his students, Lee (1933).

In the 1950s, emerged the studies of Grenander and Szegö (1958), Kautz (1952),

Kautz (1954), Head (1956). Based on a mathematical point of view, a standard reference

for orthogonal polynomials was presented by Sansone (1959). In the following decade, the

highlights are the works of Broome (1965), Mendel (1966), Ross (1964) about GOBF, Clowes

(1965) specific on Laguerre bases, and the book of Horowitz (1963) with orthonormal param-

eterization for control theory applications, while the mathematical point of view stands out

in the book of Akhiezer (1965).

Published in the seventies, there were the works of Dewilde, Vieira and Kailath (1978)

about the use of GOBFs for optimal prediction of stationary processes and Kailath, Vieira

and Morf (1978) with further discussion of polynomials orthonormal bases. At that same time
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Laguerre basis for identification systems were studied by King and Paraskevopoulos (1977),

King and Paraskevopoulos (1979).

From 1980s to 2000s, there was an explosion of interest in the study of orthonormal

parameterizations. In signal processing (DAVIDSON; FALCONER, 1991; DEN BRINKER,

1994; NINNESS; GOMEZ, 1998; PEREZ; TSUJII, 1991; WILLIAMSON, 1995), in control

theory oriented system identification setting (AKÇAY; NINNESS, 1998; BODIN; WAHL-

BERG, 1994; CLEMENT, 1982; GUNNARSSON; WAHLBERG, 1991; CLUETT; WANG,

1992; HEUBERGER; VAN DEN HOF; BOSGRA, 1995; NINNESS; GUSTAFSSON, 1997;

WAHLBERG, 1991; WAHLBERG, 1994), in model approximation setting (MÄKILÄ, 1990b;

MÄKILÄ, 1990a; PARTINGTON, 1991; WAHLBERG; MÄKILÄ, 1996), in adaptive control

problem (DUMONT; FU; ELSHAFEI, 1991; ZERVOS; BÉLANGER; DUMONT, 1988; ZER-

VOS; DUMONT, 1988), among others.

In the last years, many works have been developed in the context of orthonormal basis

functions, on approximation properties, new methods for optimal approximations, state-space

realizations, fast algorithms for adaptive signal processing, system identifications and other

applications in control theory and signal processing. The list of developed works is very

extensive, however, the book of Heuberger, van den Hof and Wahlberg (2005) is a synthesis

of all the theory in its current context.

This chapter discusses the main concepts of orthogonality and orthonormality for

continuous functions and vectors that can represent discrete functions. In addition to other

appropriate concepts for the easy reading of the text. In this thesis, this study is one of the

most important concepts. Therefore, ideas about it are explored in the following sections,

from the basic concepts until more complex ideas.

Section 3.1 presents definitions about orthogonality and orthonormality. The Gram-

Schmidt procedure is shown in Section 3.2. The orthonormal basis functions idea is presented

in Section 3.3, FIR networks, in Section 3.4, Laguerre Functions are in Section 3.5, Kautz

Functions, in Section 3.6 and Takenaka-Malmquist Functions are in Section 3.7.

3.1 Orthogonality and orthonormality

The main concepts and definitions about orthogonality and orthonormality are pre-

sented here in a brief way. For further study concepts regarding orthogonal functions, the

following reading are recommended: Bultheel (1999), Jackson (2004), Sansone (1959) and

Szegö (1959).

Definition 7. (HEUBERGER; VAN DEN HOF; WAHLBERG, 2005) Let V be a vector
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space over K with inner product 〈, 〉 and u, v ∈ V . It is said that u and v are orthogonal if

〈u, v〉 = 0.

Definition 8. (HEUBERGER; VAN DEN HOF; WAHLBERG, 2005) A subset A of V is

named orthogonal if its elements are orthogonal in pairs, and it is said that A is an orthonor-

mal subset if it is an orthogonal set and if ‖u‖ = 1, ∀u ∈ A. Or else, a base {v1, v2, · · · , vn}
of V is named orthonormal if 〈vi, vj〉 = δi,j, where

δi,j =







1 if i = j,

0 if i 6= j.

The previous paragraph defines orthogonality and orthonormality concepts for vectors

u, v ∈ V , however such concepts can be extended to continuous functions, as follows.

Definition 9. (HEUBERGER; VAN DEN HOF; WAHLBERG, 2005) Two functions f and

g are named orthogonal in an interval a ≤ x ≤ b if, and only if, their inner product 〈f, g〉 is

equal to zero for f 6= g in the interval, namely

〈f, g〉 =
∫ b

a
f(x)g(x)dx = 0 if f 6= g. (35)

Definition 10. (HEUBERGER; VAN DEN HOF; WAHLBERG, 2005) An orthogonal set

fm = (f1, f2, · · · , fn), defined in an interval a ≤ x ≤ b, whose functions have unit norm, is

denominated orthonormal if

〈fm, fn〉 =
∫ b

a
f ∗
mfndx = δm,n, (36)

where

δm,n =







1 if m = n,

0 if m 6= n.

The concept of orthonormality for discrete functions can be related to the previous

definitions for vectors, namely, as following.

Definition 11. (HEUBERGER; VAN DEN HOF; WAHLBERG, 2005) Let k = 1, 2, · · · be

an increasing sequence of integer numbers. The set of functions {pm[k]} is named orthonormal

in the interval I if

∑

k∈I
pm[k]pn[k] = δm,n =







1 if m = n,

0 if m 6= n,
(37)

An equivalent definition to (37) for functions defined in the complex domain z is

1
2πj

∮

C
Pm(z)Pn(z−1)

dz

z
=







1 if m = n,

0 if m 6= n,
(38)
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where Pm(z) = Z[pm(k)] and the region C is the unitary circle (BROOME, 1965).

The use of orthonormal basis functions (OBF) has advantages in the representation of

models, simplifying the associated problems of identification and control, allows the incorpo-

ration of prior knowledge about the dynamic system, there is no feedback of forecast errors,

the base is complete, among others. The most used orthonormal functions to represent models

using OBFs are Laguerre Functions, Kautz Functions and the Generalized Orthonormal Ba-

sis Functions (MACHADO, 2011; CAMPELLO; OLIVEIRA; AMARAL, 2007; OLIVEIRA;

CAMPELLO; AMARAL, 2007).

3.2 The Gram-Schmidt procedure

The Gram-Schmidt procedure is a method for a vector set orthogonalization in a space

with inner product. This process consists of receiving a finite and linearly independent set of

vectors S = {v1, · · · ,vn} and return an orthonormal set S ′ = {u1, · · · ,un} that spans the

same initial subspace S (HEUBERGER; VAN DEN HOF; WAHLBERG, 2005).

The projection operator is defined by

proj
u
(v) =

〈v,u〉
〈u,u〉u,

and The Gram-Schmidt procedure works as following

u1 = v1,

u2 = v2 − proj
u1

(v2),

u3 = v3 − proj
u1

(v3) − proj
u2

(v3),
...

uℓ = vℓ −
ℓ−1∑

j=1

projuj
(vℓ),

e1 =
u1

||u1||
,

e2 =
u2

||u2||
,

e3 =
u3

||u3||
,

...

eℓ =
uℓ

||uℓ||
.
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The sequence u1, · · · ,uℓ is the required system of orthogonal vectors, while the sequence

e1, · · · , eℓ form an orthonormal set.

The vector space of functions with inner product can also be considered, for example,

let F 1(z) =
1

z − a
and F 2(z) =

1
z − b

, −1 < a, b < 1, a 6= b be two functions. It is easy to

check that F 1(z) and F 2(z) are linearly independent, but they are not orthonormal in the

space H2(E).

In fact, through the Gram-Schmidt procedure follows

K1(z) = F 1(z),

F1(z) =
1
z−a

1√
1−a2

=

√
1 − a2

z − a
,

K2(z) = F 2(z) − 〈F 2, F1〉F1(z) =
1

z − b
−

√
1 − a2

1 − ab

√
1 − a2

z − a
=

b− a

1 − ab

1
z − b

1 − az

z − a
,

F2(z) =

√
1 − b2

z − b

1 − az

z − a
.

Functions F1(z) and F2(z) are orthonormal constructions from F 1(z) and F 2(z), re-

spectively, and they span the same subspace.

Function F2(z) can be rewritten:

F2(z) =

√
1 − b2

z − b
Gb(z),

where

Gb(z) =
1 − az

z − a
,

and Gb(z) is named first-order all-pass transfer function, which satisfies Gb(z)Gb(1/z) = 1.

Let

F 3(z) =
1

z − c
, −1 < c < 1, c 6= a, b,

be a third function. Then, according to Heuberger, van den Hof and Wahlberg (2005), it has

K3(z) = F 3(z) − 〈F 3, F2〉F2(z) − 〈F 3F1〉F1(z),

F3(z) =
K3(z)
‖K3‖ ,

where 〈F 3, F1〉 = F1(1/c)/c and 〈F 3, F2〉 = F2(1/c)/c. Further computations give

F3(z) =

(√
1 − c2

z − c

)(1 − az

z − a

)(1 − bz

z − b

)

,
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which is orthogonal to F1(z) and F2(z). In this way, if projecting F 3 onto the orthogonal

space to the two first basis functions corresponds to multiplication by an all-pass function

Gb(z) containing the same poles as the previous two basis functions. Since

Gb(z) =
(1 − az)(1 − bz)
(z − a)(z − b)

,

Heuberger, van den Hof and Wahlberg (2005) affirms that this example can be generalized

to a set of n first-order transfer functions with distinct real poles.

3.3 Orthonormal basis functions

The orthonormal basis functions satisfies the completeness criteria in the square-

summable functions space in the interval [0,∞). Furthermore, functions from these bases can

be approximated with arbitrary precision, through a linear combination of finite functions

from the basis, of any linear function in the L2 space (HEUBERGER; VAN DEN HOF;

BOSGRA, 1995; CAMPELLO; OLIVEIRA; AMARAL, 2007; OLIVEIRA; CAMPELLO;

AMARAL, 2007; MACHADO, 2011).

The output of a digital filter is the linear sequence {y[k]} formed from the input

sequence {u[k]}. If the filter is of the recursive type, the output sequence is generated by a

recursion relation

y[k] =
R∑

n=0

anu[k − n] +
S∑

n=1

bny[k − n] (39)

that uses the past outputs and the past and actual inputs to generate the actual output. In

equation (39), R ∈ Z
∗
+ and S ∈ Z+. The recursive method is a numerical scheme especially

effective for both generating sequences and filtering data in digital computers (BROOME,

1965).

According to Broome (1965), the scalar product between the sequences {y[k]} and

{zk} is
∞∑

k=0

y[k]zk =
R∑

n=0

an
∞∑

k=0

u[k − n]zk +
S∑

n=1

bn
∞∑

k=0

y[k − n]zk. (40)

Using the following z-transform property

∞∑

k=0

y[k − n]zk = znY (z)

and
∞∑

k=0

u[k − n]zk = znU(z),
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then (40) can be written as

Y (z) =
R∑

n=0

anz
nU(z) +

S∑

n=1

bnz
nY (z) (41)

or

Y (z) =
U(z)

R∑

n=0

anz
n

1 −
S∑

n=1

bnz
n

. (42)

When the input signal is u[k] = δ[k], where δ[k] is the unitary impulse response, it

implies that U(z) = Z(δ[k]) = 1. Then the transfer function H(z) = Y (z)/U(z) is given by

H(z) =

R∑

n=0

anz
n

1 −
S∑

n=1

bnz
n

, (43)

or

H(z) =
a0

R∏

n=1

(1 − αnz)

S∏

n=1

(1 − βnz)

, (44)

which is the factored form, where the coefficients αn and βn are derived from an and bn,

respectively. In order to restrict h to real values, an and bn must be real and consequently

αn and βn also must be real or must happen in conjugate pairs in the product (BROOME,

1965).

Following the procedure for constructing sets of orthonormal sequences, Broome

(1965) shows that generally when βn is a complex pole, functions H(z) have the form

H(z) =
C(z − a1)

j−1
∏

n=1

(βn − z)(β∗
n − z)

j
∏

n=1

(1 − βnz)(1 − β∗
nz)

, (45)

where C is a constant that depends on αn and βn, and β∗
n represents the complex conjugate

of βn.

Functions such as (45) are named generalized orthonormal functions, and they con-

stitute a complete basis in the Lebesgue space. Laguerre and Kautz functions are some

particular cases of these functions (SARROUKH; EIJNDHOVEN; BRINKER, 2001).
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In this way, for any function h[k] ∈ L2[0,∞) there is n ∈ Z
∗
+, such that for any ǫ > 0

we have
∞∑

k=0

(

h[k] −
n∑

i=1

ciφ[k]

)2

< ǫ, (46)

where {φ1[k], · · · , φn[k]} is the set of the n first orthonormal functions of the basis, c1, · · · , cn
are not scalars. Then

h[k] =
∞∑

i=1

ciφi[k], (47)

as a consequence, for any integer j > 0
∞∑

k=0

h[k]φi[k] =
∞∑

k=0

φj[k]
∞∑

i=1

ciφi[k]

=
∞∑

i=1

ci
∞∑

k=0

φj[k]φi[k]. (48)

From this result and from the orthonormality condition, it is concluded that the series coef-

ficients are given by

cj =
∞∑

k=0

h[k]φj[k]. (49)

For a causal linear time-invariant dynamic system, consider u[k] the input, y[k] the

output and h[m] the system impulse response. The approximate development of the impulse

response in n orthonormal functions is accomplished in the following manner:

y[k] =
k∑

m=0

ĥ[m]u[k −m]

=
k∑

m=0

n∑

i=1

ciφi[m]u[k −m]

=
n∑

i=1

ci
k∑

m=0

φi[m]u[k −m]

=
n∑

i=1

ciϕi[k], (50)

where ϕi[k] is the convolution of the input signal u[k] with the i-th orthonormal function φi at

an instant k (MACHADO, 2011; CAMPELLO; OLIVEIRA; AMARAL, 2007; OLIVEIRA;

CAMPELLO; AMARAL, 2007).

3.4 Finite impulse response networks

Consider Figure 1 that represents a FIR network. The corresponding orthogonal state-

space model is obtained by taking

x[k] =
[

u[k − 1] u[k − 2] · · · u[k − n]
]T
.
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Consequently

x[k + 1] = Ax[k] + Bu[k],

y[k] = Cx[k] +Du[k],

where

A =














0 0 · · · 0 0

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0














,

B =














1

0

0
...

0














,

C =
[

g1 g2 g3 · · · gn
]

and D = 0.

Figure 1: FIR network.

u[k]
z−1 z−1z−1

g1 g2
gn

y[k]
++

Source: Adapted from Heuberger, van den Hof and Wahlberg (2005).

3.5 Laguerre networks

Taking βn = p in (44) where p is a real value, it leads to the special Laguerre case.

According to Wahlberg (1994), Laguerre functions are defined in terms of their z-transform,
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as follows

Fi(z) = Z{φi[k]} =

√
1 − p2

z − p

(

1 − pz

z − p

)i−1

, (51)

where i = 1, 2, · · · and p is known as Laguerre pole.

According to Silva (1994), Laguerre functions present as an advantage the fact that

their transforms are rational functions with very simple repetitive functions. Since each La-

guerre function φi[k] = Z−1[Fi(z)] is null for k < 0, it is possible to construct a causal linear

time-invariant system with impulse response equal to φi(k), as represented in Figure 2 (ϕi[k]

is i-th element in the state vector defined as ϕ[k]). When p = 0 this is known as finite impulse

response model representation (SILVA, 1995).

Figure 2: Block representation for Laguerre Functions φi[k].

u[k]

ϕ1[k] ϕ2[k] ϕn[k]

√
1 − p2

z − p

1 − pz

z − p

1 − pz

z − p

︷ ︸︸ ︷
n − 1 dynamic systems

c1 c2 cn

y[k]
++

Source: Adapted from Machado (2011).

3.5.1 State-space description for Laguerre Functions

Campello (2002) affirms that any set of orthonormal functions can be represented in

the state-space. In the Laguerre Functions case, the model representation in the state-space

for a linear time-invariant system is as follows:

x[k + 1] = Ax[k] + Bu[k],

y[k] = Cx[k]
(52)

where u[k] is the input signal and x[k] = [ϕ1[k], ϕ2[k], · · · , ϕn[k]]T represents the vector of

orthonormal states with order n. Matrix A and vector B only depend on the orthonormal

basis functions, and C contains the series expansion terms with the orthonormal functions

output.
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In case of Laguerre functions, in (52) A, B and C are as follow (OLIVEIRA, 1997):

A =














p 0 0 · · · 0

1 − p2 p 0 · · · 0

(−p)(1 − p2) 1 − p2 p · · · 0
...

...
...

. . .
...

(−p)n−2(1 − p2) (−p)n−3(1 − p2) (−p)n−4(1 − p2) · · · p














, (53)

B =
√

1 − p2














1

−p
(−p)2

...

(−p)n−1














, (54)

C =
[

c1 · · · cn
]

. (55)

3.6 Two-parameter Kautz networks

Kautz Functions also are a special case of equation (44), in a similar form to the

Laguerre functions, but in this case βi = β and β ∈ C. According to Ninness and Gustafsson

(1994), in this case, we have the known Kautz Functions that are defined through their

z-transforms

F2i(z) =

√

(1 − a2)(1 − b2)

z2 + b(a− 1)z − a

(

−az2 + b(a− 1)z + 1
z2 + b(a− 1)z − a

)i−1

, (56)

F2i−1(z) =

√

(1 − a2)(z − b)

z2 + b(a− 1)z − a

(

−az2 + b(a− 1)z + 1
z2 + b(a− 1)z − a

)i−1

, (57)

where i = 1, 2, · · · and the parameters a and b are real constants,

b =
β + β∗

1 + ββ∗ ,

a = −ββ∗,

β is named the Kautz pole (NINNESS; GUSTAFSSON, 1994). The Kautz Functions also

can be described in a recursive representation and, consequently, in cascade, as represented

in Figure 3.
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Figure 3: Block representation for Kautz Functions.

√
1 − a2(z − b)

z2 + b(a− 1)z − a

−az2 + b(a− 1)z + 1
z2 + b(a− 1)z − a

−az2 + b(a− 1)z + 1
z2 + b(a− 1)z − a

u[k]

√
1 − b2

z − b

√
1 − b2

z − b

√
1 − b2

z − b

︷

systems

c1 c2 c3 c4 cn−1 cn

ϕ1[k] ϕ2[k] ϕ3[k] ϕ4[k] ϕn−1[k] ϕn[k]

y[k]
+++++

Source: Adapted from Machado (2011).

3.6.1 State-space description for Kautz Functions

According to Oliveira (1997), the Kautz Functions defined by equations (56) and (57)

also have a representation in the state-space, in the form (52), namely,

x[k + 1] = Ax[k] + Bu[k],

y[k] = Cx[k]

where:

x[k] =
[

ϕ1[k − 1] ϕ1[k] · · · ϕn−1[k − 1] ϕn−1[k] ϕn[k − 1] ϕn[k]
]T
,

u[k] =
[

u[k − 1] u[k]
]T
,
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A =


























0 a1,2 0 0 · · · 0 0 0 0

a2,1 a2,2 0 0 · · · 0 0 0 0

0 0 0 a3,4 · · · 0 0 0 0

0 a4,2 0 a4,4 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 a2n−3,2n−2 0 0

a2n−2,1 a2n−2,2 0 0 · · · a2n−2,2n−3 a2n−2,2n−2 0 0

0 0 0 0 · · · 0 0 0 a2n−1,2n

0 0 0 0 · · · 0 a2n,2n−2 0 a2n,2n


























, (58)

B =
√

1 − a2
































0 0

b2,1 b2,2

0 0

0 0

0 0

b6,1 b6,2

...
...

0 0

b2(n−1),1 b2(n−1),2

0 0

0 0
































, (59)

C =
[

0 c1 0 c2 · · · 0 cn−1 0 cn (60)

Let i be the line cardinality of matrix A in (58), and aℓ,m the elements of A, ℓ denotes

line while m denotes column:

• when i is an odd number:

– ai,2i = 1,

– remaining elements are null;

• when i = 2:

– ai,i = −b(c − 1),

– ai,i−1 = c,

– remaining elements are null;

• when i is a multiple of 4:
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– ai,i = b,

– ai,i−2 =
√

1 − b2,

– remaining elements are null;

• for other lines with i being an even number:

– ai,i = −b(c − 1),

– ai,i−1 = c,

– ai,i−4j = (−c)j−1(b(c− 1) + (−c)(−b(c− 1))), j = 0, 1, 2, · · · such that 4j < i,

– ai,i−(4j+1) = (−c)j−1((−c)(c) + 1), j = 0, 1, 2, · · · such that 4j < i,

– remaining elements are null.

The elements of matrix B in (59) are given by:

• when i = 2 + 4j, with j = 0, 1, 2, · · · such that j ≤ n/2:

– bi,1 = (−c)j ,

– bi,2 = (−c)j(−b);

• for remaining i’s

– bi,1 = bi,2 = 0.

3.7 The Takenaka-Malmquist Functions

The construction of orthonormal basis using the Gram-Schmidt procedure was ex-

plained in the Section 3.2. This construction for the general case with multiple complex poles

will possibly lead to the Takenaka-Malmquist Functions (WALSH, 1935; WALSH, 1954;

LUKATSKII, 1974; HEUBERGER; VAN DEN HOF; WAHLBERG, 2005):

Fk(z) =

√

1 − |ξk|2
z − ξk

k−1∏

i=1

(

1 − ξ∗
i z

z − ξi

)

, k = 1, 2, · · · , ξi ∈ C, |ξi| < 1. (61)

This structure can be anticipated from the Cauchy integral formula

〈Fk, F1〉 = Fk

(

1
ξ∗

1

)
√

1 − |ξ1|2 = 0, ∀k > 1,
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which forces Fk(z) to have a zero at
1
ξ∗

1

. Using this argument for 〈Fk, Fj〉, j = 2, · · · , k − 1,

we have Fk

(

1
ξ∗
j

)

= 0, j < k.

According to Heuberger, van den Hof and Wahlberg (2005), the projection property

of all-pass function

Gb(z) =
k−1∏

i=1

(

1 − ξ∗
i z

z − ξi

)

,

namely,

〈Fj , FGb〉 = 0, j ≤ k − 1, ∀F (z) ∈ H2(E),

is known in a somewhat more abstract setting as the Beurling-Lax theorem (REGALIA,

1994; WAHLBERG; MÄKILÄ, 1996).

Summarizing, the generalized orthonormal basis functions (GOBF) class is obtained

by connecting n all-pass filters with order nb, namely, each filter has nb poles. These poles can

be distinct or not, real or complex. A GOBF particular case corresponds to connect different

first and second orders all-pass filters, where each all-pass may have distinct poles. These basis

functions are also known as Takenaka-Malmquist functions (HEUBERGER; VAN DEN HOF;

WAHLBERG, 2005).

A GOBF model block representation is presented in Figure 4. The blocks represented

by Gb are orthonormal functions that compose the basis and CT
i , with i = 1, · · · , n, are

the coefficients for the vector that multiplies the series by the functions outputs to form the

estimated output y[k].

Figure 4: GOBF model block representation.

u[k]
Gb GbGb

CT
1 CT

2
CT
n

y[k]
++

Source: Adapted from Machado (2011).
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Models with complex conjugate poles can be combined corresponding to similar func-

tions to Kautz functions. Nevertheless, those type of models have some disadvantages when

the dynamic characteristics of the system (poles) are unknown and the model must be ob-

tained through identification methods (MACHADO, 2011).

There is another representation for GOBFs which does not present the problems

described in Machado (2011). This representation is the known orthonormal basis of func-

tions with generalized internal functions of ladder structure. Laguerre and Kautz models

are special cases for GOBFs with internal functions (MACHADO, 2011; HEUBERGER;

VAN DEN HOF; WAHLBERG, 2005).

3.7.1 Ladder structures

A rational transfer function Gb(z) is named “internal” if it is stable and satisfies the

condition

Gb(z)Gb(1/z) = 1, (62)

in this manner G(z) is an all-pass filter.

Gb(z) =
1 − ξz

z − ξ
.

In order to write it in the state-space consider y(z) = Gb(z)u(z), that is

(z − ξ)y(z) = (1 − ξz)u(z),

which can be rewritten as the difference equation

y[k] = ξy[k − 1] − ξu[k] + u[k − 1].

Let x′[k] = ξy[k − 1] + u[k − 1], then

x′[k + 1] = ξy[k] + u[k],

y[k] = x′[k] − ξu[k],

that can be rewritten as

x′[k + 1] = ξx′[k] + u(1 − ξ2)[k], (63)

y[k] = x′[k] − ξu[k]. (64)

Let x[k] = x′[k]/
√

1 − ξ2, (63) and (64) become

√

1 − ξ2x[k + 1] = ξ
√

1 − ξ2x[k] + (1 − ξ2)u[k],
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y[k] =
√

1 − ξ2x[k] − ξu[k],

that is

x[k + 1] = ξx[k] +
√

1 − ξ2u[k],

y[k] =
√

1 − ξ2x[k] − ξu[k],

or equivalently



A B

C D



 =




ξ

√

1 − ξ2
√

1 − ξ2 −ξ



 . (65)

This representation with real poles is equivalent to the Laguerre networks representation

(MACHADO, 2011; HEUBERGER; VAN DEN HOF; WAHLBERG, 2005).

Considering dynamical system models with a pair of complex conjugate poles, ξ and

ξ∗, the internal functions are

G1(z) =
1 − ξ∗z

z − ξ

and

G2(z) =
1 − ξz

z − ξ∗ .

Connecting in cascade these two functions and rewriting, it gives

G(z) =
1 − (ξ + ξ∗)z + ξξ∗z2

z2 − (ξ + ξ∗)z + ξξ∗ . (66)

Taking

b =
ξ + ξ∗

1 − ξξ∗

and

c = −ξξ∗,

equation (66) becomes

G(z) =
−cz2 + b(c− 1)z + 1
z2 + b(c− 1)z − c

. (67)

This representation is equivalent to the Kautz functions. Analogous to (65), in the state-

space, it leads to




A B

C D



 =








b c
√

1 − b2
√

1 − b2
√

1 − c2

√
1 − b2 −bc −b

√
1 − c2

0
√

1 − c2 −c







, (68)

(MACHADO, 2011).
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There is another representation to GOBF models with only one pole, containing two

inputs and two outputs (GRAY A.; MARKEL, 1975). The model in the state-space is known

as ladder structure:







ϕ[k + 1]

y1[k]

y2[k]








=








0 0 1
√

1 − γ2 −γ 0

γ
√

1 − γ2 0















ϕ[k]

u1[k]

u2[k]







, (69)

where −1 < γ < 1. Model (69) representation is shown in Figure 5. Further discussions can

be found in Machado (2011), Heuberger, van den Hof and Wahlberg (2005).

Figure 5: Block diagram for the normalized ladder structure (two-input two-output all-pass
transfer function).

u1[k]

u2[k]y1[k]

y2[k]

z−1

γγ

∑

∑

√

1 − γ2

√

1 − γ2

ϕ[k]

+

+

+

-

Source: (HEUBERGER; VAN DEN HOF; WAHLBERG, 2005).
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4 Wavelet transform and filter banks

The main idea in this chapter is to present the formulation of Sherlock and Monro

(1998). In order to do it, filter bank theory related to the Wavelet Transform, especially the

Discrete Wavelet Transform, is introduced initially.

4.1 Filter banks

An input signal may arrive in a system in many ways: continuous-time, discrete-time,

finite time, and it can be processed in several manners. In this thesis, the greatest interest

is in the discrete-time signals that are processed by linear time-invariant operators. These

operators are called digital filters. Further details about signals can be found in Oppenheim

and Schafer (1975), Oppenheim and Schafer (1989).

An important point is the relation between filters and frequency. The frequency re-

sponse can be classified into a number of different bandforms describing which frequency

bands the filter passes (the passband) and which it rejects (the stopband). The wavelet filter

bank is composed by low-pass and high-pass filters. In a low-pass filter low frequencies are

passed and high frequencies are attenuated, while in a high-pass filter high frequencies are

passed and low frequencies are attenuated. There are other filters types: band-pass filter,

only frequencies in a frequency band are passed, all-pass filter, all frequencies are passed, and

others (STRANG; NGUYEN, 1996).

Let u be a signal passing through two filters separately, as shown in Figure 6. Low-

pass and high-pass filters split the signal into two parts: a and d, which are approximation

and detail signals, respectively.

If this operation is performed on a real digital signal, outputs a and d together have

twice as many samples as the initial signal, while the information has not doubled. To over-

come this problem we may keep only half of the samples from signals a and d. This is the

notion of Downsampling, (↓ 2). For M-channel filter banks the sampling is done at the rate

(↓ M).

The decimation operation is not invertible, nevertheless, in the reconstruction of the

initial signal u, there is an operation with opposite role: the Upsampling, (↑ 2). Upsampling

is the process of lengthening a signal component by inserting zeros between samples, namely,

it places zeros into the odd-numbered samples. For M-channel filter banks the sampling is

done at the rate (↑ M).
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Figure 6: Filtering process by low-pass and high-pass filters.

u

Low-pass filter

High-pass filter

a

d

Source: Adapted from Strang and Nguyen (1996).

A filter bank is a set of filters linked by sampling operators, such as upsampling

(decimators) and downsampling (expanders), and sometimes by delays. If the filter bank has

two-channel, normally the analysis filters are low-pass and high-pass, as it can be seen in

Figure 7 for a two-channel filter bank scheme.

Figure 7: Two-channel filter bank scheme: Analysis and Synthesis Filter Banks.

u[k]

û[k]

H0

H1

F0

F1↓ 2

↓ 2

↑ 2

↑ 2
y0[k]

y1[k]

v0[k]

v1[k]

r0[k]

r1[k]

︸ ︷︷ ︸

Analysis Filter Bank

︸ ︷︷ ︸

Synthesis Filter Bank

Source: Adapted from Strang and Nguyen (1996).

In Figure 7, u[k] is the input signal, H0 and H1 are the analysis filters (low-pass and

high-pass, respectively), ↓ 2 are the decimators, ↑ 2 are the expanders, F0 and F1 are the

synthesis filters (low-pass and high-pass, respectively) and û[k] is the output signal. This

filter bank is biorthogonal, but if the filters for decomposition and reconstruction are the

same in reverse order, the filter bank is orthogonal (NIEVERGELT, 1999).

It is worth noting that ↓ 2 is the downsampling operator that removes alternate

samples of the filtered signal to avoid the increasing of samples after the filtering process.

While, ↑ 2 is the process of lengthening a signal component by inserting zeros between

samples. The left part in Figure 7 represents the signal decomposition, whose inverse process

is the signal reconstruction, which is represented on the right side.

According to Strang and Nguyen (1996), a filter bank can have M channels, although
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M = 2 is standard in many applications, it can often be seen M > 2. Considering M analysis

filters H0, H1, · · · , HM−1, the sampling is done at the critical rate (↓ M) and (↑ M). For the

synthesis the idea is analogous, as we can see in Figure 8 (decomposition is shown in the left

side, while reconstruction is shown in the right side of the figure).

Figure 8: M-channel filter bank scheme: Analysis and Synthesis Filter Banks.

u[k]

û[k]

H0

H1

F0

F1

HM−1 FM−1↓ M

↓ M

↓ M

↑ M

↑ M

↑ M
y v r

︸ ︷︷ ︸

Analysis Filter Bank

︸ ︷︷ ︸

Synthesis Filter Bank

Source: Adapted from Strang and Nguyen (1996).

A filter bank is represented by its polyphase matrix, if the filters are known, Hp(z)

also is. Otherwise, a suitable matrix can be chosen as a product of simple matrices. In this

last case, the filter bank is a “lattice” of simple filters (STRANG; NGUYEN, 1996).

4.2 Wavelet Transform

The most known books about wavelet, such as Daubechies (1992) and Mallat (1998),

introduce the wavelet theory from the Fourier transform (FT). Signal analysis using Fourier

transform is older, but efficient and there are many works that use it. The name of the FT

is a tribute to Jean-Baptiste Joseph Fourier (France, 1768-1830), and it can be seen as a

z-transform particular case. Both of them are widely used techniques in signal processing,

besides being powerful tools, already known and used for a long time, they continue to play

an important role nowadays (OPPENHEIM; SCHAFER, 1975; OPPENHEIM; SCHAFER,

1989).

The FT for a function f(t), according to Daubechies (1992), is defined as

f̂(ω) =
1√
2π

∫ ∞

−∞
f(t)e−iωtdt. (70)



60 Chapter 4. Wavelet transform and filter banks

Signal analysis with Fourier transform is very limited to stationary signals (stationary

signals are constant in their statistical parameters over time). This fact can be understood

observing equation (70), namely, the signal is analyzed inside the entire interval −∞ < t < ∞.

In precise words, it means that, although it is efficient to determine the frequency content of

a signal, it is not efficient to determine the location on the time when it occurs (MALLAT,

1998).

A known way to overcome this inconvenience is through the Short-time Fourier trans-

form (STFT), which analyses the signal through a short time range within which the signal

stays approximately stationary,

(TWINf)(ω, t) =
∫ ∞

−∞
f(s) g(s− t)e−iωsds, (71)

where g is the window function (OPPENHEIM; SCHAFER, 1975). The formula in equation

(71) is the Short-time Fourier transform, a standard technique for time-frequency localization.

For a discrete-time version, t and ω have discrete values: t = nt0, ω = mω0, where m, n ∈ Z,

and t0, ω0 > 0 are fixed. Thus, (71) becomes

TWIN
m,n (f) =

∫ ∞

−∞
f(s) g(s− nt0)e−imω0sds, (72)

(DAUBECHIES, 1992).

The STFT uses a fixed scale that, once determined, cannot be changed. In this way,

once a particular size has been selected for the time window, it will be used for all frequencies.

Many signals need a more flexible approach, making possible to vary the window size in order

to accurately determine events time or frequency (MALLAT, 1998).

The wavelet theory presents a technique that uses variable windows along the analysis

of regions in a signal: the Wavelet Transform. This technique enables the use of long time

intervals, where one wants a lower frequency information, and shorter intervals where high

frequency information is required (DAUBECHIES, 1990; VELHO; CARVALHO, 2000).

Definition 12. (DAUBECHIES, 1992) A function ψ(t) ∈ L1(R) ∩ L2(R) such as that the

family of functions

ψj,k(t) = 2−j/2ψ(2−jt− k),

where j and k are arbitrary integers numbers, being an orthonormal basis for L2(R) is called

Wavelet Function.

If ψ(t) is a wavelet ψj,k(t) also is, for any j, k ∈ Z. The fact that ψ(t) ∈ L2(R) means

that
∫ ∞

−∞
|ψ(t)|2dt < ∞. (73)
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If the function ψ(t) ∈ L2(R) is a wavelet, its Fourier transform, denoted by ψ̂(ω), satisfies

Cψ =
∫ ∞

−∞

|ψ̂(ω)|2
|ω| dω < ∞. (74)

Equation (74) is known as admissibility condition (DAUBECHIES, 1992), implying that

lim
ω→0

ψ̂(ω) = 0. Therefore, being

ψ̂(ω) =
∫ ∞

−∞
ψ(t)e−jωtdt

continuous, then it leads to
∫ ∞

−∞
ψ(t)dt = 0. (75)

Equation (75) means that ψ(t) is a wave that oscillates in such a way that the sum of positive

and negative areas limited by the curve and the horizontal axis is zero, namely, the graphics

of ψ(t) has a short duration waveform as shown in Figure 9.

Figure 9: A wavelet graph (Morlet Wavelet).
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Source: (UZINSKI, 2013).

Definition 13. (DAUBECHIES, 1992) The Continuous Wavelet transform (CWT) is defined

as

(TWAV f)(a, b) = |a|−1/2
∫ ∞

−∞
f(t) ψ

(

t− b

a

)

dt, a 6= 0. (76)

In equation (76), restricting a and b values to the discrete values a = am0 and b = nb0a
m
0 ,

where m,n ∈ Z and a0 > 1, b0 > 0 are fixed, it becomes

TWAV
m,n (f) = a

−m/2
0

∫ ∞

−∞
f(t) ψ(a−m

0 t− nb0)dt, (77)
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which is the Discrete Wavelet Transform.

The parameter a is known as scale parameter and the term |a|−1/2 is a normalization

factor that ensures that the energy of ψa,b(t) does not depend on a and b. The parameter b is

the translation in the axis t.

Let ψa,b(t) be the following equation

ψa,b(t) = |a|−1/2ψ

(

t− b

a

)

. (78)

The wavelet transform can be written as an inner product between f(t) and ψa,b(t):

(TWAV f)(a, b) = 〈f(t), ψa,b(t)〉 =
∫ ∞

−∞
f(t)ψa,b(t)dt. (79)

When ψ(t) is equivalent to ψ1,0(t) it is called “Mother wavelet”.

If the continuous signal f(t) was decomposed using a wavelet ψ(t) that satisfies the

admissibility condition (74), it is possible to reconstruct it through the inverse continuous

wavelet transform (ICWT):

f(t) = C−1
ψ

∫ ∞

−∞

∫ ∞

−∞

1
a2

〈f, ψa,b〉ψa,bda db. (80)

In the discrete-time domain, in order to reconstruct a function f(t), it is necessary that ψa,b
constitute a frame.

A frame is a collection of functions {φn;n ∈ Z} for those there exist constants A and

B, 0 ≤ A < B < ∞, such that for every function f ∈ L2(R)

A‖f‖2 ≤
∞∑

n=−∞
|〈f, φn〉|2 ≤ B‖f‖2.

A and B are named the frame infimum and supremum, respectively.

A function or signal f(t) is reconstructed by

f(t) =
2

A +B

∞∑

m=0

∞∑

n=0

TWAV
m,n (f)ψn(t). (81)

If the infimum is equal to the supremum we have a tight frame, in the case that

A = B = 1, all wavelets form an orthonormal basis for L2(R), then the reconstruction for

any function is perfect (DAUBECHIES, 1992).
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4.3 Multiresolution analysis (MRA) and Fast Wavelet Transform

Considering the wavelet theory presented previously, the filter bank construction and

signal filtering in the basic level, we can present the relationships between wavelets and

filter banks. Let {h[k]} be the low-pass filter set of coefficients and {g[k]} the high-pass

set of coefficients. The coefficients {g[k]} are obtained from {h[k]} through a method called

Alternate Flip:

g[k] = (−1)k+1h[n− k], (82)

therefore g[k] is orthogonal to h[k] (STRANG; NGUYEN, 1996).

Definition 14. (MALLAT, 1998) Let φ[x] and ψ[x] be the scale and the wavelet functions,

respectively

φ[x] =
√

2
∞∑

k=−∞
h[k]φ[2x− k], (83)

ψ[x] =
√

2
∞∑

k=−∞
g[k]φ[2x− k], (84)

again φ[x] and ψ[x] are orthogonal.

The Fast Wavelet Transform (FWT) is the basic instrument for computational calcu-

lus with wavelets. A signal in time domain is converted into a representation in the wavelet

basis. On the other hand, the Inverse Fast Wavelet Transform (IFWT) reconstructs the signal

from its wavelet representation to the time domain. The wavelet decomposition process of a

signal is called analysis and its inverse is called synthesis (VELHO; CARVALHO, 2000).

The algorithm to work with discrete wavelet transform was developed by Mallat

(1989c), Mallat (1998). This method uses digital filter banks in a tree structure, as shown

in Figure 10 and the equivalent four-channel system in Figure 12. It is worth noting that

in these figures just a few decomposition levels are shown, these are examples. The inverse

process is shown in Figures 11 and 13.

In this work, notations G and H were respectively introduced in Figures 10 and 11

for the high-pass and low-pass filters in a two-channel filter bank.

As mentioned in Figures 11 and 13, these filter banks are called Quadrature Mirror

Filter Bank (QMF). Works with them were started by Croisier, Esteban and Galand (1976),

however the necessary and sufficient conditions to obtain the perfect-reconstruction for the

finite impulse response orthogonal filter banks, named quadrature mirror filters, were firstly

found by Smith and Barnwell (1984), Mintzer (1985). This theory became complete with

the biorthogonal equations in Vetterli (1986) and the paraunitary matrix general theory in

Vaidyanathan (1987).
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Figure 10: A 3-level binary tree-structured QMF bank.
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Source: Adapted from Vaidyanathan (1993).

Figure 11: The synthesis bank corresponding to Figure 10.
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Source: Adapted from Vaidyanathan (1993).

Figure 12: The four channel system equivalent to Figure 10.
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Source: Adapted from Vaidyanathan (1993).
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Figure 13: The four channel synthesis bank corresponding to Figure 12.
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Source: Adapted from Vaidyanathan (1993).

4.4 Algorithme à Trous

As presented in Section 4.3, the algorithm to work with discrete wavelet transform

(Figures 10 and 11) computes the wavelet series expansion on a discrete grid corresponding

to scales ai = 2i and shifts bi,j = j2i, i = 0, 1, 2, · · · . The samples are shown in Figure 14.

According to Vetterli and Kovačević (1995), the associated wavelets form an orthonormal

basis, but the transform is not shift-invariant, and it can be a drawback in signal analysis or

pattern recognition.

Figure 14: Sampling in the orthogonal discrete-time wavelet series.
time

scale

1
2
3

Source: Adapted from Vetterli and Kovačević (1995).

Figure 15: Oversampled time-scale plane in the Algorithme à Trous.
time

scale

1
2
3

Source: Adapted from Vetterli and Kovačević (1995).
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An approach to overcome this problem computes all the shifts, namely, avoiding down-

sampling, as presented in Figure 15. In this new algorithm, scales are still restricted to powers

of two, while shifts are arbitrary integers. This implementation is called Algorithme à Trous

(algorithm with holes) (HOLSCHNEIDER et al., 1989), and its correspondent analysis and

synthesis filter banks are shown in Figures 16 and 17, respectively.

Figure 16: Equivalent filter bank to the one in Figure 10 using the Algorithme à Trous.
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Source: Adapted from Vetterli and Kovačević (1995).

Figure 17: Equivalent filter bank to the one in Figure 11 using the Algorithme à Trous.
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As stated by Paiva (2005), the relationship between the coefficients yi[k] (FWT) and

y
i
[k] (Algorithme à Trous ) is

yi[k] = (↓ 2i)y
i
[k]. (85)

4.5 Sherlock and Monro formulation

Sherlock and Monro (1998) developed a formulation to parameterize the orthonormal

wavelet space by a set of angular parameters, adapting the work on paraunitary matrices
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factorization from Vaidyanathan (1993). This formulation is presented in this section, and

shall be studied under the scope of orthonormal basis function and as wavelets. It is worth

noting that the formulation initially had a weak point, there were no restrictions to ensure a

number of vanishing moments greater than one, however, ways to overcome this inconvenience

ensuring at least three vanishing moments were obtained by Paiva et al. (2009) and Uzinski

(2013), Uzinski et al. (2013), Uzinski et al. (2015a).

It is worth noting that from this paragraph of this text, in some equations the se-

quences h[k] and g[k] will be denoted by hi and gi, respectively, for simplicity and compati-

bility of notation.

Let the analysis low-pass filter in a two-channel perfect-reconstruction orthonormal

filter bank have 2N coefficients {hi} and z-transform

H(z) =
2N−1∑

i=0

hiz
−i = H0(z2) + z−1H1(z2).

The terms H0 and H1, which denote polyphasic components of H(z), are given by

H0(z) =
N−1∑

i=0

h2iz
−1 (86)

and

H1(z) =
N−1∑

i=0

h2i+1z
−1, (87)

(VETTERLI; KOVAČEVIĆ, 1995).

Vaidyanathan (1993) proposed the polyphase matrix Fp(z) factorization in the fol-

lowing manner

Fp(z) =




H0(z) H1(z)

G0(z) G1(z)





=




c0 s0

−s0 c0





N−1∏

i=1




1 0

0 z−1








ci si

−si ci



 , (88)

where ci = cos(βi) and si = sin(βi), and G0(z) and G1(z) are the high-pass analysis filter

G(z) polyphase components. In this way, this factorization generates all two-channel perfect-

reconstruction orthonormal filter banks with an impulse response of length 2N , namely, any

filter bank can be written in terms of N parameters βi ∈ [0, 2π).

According to Sherlock and Monro (1998), in order to the filter bank to correspond to

an orthonormal wavelet basis, the first-order regularity constraint

2N−1∑

i=0

hi =
√

2
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or in an equivalent way
N−1∑

i=0

βi =
π

4
, (89)

must also be satisfied.

Sherlock and Monro formulation which is following shown was developed from (88).

Actually, this formulation consists of rewriting (88) in a general recursive form expressing

the polyphase matrices corresponding to filters of length 2(N + 1) in terms of the polyphase

matrices for filters of length 2N

F (N+1)
p (z) = F (N)

p (z)




1 0

0 z−1








cN sN

−sN cN



 (90)

where N = 1, 2, · · · and

F (1)
p =




c0 s0

−s0 c0



 .

From (90), recursive formulae expressing the coefficients {hN+1
i } for a filter of length 2(N+1)

in terms of the coefficients {h(N)
i } for a filter of length 2N are given by

H
(N+1)
0 (z) = H

(N)
0 (z)cN − z−1H

(N)
1 (z)sN (91)

H
(N+1)
1 (z) = H

(N)
0 (z)sN + z−1H

(N)
1 (z)cN , (92)

where H(1)
0 (z) = c0 and H

(1)
1 (z) = s0.

Expanding (91), one obtains

H
(N+1)
0 (z) ≡

N∑

i=0

h
(N+1)
2i z−i

=

[
N−1∑

i=0

h
(N)
2i z

−i
]

cN − z−1

[
N−1∑

i=0

h
(N)
2i+1z

−i
]

sN

= cNh
(N)
0 +

N−1∑

i=1

(

cNh
(N)
2i − sNh

(N)
2i−1

)

z−i − sNh
(N)
2N−1z

−N ,

where h(1)
0 = c0 and h

(1)
1 = s0. Equation (92) can be expanded in an analogous manner as

(91), and after all, the analysis low-pass filter coefficients is given by

h
(N+1)
0 = cos(βN)h(N)

0

h
(N+1)
2i = cos(βN)h(N)

2i − sin(βN)h(N)
2i−1

h
(N+1)
2N = − sin(βN )h(N)

2N−1

h
(N+1)
1 = sin(βN )h(N)

0

h
(N+1)
2i+1 = sin(βN )h(N)

2i + cos(βN)h(N)
2i−1

h
(N+1)
2N+1 = cos(βN)h(N)

2N−1

(93)
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where h(1)
0 = cos(β0), h

(1)
1 = sin(β0) and i = 0, 1, · · · , N − 1.

The parameterization based on (93) satisfies the orthonormality conditions for filter

banks presented by Strang and Nguyen (1996),

2N−1∑

i=0

[

h
(N)
i

]2
= 1, N ≥ 1, (94)

2N−1−2m∑

i=0

h
(N)
i h

(N)
i+2m = 0, m = 1, 2, · · · , N − 1, N ≥ 2. (95)

For further discussions and proof see Appendix A.

Equations (93) express the 2N coefficients {hi} in terms of N angular parameters

{βi|i = 0, 1, 2, · · · , N − 1} with values in the interval [0, 2π). For any choice of {βi} with
N−1∑

i=0

βi =
π

4
, it leads to an orthonormal FIR filter bank, and any such system can be expressed

for the some choice of {βi}.

From this section of the text, the angular parameters set of the formulation proposed

by Sherlock and Monro (1998) and described as {βi|i = 0, 1, 2, · · · , N − 1} will be written as

{αi|i = 1, 2, · · · , N} in accordance with the subsequent works that proposed the extensions

(UZINSKI, 2013; PAIVA et al., 2009; UZINSKI et al., 2013; UZINSKI et al., 2015a; UZINSKI

et al., 2015b), and to facilitate the notation. For these reasons, equations (93) are written as

follows:
h

(1)
0 = cos(α1)

h
(1)
1 = sin(α1)

h
(N+1)
0 = cos(αN+1)h

(N)
0

h
(N+1)
2i = cos(αN+1)h

(N)
2i − sin(αN+1)h

(N)
2i−1

h
(N+1)
2N = − sin(αN+1)h

(N)
2N−1

h
(N+1)
1 = sin(αN+1)h

(N)
0

h
(N+1)
2i+1 = sin(αN+1)h

(N)
2i + cos(αN+1)h

(N)
2i−1

h
(N+1)
2N+1 = cos(αN+1)h

(N)
2N−1

i = 0, 1, · · · , N − 1, (96)

and the construction of the analysis low-pass filter coefficients in the recursive form previously

described is shown in the Figure 18.

As previously mentioned, the constructions of the analysis low-pass filter coefficients

are given by the equations expressed in (96) that form an orthonormal basis. These construc-

tions, as already shown, can also be seen in the flow diagram of Figure 18. In what follows,

examples are shown.
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Figure 18: Flow diagram illustrating the recurrence for generating analysis low-pass filter
coefficients (for α).
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Source: Adapted from Sherlock and Monro (1998).

Example 1. For an angular set of parameters {αi} with N = 1 elements, the length of the

vector containing the filter coefficients is 2N = 2. Such as the set of angular parameters must

satisfy
N∑

i=1

αi =
π

4
, then, necessarily, α = {π

4
}. Thus, the coefficients are

h
(1)
0 = cos(α1) and h

(1)
1 = sin(α1),

that lead to

h
(1)
0 =

√
2

2
and h

(1)
1 =

√
2

2
,

whose sum is
√

2.

It is worth noting that for N = 1 it has the same coefficients as the db1 wavelet, also

known as Haar wavelet.

Example 2. If the set of angular parameters has length N = 2 the filter has length 2N = 4.

It is easy to note that since
N∑

i=1

αi =
π

4
, then the sum of {h(2)

i } is
√

2, but unlike Example 1

there are many ways to write the set {α} and, consequently, many ways for the coefficients

vector. However, from equations (96) it has
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





h
(2)
0 = cos(α1) cos(α2)

h
(2)
1 = cos(α1) sin(α2)

h
(2)
2 = − sin(α1) sin(α2)

h
(2)
3 = sin(α1) cos(α2).

The reasoning presented in Examples 1 and 2 can be applied for any value of N .

Besides, for both examples, it can be easily checked that in fact they are orthogonal. This

fact is true for any N .

Example 3. In this example the intention is to show the generated coefficients for a filter

bank with length 2N = 8 by a set with N = 4 angular parameters. There are numerous sets

of angular parameters with this length and that satisfy the condition to be a wavelet filter

bank. However, the expressions that define the coefficients for these filter banks in terms of

the angular parameters are given as follows, but an example for N = 4 is also presented to

illustrate the situation.







h
(4)
0 = cos(α1) cos(α2) cos(α3) cos(α4)

h
(4)
1 = cos(α1) cos(α2) cos(α3) sin(α4)

h
(4)
2 = − cos(α4)(cos(α1) sin(α2) sin(α3) + cos(α3) sin(α1) sin(α2))−

− cos(α1) cos(α2) sin(α3) sin(α4)

h
(4)
3 = cos(α1) cos(α2) cos(α4) sin(α3) − sin(α4)(cos(α1) sin(α2) sin(α3)+

+ cos(α3) sin(α1) sin(α2))

h
(4)
4 = − sin(α4)(cos(α1) cos(α3) sin(α2) − sin(α1) sin(α2) sin(α3))−

− cos(α2) cos(α4) sin(α1) sin(α3)

h
(4)
5 = cos(α4)(cos(α1) cos(α3) sin(α2) − sin(α1) sin(α2) sin(α3))−

− cos(α2) sin(α1) sin(α3) sin(α4)

h
(4)
6 = − cos(α2) cos(α3) sin(α1) sin(α4)

h
(4)
7 = cos(α2) cos(α3) cos(α4) sin(α1).

Let α = {−0.3033, −0.8243, 1.6308, 0.2822} be the set of angular parameters, whose

parameters sum obeys the equality
N∑

i=1

αi =
π

4
, see Uzinski (2013). Therefore, in accordance

to the previously presented expressions for the analysis low-pass filter, the following vector is
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obtained, whose sum is
√

2, with a graphic representation given in Figure 19,







h
(4)
0 = −0.0374

h
(4)
1 = −0.0108

h
(4)
2 = 0.5042

h
(4)
3 = 0.8197

h
(4)
4 = 0.2438

h
(4)
5 = −0.1134

h
(4)
6 = −0.0034

h
(4)
7 = 0.0117.

Figure 19: Analysis low-pass filter coefficients for α = {−0.3033, −0.8243, 1.6308, 0.2822}.
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Source: Elaborated by the author.

A set of angular parameters α whose filter is a vector with eight coefficients was

presented in the Example 3. In the following it is shown, in another example, the signal

filtering using the filter obtained in Example 3.

Example 4. The filter obtained in Example 3 is used to discuss wavelet function, scale

function (given by (83) and (84), respectively) and signal filtering in general. In that example

the filter coefficients h[k] were shown, and now they are following shown along with the high-

pass filter coefficients g[k], obtained by (82),
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





h
(4)
0 = −0.0374

h
(4)
1 = −0.0108

h
(4)
2 = 0.5042

h
(4)
3 = 0.8197

h
(4)
4 = 0.2438

h
(4)
5 = −0.1134

h
(4)
6 = −0.0034

h
(4)
7 = 0.0117,







g
(4)
0 = −0.0117

g
(4)
1 = −0.0034

g
(4)
2 = 0.1134

g
(4)
3 = 0.2438

g
(4)
4 = −0.8197

g
(4)
5 = 0.5042

g
(4)
6 = 0.0108

g
(4)
7 = −0.0374.

A simple, but relevant, observation is that as expected by the orthogonality and or-

thonormality, h[k]g[k]T = g[k]h[k]T = 0 and g[k]g[k]T = h[k]h[k]T = 1.

A figure for h[k] has already been shown in Example 3, in Figure 19. In an analogous

manner, in Figure 20 g[k], is presented.

Figure 20: Analysis high-pass filter coefficients for α = {−0.3033, −0.8243, 1.6308, 0.2822}.
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Source: Elaborated by the author.

Wavelet and Scale functions are obtained by taking h[k] in (83) and g[k] in (84),

respectively. Thus, the Wavelet and Scale functions are shown in Figures 21 and 22, respec-

tively.
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Figure 21: Scale function for α = {−0.3033, −0.8243, 1.6308, 0.2822}.
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Figure 22: Wavelet function for α = {−0.3033, −0.8243, 1.6308, 0.2822}.
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4.6 Further comments

Discrete-time bases better suited for signal processing achieve good frequency resolu-

tion while also keeping good time locality. In order to compute them, the set of basis functions

has to be structured. This leads to discrete-time filter banks, described in Section 4.1. The

multiresolution analysis is central framework to the wavelet decomposition and establishes

the link between wavelets and filter banks (MALLAT, 1989a; MALLAT, 1989b; MALLAT,

1989c; DAUBECHIES, 1992; DAUBECHIES, 1988).

Connection between wavelets and filter banks leads to the construction of wavelets,

presented in Section 4.2, from filter banks, as described in Section 4.3 (RIOUL, 1993; VET-

TERLI; HERLEY, 1992). However, in this thesis it is important to introduce the Algorithme

à Trous, in Section 4.4, which is a way to work with wavelets, avoiding downsampling (VET-

TERLI; KOVAČEVIĆ, 1995).

An interesting and simple framework to parameterize the space of orthonormal wavelets

by a set of angular parameters was put forth by Sherlock and Monro (1998), as in Section

4.5. This was made in view of schemes for parameterization of the filter coefficients in a way

to express the existing degrees of freedom in terms of variables more easily tunable by the

designer (PAIVA et al., 2009). Such an approach has been explored in a number of applica-

tions (DAAMOUCHE et al., 2012; FROESE et al., 2006; COELHO et al., 2003; PAIVA et

al., 2008; GALVÃO et al., 2003; HADJILOUCAS et al., 2004; DUARTE; GALVÃO; PAIVA,

2013; NAZARAHARI et al., 2015). A methodology to get the angular parameters from the

filter coefficients is given by Galvão et al. (2004).

The framework proposed by Sherlock and Monro (1998) does not ensure that the

parameterized wavelet has a predetermined number of vanishing moments. It is a weak point

since various useful properties of wavelets are related to vanishing moments, e.g., sparsity

of signal representation in the wavelet domain and characterization of singularities based on

the decay of the coefficients across scale (PAIVA et al., 2009).

There are two restrictions that can be applied to the Sherlock and Monro formulation.

The first was developed by Paiva et al. (2009) and it is a way to ensure at least two vanishing

moments to the original formulation, while the second was developed by Uzinski et al. (2013),

Uzinski (2013), Uzinski et al. (2015a) and ensures at least three vanishing moments.
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5 Orthogonal filter banks parameterization in

the state space

This chapter introduces the main idea of this work, which is the proposition of two

different possibilities for parameterization of particular orthonormal basis functions in the

state-space. These orthonormal basis functions were presented in the Chapter 4, and consist

of wavelet basis functions obtained through the formulation of Sherlock and Monro (1998).

The first state-space realization developed in this chapter is from FIR filters. To use

the Sherlock and Monro’s orthonormal basis functions in this approach, it is necessary that

just after obtaining the state-space matrices, the filter coefficients must be replaced by the

results from (96) and (82).

The main idea in this thesis is the parameterization of orthogonal filter banks in the

state-space from system implementations in lattice structure. This work achieves a minimal

discrete-time state-space description for the fast wavelet transform with multiple decomposi-

tion levels. Firstly, the parameterization for one-single-level i of the FWT algorithm is made

in Section 5.2. In Section 5.3, the extension for multiple levels FWT starting from the idea

presented for one-single-level i will be shown.

5.1 Parameterization for a single FIR filter in state-space

In mathematics, a discrete-time system is defined as a transformation that maps an

input sequence u[k] into an output sequence y[k]. This transformation can be denoted as

y[k] = T{u[k]}.

The system is linear when y1[k] and y2[k] are outputs of the system with inputs u1[k]

and u2[k] and considering arbitrary constants a and b, it is observed that

T{au1[k] + bu2[k]} = aT{u1[k]} + bT{u2[k]}.

If for all value of k0 the input sequence u1[k] = u[k−k0] produces an output sequence

with values y1[k] = y[k − k0], the system is called a Time-Invariant System.

Considering the unit sample sequence δ[k] it is true that any sequence u[k] can be

written as

u[k] =
∞∑

m=−∞
u[m]δ[k −m]. (97)
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An important class of systems are the linear time-invariant systems (LTI) that com-

bines linearity and time invariance properties. This kind of system can be completely charac-

terized by the impulse response (OPPENHEIM; SCHAFER, 1975; OPPENHEIM; SCHAFER,

1989).

Let hm[k] be the system impulse response to δ[k−m], an impulse occurring in k = m,

then

y[k] = T

{ ∞∑

m=−∞
u[m]δ[k −m]

}

. (98)

From the linearity condition and according to time invariance property (98) becomes

y[k] =
∞∑

m=−∞
u[m]hm[k]. (99)

Consider a two-channel orthonormal filter bank with length-2N filters. Let H(N)(z)

and G(N)(z) be the transfer functions of the low-pass and high-pass filters, respectively, such

that

H(N)(z) =
2N−1∑

i=0

h
(N)
i z−i, (100)

G(N)(z) =
2N−1∑

i=0

g
(N)
i z−i. (101)

Recalling that the coefficients h(N)
i to equation (100) are given by

h
(1)
0 = cos(α1)

h
(1)
1 = sin(α1)

h
(N+1)
0 = cos(αN+1)h

(N)
0

h
(N+1)
2i = cos(αN+1)h

(N)
2i − sin(αN+1)h(N)

2i−1

h
(N+1)
2N = − sin(αN+1)h(N)

2N−1

h
(N+1)
1 = sin(αN+1)h(N)

0

h
(N+1)
2i+1 = sin(αN+1)h(N)

2i + cos(αN+1)h
(N)
2i−1

h
(N+1)
2N+1 = cos(αN+1)h

(N)
2N−1

i = 0, 1, · · · , N − 1, (102)

while the coefficients g(N)
i to equation (101) are given by

g
(N)
i = (−1)i+1h

(N)
2N−1−i, i = 0, 1, · · · , 2N − 1. (103)

Based on equations (99) and (100), the following paragraph presents a parameteriza-

tion to the filters, low-pass and high-pass. In the first case involving the results from equations

(102) and in second case, equation (103).
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From (99) and (100) it follows that signal y1[k] created by the approximation coeffi-

cients is given by

y1[k] =
2N−1∑

i=0

u[k]h[k − i],

= h0u[k] + h1u[k − 1] + · · · + h2N−1u[k − 2N + 1]. (104)

Defining
x1[k] = u[k − 2N + 1],

x2[k] = u[k − 2N + 2],
...

x2N−2[k] = u[k − 2],

x2N−1[k] = u[k − 1],

(105)

it follows that
x1[k + 1] = u[k − 2N + 2] = x2[k],

x2[k + 1] = u[k − 2N + 3] = x3[k],
...

x2N−2[k + 1] = u[k − 1] = x2N−1[k],

x2N−1[k + 1] = u[k].

(106)

And (104) can be rewritten as

y1[k] = h2N−1x1[k] + h2N−2x2[k] + · · · + h1x2N−1[k] + h0u[k]. (107)

Based on equations (106) and (107), in equations

x[k + 1] = Ax[k] + Bu[k] (108)

y[k] = Cx[k] + Du[k], (109)

we have

A =














0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · 0














, (110)

B =











0

0
...

1











, (111)
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C =
[

h2N−1 h2N−2 · · · h1

]

, (112)

and

D = h0, (113)

where A is a (2N − 1) × (2N − 1) matrix, B has order (2N − 1) × 1 and C is 1 × (2N − 1).

In high-pass filters case, equation (104) becomes

y2[k] = g0u[k] + g1u[k − 1] + · · · + g2N−1u[k − 2N + 1]. (114)

Considering (106), matrices A and B are the same as for low-pass filters, while in an analog

way to (107),

y2[k] = g2N−1x1[k] + g2N−2x2[k] + · · · + g1x2N−1[k] + g0u[k]. (115)

From equation (115), C and D for high-pass filters are

C =
[

g2N−1 g2N−2 · · · g1

]

, (116)

and

D = g0. (117)

Example 5. Considering the db4 wavelet, the set of low-pass filter coefficients is

h = [ −0.0106 0.0329 0.0308 −0.1870 −0.0280 0.6309 0.7148 0.2304 ]

and the high-pass set is

g = [ −0.2304 0.7148 −0.6309 −0.0280 0.1870 0.0308 −0.0329 −0.0106 ].

Matrices A and B are

A =




















0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0




















, (118)
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B =




















0

0

0

0

0

0

1




















. (119)

For the output signal y1 filtered by H(N)(z), C and D are

C =
[

0.2304 0.7148 0.6309 −0.0280 −0.1870 0.0308 0.0329
]

, (120)

D = −0.0106. (121)

For the output signal y2 filtered by G(N)(z), C and D are

C =
[

−0.0106 −0.0329 0.0308 0.1870 −0.0280 −0.6309 0.7148
]

, (122)

D = −0.2304. (123)

An important theorem about observability and reachability properties in the proposed

formulation is now presented.

Theorem 15. A realization (A, B, C, D) with those matrices given by (110), (111), (112)

and (113) or (110), (111), (116) and (117), respectively, with nonzero h2N−1 and g2N−1, is

minimal because it is reachable and observable.

Proof. For convenience of notation, matrix C from (112) and (116) is written in a special

manner, denoting its elements by ck, as described in (124), and for matrices A and B we will

remember equations (110) and (111),

C =
[

c1 c2 · · · c2N−1

]

. (124)

The controllability matrix is denoted by CA,B and given by

CA,B =
[

B AB A2B · · · A2N−2B
]

, (125)
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resulting in a (2N − 1) × (2N − 1) matrix, as follows

CA,B =











0 · · · 0 1

0 · · · 1 0
...

. . .
...

...

1 · · · 0 0











. (126)

Clearly, the determinant of CA,B is nonzero. This matrix has all rows and columns lin-

early independent, in other words, this matrix has full rank. In this way, as the controllability

matrix has full rank 2N − 1 then the presented realization is reachable.

On the other hand, the observability matrix is denoted by OC,A and defined as

OC,A =














C

CA

CA2

...

CA2N−2














, (127)

and, in this case, this parameterization results in a (2N − 1) × (2N − 1) matrix, as follows:

OC,A =











c1 c2 · · · c2N−1

0 c1 · · · c2N−2

...
...

. . .
...

0 0 · · · c1











. (128)

Matrix OC,A is not singular, since it has all rows and columns linearly independent, namely,

this matrix has full rank 2N − 1. In this way the presented realization is observable.

Since it is simultaneously observable and controllable, the description in the state-

space proposed by the matrices A, B, C and D in equations (110), (111), (112) and (113)

or (110), (111), (116) and (117) is minimal.

In this section two descriptions were proposed, that together form one parameteri-

zation in the state-space using Sherlock and Monro (1998) orthonormal basis functions. In

the first case, the system has single output and matrices A, B, C and D are given by (110),

(111), (112) and (113), respectively. While in the second case, matrices A and B remain the

same, but C and D, are now given by (116) and (117), respectively.

Theorem 15 is an important result, showing that in both cases the descriptions in the

state-space are reachable and observable. These features allow the design of controllers and

observers, in addition to the allocation of poles and studies of stability through the minimal

property.
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5.2 System implementation in lattice structure

Lattice filters have particular properties that make them interesting for various ap-

plications, for instance, modularity, low sensitivity to the effects of quantization parameters,

and a simple criterion for ensuring filter stability (HAYES, 1999).

In particular the proposed structure in Galvão et al. (2003), Hadjiloucas et al. (2004),

Froese et al. (2006) is used in the present parameterization. This structure is shown in Figure

23.

Figure 23: Procedure for filter bank parameterization.
u

z−1 z−2 z−2

C1

C1

C2

C2

CN

CN

S1 S2 SN

−S1 −S2 −SN

y1

y2

Source: Adapted from Akansu and Haddad (2001).

This equationing follows the procedure described in Figure 23, where the first delay

operator is z−1 and the remainders are z−2. Ci and Si denote sin(θi) and cos(θi), respectively,

θ =
[

θ1 θ2 · · · θN
]

and θ1 = αN , θ2 = αN−1, · · · , θN = α1. In Figure 23, y1 is the output

signal corresponding to the input signal u filtered by the low-pass filter and y2 corresponds

to the input signal u filtered by the high-pass filter.

Considering that the z-transform of the output is equivalent to the product of z-

transforms of the input signal and the transfer function, which means filtering process, it

follows that

Y (z) = H(z)U(z). (129)

And denoting the transformed signal in the level i by xi, as shown in Figure 24, the state-space

model with state equations and output equation is as follows:

x[k + 1] = Ax[k] + Bu[k], (130)

y[k] = Cx[k] + Du[k]. (131)
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Figure 24: Filter bank parameterization in the state-space.
u

z−1 z−2 z−2

C1

C1

C2

C2

CN

CN

S1 S2 SN

−S1 −S2 −SN

x1 x2 xN

y1

y2

Source: Elaborated by the author.

From Figure 24, it follows:







x1[k + 1] = u[k],

x2[k + 2] = C1x1[k] − S1u[k],

x3[k + 2] = C2x2[k] − S2S1x1[k] − S2C1u[k],

x4[k + 2] = C3x3[k] − S3S2x2[k] − S3C2S1x1[k] − S3C2C1u[k],
...

xN−1[k + 2] = CN−2xN−2[k] − SN−2SN−3xN−3[k]−
N−3∑

j=2



SN−2Sj−1xj−1[k]
N−3∏

i=j

Ci



− SN−2

N−3∏

i=1

Ciu[k],

xN [k + 2] = CN−1xN−1[k] − SN−1SN−2xN−2[k]−
N−2∑

j=2



SN−1Sj−1xj−1[k]
N−2∏

i=j

Ci



− SN−1

N−2∏

i=1

Ciu[k].

(132)

Defining






xN+1[k] = x2[k + 1],

xN+2[k] = x3[k + 1],

xN+3[k] = x4[k + 1],
...

x2N−1[k] = xN [k + 1],

(133)

implying






xN+1[k + 1] = x2[k + 2],

xN+2[k + 1] = x3[k + 2],

xN+3[k + 1] = x4[k + 2],
...

x2N−1[k + 1] = xN [k + 2],

(134)
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it follows from (132), (133) and (134) that







x1[k + 1] = u[k],

x2[k + 1] = xN+1[k],

x3[k + 1] = xN+2[k],
...

xN [k + 1] = x2N−1[k],

xN+1[k + 1] = C1x1[k] − S1u[k],

xN+2[k + 1] = C2x2[k] − S2S1x1[k] − S2C1u[k],

xN+3[k + 1] = C3x3[k] − S3S2x2[k] − S3C2S1x1[k] − S3C2C1u[k],
...

x2N−2[k + 1] = CN−2xN−2[k] − SN−2SN−3xN−3[k]−
N−3∑

j=2



SN−2Sj−1xj−1[k]
N−3∏

i=j

Ci



− SN−2

N−3∏

i=1

Ciu[k],

x2N−1[k + 1] = CN−1xN−1[k] − SN−1SN−2xN−2[k]−
N−2∑

j=2



SN−1Sj−1xj−1[k]
N−2∏

i=j

Ci



− SN−1

N−2∏

i=1

Ciu[k].

(135)

The state matrix (or system matrix) A presented in (130) is given by

A =



































0 0 0 · · · 0 0 0 0 0 · · · 0

0 0 0 · · · 0 0 1 0 0 · · · 0

0 0 0 · · · 0 0 0 1 0 · · · 0

0 0 0 · · · 0 0 0 0 1 · · · 0
...

...
...

. . .
...

...
...

...
...

. . .
...

0 0 0 · · · 0 0 0 0 0 · · · 1

C1 0 0 · · · 0 0 0 0 0 · · · 0

−S2S1 C2 0 · · · 0 0 0 0 0 · · · 0

−S3C2S1 −S3S2 C3 · · · 0 0 0 0 0 · · · 0
...

...
...

. . .
...

...
...

...
...

. . .
...

SN−1S1

N−2∏

i=2

Ci SN−1S2

N−2∏

i=3

Ci SN−1S3

N−2∏

i=4

Ci · · · CN−1 0 0 0 0 · · · 0



































,

(136)
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and the input matrix B is given by

B =


























1

0
...

0

−S1

−S2C1

...

−SN−1

N−2∏

i=1

Ci


























. (137)

The output matrix C and the feedthrough (or feedforward) matrix D presented in

(131) are given by

C =










S1

N∏

i=2

Ci S2

N∏

i=3

Ci · · · SN−2

N∏

i=N−1

Ci SN−1CN SN 0 · · · 0

−SNS1

N−1∏

i=2

Ci −SNS2

N−1∏

i=3

Ci · · · −SNSN−2

N−1∏

i=N−1

Ci −SNSN−1 CN 0 · · · 0










,

(138)

D =









N∏

i=1

Ci

−SN
N−1∏

i=1

Ci









. (139)

In order to facilitate the understanding of this proposal, an example is given using

the Daubechies db4 wavelet. The procedure proposed in Galvão et al. (2004) was employed

to define the set of angular parameters representing filter coefficients.

Example 6. The set of angular parameters α = {−1.5248, −0.2537, 0.6814, 1.8826} is

obtained from the db4 wavelet low-pass filter coefficients. Therefore, from (136) - (139), A,

B, C and D are

A =




















0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

−0.3067 0 0 0 0 0 0

−0.5995 0.7767 0 0 0 0 0

0.1856 0.1581 0.9680 0 0 0 0




















,
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B =




















1

0

0

0

−0.9518

0.1932

−0.0598




















,

C =




0.0329 0.0280 −0.0115 −0.9989 0 0 0

0.7148 0.6091 −0.2507 0.0460 0 0 0





and

D =




−0.0106

−0.2304



 .

It is worth noting that the sizes of the matrices vary according to the number of angular

parameters θ.

Let (A, B, C, D) be the minimal realization for H(z), then it can be verified that λ

is a pole of the H(z) if, and only if, it is an eigenvalue for A. Then the stability condition

is equivalent to the condition that |λi| < 1 (VAIDYANATHAN, 1993). When H(z) is a FIR

filter all A eigenvalues are zero (i.e., all these eigenvalues are inside the unit circle). The

definition of minimal realization presented in the Lemmas 1, 2 and 3 is now remembered for

the purpose of verifying if this realization is minimal.

The state-space realization proposed is really minimal, according to the next result.

Theorem 16. A realization (A, B, C, D) given by (136), (137), (138) and (139), respec-

tively, with all angles different from 0, π/2, π and 3π/2, is minimal because it is reachable

and observable.

Proof. From (32), (136) and (137) a (2N − 1) × (2N − 1) matrix is obtained, where, for

simplicity of notation, ϕi,j represents nonzero elements:
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RA,B =










































ϕ1,1 0 0 0 0 0 0 · · · 0 0

0 ϕ2,2 ϕ2,3 0 0 0 0 · · · 0 0

0 ϕ3,2 ϕ3,3 ϕ3,4 ϕ3,5 0 0 · · · 0 0

0 ϕ4,2 ϕ4,3 ϕ4,4 ϕ4,5 ϕ4,6 ϕ4,7 · · · 0 0
...

...
...

...
...

...
...

. . .
...

...

0 ϕN−1,2 ϕN−1,3 ϕN−1,4 ϕN−1,5 ϕN−1,6 ϕN−1,7 · · · 0 0

0 ϕN,2 ϕN,3 ϕN,4 ϕN,5 ϕN,6 ϕN,7 · · · ϕN,2N−2 ϕN,2N−1

ϕN+1,1 ϕN+1,2 0 0 0 0 0 · · · 0 0

ϕN+2,1 ϕN+2,2 ϕN+2,3 ϕN+2,4 0 0 0 · · · 0 0

ϕN+3,1 ϕN+3,2 ϕN+3,3 ϕN+3,4 ϕN+3,5 ϕN+3,6 0 · · · 0 0

ϕN+4,1 ϕN+4,2 ϕN+4,3 ϕN+4,4 ϕN+4,5 ϕN+4,6 ϕN+4,7 · · · 0 0
...

...
...

...
...

...
...

. . .
...

...

ϕ2N−2,1 ϕ2N−2,2 ϕ2N−2,3 ϕ2N−2,4 ϕ2N−2,5 ϕ2N−2,6 ϕ2N−2,7 · · · 0 0

ϕ2N−1,1 ϕ2N−1,2 ϕ2N−1,3 ϕ2N−1,4 ϕ2N−1,5 ϕ2N−1,6 ϕ2N−1,7 · · · ϕ2N−1,2N−2 0










































.

In order to facilitate the perception that all rows and columns in RA,B are linearly

independent, a row equivalent matrix is presented, which is obtained just by swapping rows

of the original matrix:

R′
A,B =
































ϕ1,1 0 0 0 0 0 0 · · · 0 0

ϕN+1,1 ϕN+1,2 0 0 0 0 0 · · · 0 0

0 ϕ2,2 ϕ2,3 0 0 0 0 · · · 0 0

ϕN+2,1 ϕN+2,2 ϕN+2,3 ϕN+2,4 0 0 0 · · · 0 0

0 ϕ3,2 ϕ3,3 ϕ3,4 ϕ3,5 0 0 · · · 0 0

ϕN+3,1 ϕN+3,2 ϕN+3,3 ϕN+3,4 ϕN+3,5 ϕN+3,6 0 · · · 0 0

0 ϕ4,2 ϕ4,3 ϕ4,4 ϕ4,5 ϕ4,6 ϕ4,7 · · · 0 0

ϕN+4,1 ϕN+4,2 ϕN+4,3 ϕN+4,4 ϕN+4,5 ϕN+4,6 ϕN+4,7 · · · 0 0
...

...
...

...
...

...
...

. . .
...

...

ϕ2N−1,1 ϕ2N−1,2 ϕ2N−1,3 ϕ2N−1,4 ϕ2N−1,5 ϕ2N−1,6 ϕ2N−1,7 · · · ϕ2N−1,2N−2 0

0 ϕN,2 ϕN,3 ϕN,4 ϕN,5 ϕN,6 ϕN,7 · · · ϕN,2N−2 ϕN,2N−1
































.

All rows and columns in RA,B are linearly independent. Then the determinant is

nonzero (i.e., RA,B is nonsingular) implying that this matrix has full rank. Therefore Lemma

1 is checked (the realization is reachable).

From (33), (136) and (137) a (4N − 2) × (2N − 1) matrix is obtained, again ϕi,j

represent nonzero elements:
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SC,A=





















































ϕ1,1 ϕ1,2 ϕ1,3 · · · ϕ1,N 0 0 0 · · · 0

ϕ2,1 ϕ2,2 ϕ2,3 · · · ϕ2,N 0 0 0 · · · 0

0 0 0 · · · 0 ϕ3,N+1 ϕ3,N+2 ϕ3,N+3 · · · ϕ3,2N−1

...
...

...
. . .

...
...

...
...

. . .
...

ϕ4N−15,1 ϕ4N−15,2 ϕ4N−15,3 · · · 0 0 0 0 · · · 0

ϕ4N−14,1 ϕ4N−14,2 ϕ4N−14,3 · · · 0 0 0 0 · · · 0

0 0 0 · · · 0 ϕ4N−13,N+1 ϕ4N−13,N+2 ϕ4N−13,N+3 · · · 0

0 0 0 · · · 0 ϕ4N−12,N+1 ϕ4N−12,N+2 ϕ4N−12,N+3 · · · 0

ϕ4N−11,1 ϕ4N−11,2 ϕ4N−11,3 · · · 0 0 0 0 · · · 0

ϕ4N−10,1 ϕ4N−10,2 ϕ4N−10,3 · · · 0 0 0 0 · · · 0

0 0 0 · · · 0 ϕ4N−9,N+1 ϕ4N−9,N+2 0 · · · 0

0 0 0 · · · 0 ϕ4N−8,N+1 ϕ4N−8,N+2 0 · · · 0

ϕ4N−7,1 ϕ4N−7,2 0 · · · 0 0 0 0 · · · 0

ϕ4N−6,1 ϕ4N−6,2 0 · · · 0 0 0 0 · · · 0

0 0 0 · · · 0 ϕ4N−5,N+1 0 0 · · · 0

0 0 0 · · · 0 ϕ4N−4,N+1 0 0 · · · 0

ϕ4N−3,1 0 0 · · · 0 0 0 0 · · · 0

ϕ4N−2,1 0 0 · · · 0 0 0 0 · · · 0





















































.

Here, in an analogous manner to the RA,B matrix, a row equivalent matrix, S ′
C,A, can

be obtained by swapping rows of the original matrix, SC,A. The procedure shall be done in

order to obtain a new matrix such that is easy to realize that all SC,A columns are linearly

independent.

Summarizing, all SC,A columns are linearly independent. Then this matrix has 2N−1

rank. Therefore lemma 2 is checked (the realization is observable). According to Lemma 3

and the previous paragraphs, the realization is minimal.
As set out by Theorem 16 the proposed realization (A, B, C, D) is minimal (reachable

and observable) and, as previously mentioned, the characteristic polynomial of A, which has

size (2N − 1) × (2N − 1) is S2N−1. This fact implies that when H(z) is a FIR filter, all of A

eigenvalues are zero. In other words, all these eigenvalues are inside the unit circle, fulfilling

the stability condition.

5.3 The state-space parameterization for multiple decomposition lev-

els

The ideas presented in the previous sections can be extended for the multiple decom-

position levels case, which is the Fast Wavelet Transform.
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Denoting the state vector associated with the lattice in the i-th decomposition level

as

xi[k] =














xi,1[k]

xi,2[k]

xi,3[k]
...

xi,2N−1[k]














, (140)

the output in the i-th decomposition level with y
i,1

[k] and y
i,2

[k] associated with the low-pass

and high-pass channels, respectively, by

y
i
[k] =




y
i,1

[k]

y
i,2

[k]



 , (141)

besides, matrices C and D are conveniently rewritten as

C =




C1

C2





and

D =




D1

D2



 .

The state-space description for one single decomposition level i of a wavelet filter

bank in the Algorithme à Trous as previously presented and its denotations are shown in

Figure 25. In Figure 25, the input y
i−1,1

[k] at level i is the low-pass output at the level

i− 1. The elements xi[k], y
i,1

[k] and y
i,2

[k] are the state variable and two outputs in the i-th

decomposition level (algorithm with “holes”), respectively.

Figure 25: State-space description representation for one single decomposition level i in a
wavelet filter bank.

y
i−1,1

[k] D1

D2

C1

C2

xi[k]

y
i,1

[k] = C1xi[k] +D1yi−1,1[k]

y
i,2

[k] = C2xi[k] +D2yi−1,1[k]

Source: Elaborated by the author.
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Assuming that the lattice model in the i-th decomposition level (using Algorithme à

Trous) has the form

x1[k + 1] = Ax1[k] + Bu[k], (142)

y
1
[k] =




C1

C2



x1[k] +




D1

D2



u[k], (143)

while for i > 1 it is

xi[k + 2i−1] = Axi[k] + By
i−1,1

[k], (144)

y
i
[k] =




C1

C2



xi[k] +




D1

D2



 y
i−1,1

[k]. (145)

The Algorithme à Trous (Figure 11) employs filters of the form H(z2), H(z4), H(z8)

and so on. It should be noted that H(z2) is twice as long as H(z). This difference in the filter

length is taken into account in (144). To understand this point see the Example 7.

Example 7. Let i = 2 be in (144). In this case

x2[k + 2] = Ax2[k] + By
1,1

[k] (146)

Considering an additional state vector w[k] = x2[k + 1], (146) could be rewritten as

w[k + 1] = Ax2[k] + By
1,1

[k] (147)

x2[k + 1] = w[k], (148)

that is: 


w

x2



 [k + 1] =




0 A

I 0








w

x2



 [k] +




B

0



 y
1,1

[k], (149)

where I is the identity matrix and 0 is the null matrix. Therefore, using x2[k+ 2] in (144) is

equivalent to use more states to describe a longer filter. For i = 2, x2[k + 2], twice as many

states are necessary. For i = 3, x3[k + 4] means four times as many states, and so on.

By taking the entire analysis filter bank with M decomposition levels, the following

state vector can be defined as the filter bank, as presented in Figure 26,

x[k] =














x1[k]

x2[k]

x3[k]
...

xM [k]














. (150)
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Considering the “holes”, the equation for the filter bank can be written as











x1[k + 1]

x2[k + 2]
...

xM [k + 2M−1]











=











Ax1[k] + Bu[k]

Ax2[k] + By
1,1

[k]
...

AxM [k] + By
M−1,1

[k]











=











Ax1[k] + Bu[k]

Ax2[k] + B(C1x1[k] +D1u[k])
...

AxM [k] + B(C1xM−1[k] +D1yM−2,1
[k])











=











Ax1[k] + Bu[k]

Ax2[k] + BC1x1[k] + BD1u[k]
...

AxM [k] + BC1xM−1[k] + BD1yM−2,1
[k]











=











Ax1[k] + Bu[k]

Ax2[k] + BC1x1[k] + BD1u[k]
...

AxM [k] + BC1xM−1[k] + BD1(C1xM−2[k] +D1yM−3,1
[k])











=











Ax1[k] + Bu[k]

Ax2[k] + BC1x1[k] + BD1u[k]
...

AxM [k] + BC1xM−1[k] + BD1C1xM−2[k] + BD2
1yM−3,1

[k]











=














Ax1[k] + Bu[k]

Ax2[k] + BC1x1[k] + BD1u[k]
...




AxM [k] + BC1xM−1[k] + BD1C1xM−2[k] + BD2

1C1xM−3[k] + · · · +

BDM−2
1 C1x1[k] + BDM−1

1 u[k]


















.

It can be appropriately written as











x1[k + 1]

x2[k + 2]
...

xM [k + 2M−1]











=











A 0 · · · 0

BC1 A · · · 0
...

...
. . .

...

BDM−2
1 C1 · · · BC1 A





















x1[k]

x2[k]
...

xM [k]











+











B

BD1

...

BDM−1
1











u[k]. (151)

Let y[k] be the output vector, comprising the approximation in the last level and
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details in all levels, defined as

y[k] =















y
M,1

[k]

y
M,2

[k]

y
M−1,2

[k]
...

y
1,2

[k]















, (152)

the output equation can be finally written for the filter bank as follows:

y[k] =















C1xM [k] +D1yM−1,1
[k]

C2xM [k] +D2yM−1,1
[k]

C2xM−1[k] +D2yM−2,1
[k]

...

C2x1[k] +D2u[k]















=















C1xM [k] +D1(C1xM−1[k] +D1yM−2,1
[k])

C2xM [k] +D2(C1xM−1[k] +D1yM−2,1
[k])

C2xM−1[k] +D2(C1xM−2[k] +D1yM−3,1
[k])

...

C2x1 +D2u[k]















=















C1xM [k] +D1C1xM−1[k] +D2
1yM−2,1

[k]

C2xM [k] +D2C1xM−1[k] +D2D1yM−2,1
[k]

C2xM−1[k] +D2C1xM−2[k] +D2D1yM−3,1
[k]

...

C2x1 +D2u[k]















=















C1xM [k] +D1C1xM−1[k] +D2
1(C1xM−2[k] +D1yM−3,1

[k])

C2xM [k] +D2C1xM−1[k] +D2D1(C1xM−2[k] +D1yM−3,1
[k])

C2xM−1[k] +D2C1xM−2[k] +D2D1(C1xM−3[k] +D1yM−4,1
[k])

...

C2x1 +D2u[k]















=















C1xM [k] +D1C1xM−1[k] +D2
1C1xM−2[k] +D3

1yM−3,1
[k]

C2xM [k] +D2C1xM−1[k] +D2D1C1xM−2[k] +D2D
2
1yM−3,1

[k]

C2xM−1[k] +D2C1xM−2[k] +D2D1C1xM−3[k] +D2D
2
1yM−4,1

[k]
...

C2x1 +D2u[k]

















94 Chapter 5. Orthogonal filter banks parameterization in the state-space

=














C1xM [k] +D1C1xM−1[k] +D2
1C1xM−2[k] + · · · +DM−1

1 C1x1[k] +DM
1 u[k]

C2xM [k] +D2C1xM−1[k] +D2D1C1xM−2[k] + · · · +D2D
M−2
1 C1x1[k] +D2D

M−1
1 u[k]

C2xM−1[k] +D2C1xM−2[k] +D2D1C1xM−3[k] + · · · +D2D
M−3
1 C1x1[k] +D2D

M−2
1 u[k]

...

C2x1 +D2u[k]














,

and, writing it more compactly,















y
M,1

[k]

y
M,2

[k]

y
M−1,2

[k]
...

y
1,2

[k]















=














DM−1
1 C1 · · · D2

1C1 D1C1 C1

D2D
M−2
1 C1 · · · D2D1C1 D2C1 C2

D2D
M−3
1 C1 · · · D2C1 C2 0
...

. . .
...

...
...

C2 · · · 0 0 0



























x1[k]

x2[k]

x3[k]
...

xM [k]














+














DM
1

D2D
M−1
1

D2D
M−2
1

...

D2














u[k].

(153)

From (151) and (153), the analysis wavelet filter bank with M decomposition levels

can be seen as the representation given in Figure 26.

Figure 26: Wavelet filter bank with M decomposition levels seen as state-space description.

y
1,2

= C2x1[k] +D2u[k]

y
2,2

= C2x2[k] +D2C1x1[k] +D1D2u[k]

y
2,1

y
M,2

= C2xM [k] + · · · +D2D
M−2
1 C1x1[k] +D2D

M−1
1 u[k]

y
M,1

= C1xM [k] + · · · +DM−1
1 C1x1[k] +DM

1 u[k]

x1[k]

x2[k]

xM [k]

u[k]

C2

C2

C2

C1

C1

C1

D1

D1

D1

D2

D2

D2

Source: Elaborated by the author.

The final state-space realization is not given by (151) and (153). It can be noted in

(151) that states are missing. Some changes in this equation are required, and it will imply

other changes in (153).
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Firstly, it is necessary to define new state variables

{

xM+1[k] = x2[k + 1],







xM+2[k] = x3[k + 1],

xM+3[k] = xM+2[k + 1],

xM+4[k] = xM+3[k + 1],







xM+5[k] = x4[k + 1],

xM+6[k] = xM+5[k + 1],
...

xM+11[k] = xM+10[k + 1],

...







xM+ε+1[k] = xM [k + 1],

xM+ε+2[k] = xM+ε+1[k + 1],
...

xM+ε+2M−1−1[k] = xM+ε+2M−1−2[k + 1],

(154)

where ε =
M−1∑

i=2

[

2i−1 − 1
]

, hence







xM+1[k + 1] = x2[k + 2],

xM+4[k + 1] = x3[k + 4],

xM+11[k + 1] = x4[k + 8],
...

xM+ε+2M−1−1[k + 1] = xM [k + 2M−1].

(155)

Thus, vector x[k] becomes

x[k] =
























x1[k]

x2[k]
...

xM [k]

xM+1[k]

xM+2[k]
...

xη[k]
























, (156)
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with η = M +
M−1∑

i=2

[

2i−1 − 1
]

+ 2M−1 − 1, namely, η = M + ε+ 2M−1 − 1.

The final state-space realization can be shown now, but it is necessary to denote the

new matrices for the new state-space description to avoid confusion with matrices for the

realization for one single decomposition level. For M decomposition levels, matrices are be

denoted as AM , BM , CM and DM .

From (151), (153), (154) and (155), matrix AM takes the form

AM =
























A 0 · · · 0 0 0 · · · 0

0 0 · · · 0 I 0 · · · 0
...

...
. . .

...
...

...
. . .

...

BC1 A · · · 0 0 0 · · · 0

0 0 · · · 0 0 I · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 0 0 · · · I

BDM−2
1 C1 BDM−3

1 C1 · · · A 0 0 · · · 0
























, (157)

where I is the (2N − 1) × (2N − 1) identity matrix. In the same way, each element denoted

by 0 is a (2N − 1) × (2N − 1) null matrix. While BM is defined as

BM =
























B

0
...

BD1

0
...

0

BDM−1
1
























, (158)

with 0 being a (2N − 1) × 1 null vector. Matrix CM is given by

CM =














DM−1
1 C1 · · · D2

1C1 D1C1 C1 0 · · · 0

D2D
M−2
1 C1 · · · D2D1C1 D2C1 C2 0 · · · 0

D2D
M−3
1 C1 · · · D2C1 C2 0 0 · · · 0
...

. . .
...

...
...

. . .
...

C2 · · · 0 0 0 0 · · · 0














, (159)
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with 0 being an 1 × (2N − 1) null vector. Vector DM is equal to

DM =














DM
1

D2D
M−1
1

D2D
M−2
1

...

D2














. (160)

The dimension of matrices (157), (158), (159) and (160) are:

• dim(AM) = η(2N − 1) × η(2N − 1);

• dim(BM) = η(2N − 1) × 1;

• dim(CM) = (M + 1) × η(2N − 1);

• dim(DM) = (M + 1) × 1.

Finally, matrices (157), (158), (159) and (160) are the state-space description for

analysis wavelet FIR filter banks with multiple decomposition levels. This proposal is based

on the Algorithme à Trous, therefore it is necessary to remember that the relationship among

the coefficients yi[k] (FWT) and y
i
[k] (Algorithme à Trous ) is given by (85), in other words,

the convenient decimation must be done after state-space description.

An important result about the state-space description is the minimality condition,

which is the combination of controllability and observability conditions. For M = 1, the

proposed state-space description is minimal, as shown in Theorem 16. For an arbitrary M ,

the minimality condition is exploited in Theorem 18. The proof of this theorem is made by

using mathematical induction. For this reason, Lemma 17 states that the proposed state-

space description is minimal for M = 2 (for M = 1 there are no delay operators included in

the parameterization).

Let RAM ,BM
and SCM ,AM

be the controllability and observability matrices, then

• dim(RAM ,BM
) = η(2N − 1) × η(2N − 1);

• dim(SCM ,AM
) = (M + 1)η(2N − 1) × η(2N − 1).

Lemma 17. A realization (AM , BM , CM , DM) for M = 2 given by (157), (158), (159) and

(160), respectively, with all angles different from 0, π/2, π and 3π/2, is minimal.
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Proof. For M = 2, matrices AM , BM and CM become

AM =








A 0 0

0 0 I

BC1 A 0







, (161)

BM =








B

0

BD1








(162)

and

CM =








D1C1 C1 0

C2C1 C2 0

C2 0 0







. (163)

By the mathematical induction principle it is necessary to verify that the lemma is

true for N = 1 and if it is true for a certain N , this implies that it will be true for N + 1. It

is made as follows.

• For N = 1: A = 0, B = 1, C = [ S1 C1 ]T and D = [ C1 S1 ]T . By replacing these

values in (161), (162) and (163):

AM =








0 0 0

0 0 1

S1 0 0







, BM =








1

0

C1








and CM =








C1S1 S1 0

C1C1 C1 0

C1 0 0







,

and after that, computing the controllability and observability matrices, could be seen

that both of them have three linearly independent rows and columns.

• Let N be an arbitrary positive integer number. For N + 1, matrices (161), (162) and

(163) hold the same form for N , only the dimensions of these matrices will be changed.

Consequently, the same fact is valid for matrices RAM ,BM
and SCM ,AM

. Therefore, if

matrices RAM ,BM
and SCM ,AM

have η(2N − 1) linearly independent rows and columns

for N , they have η(2(N + 1) − 1) linearly independent rows and columns for N + 1 (in

η, M = 2).

By the mathematical induction principle it is demonstrated that matrices RAM ,BM
and

SCM ,AM
have η(2N − 1) linearly independent rows and columns. Thus, any realization (AM ,

BM , CM , DM) (with all angles different from 0, π/2, π and 3π/2) for M = 2 is minimal.

Theorem 18. A realization (AM , BM , CM , DM) given by (157), (158), (159) and (160), re-

spectively, with all angles different from 0, π/2, π and 3π/2, is minimal because it is reachable

and observable.
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Proof. By the mathematical induction principle and the following conclusions, the proof of

the theorem is achieved as follows.

• For M = 1 it is demonstrated in Theorem 16 that RAM ,BM
and SCM ,AM

have η(2N−1)

linearly independent rows and columns (in η, M = 1).

• For M = 2 it is demonstrated by Lemma 17 that RAM ,BM
and SCM ,AM

have η(2N −1)

linearly independent rows and columns (in η, M = 2).

• For any M ≥ 2 the forms of AM , BM and CM are the same as stated by (157), (158),

(159) and (160), only the dimensions change according to M . The same fact is valid

for matrices RAM ,BM
and SCM ,AM

. Therefore, if RAM ,BM
and SCM ,AM

have η(2N − 1)

linearly independent rows and columns, it implies that RAM+1,BM+1
and SCM+1,AM+1

have η(2N −1) (in η, the value of M is M + 1) linearly independent rows and columns.

By the mathematical induction principle it is demonstrated that matrices RAM ,BM
and

SCM ,AM
have η(2N − 1) linearly independent rows and columns. Thus, any realization (AM ,

BM , CM , DM) (with all angles different from 0, π/2, π and 3π/2) is minimal.

As set out by Theorem 18 the proposed realization (AM , BM , CM , DM) is minimal

(reachable and observable) and, as previously mentioned, the characteristic polynomial of

AM is Sη(2N−1). This fact implies that, when H(z) is a FIR filter, all of AM eigenvalues are

zero. In other words, all these eigenvalues are inside the unit circle, fulfilling the stability

condition.

5.4 Further discussions

As previously mentioned in the introductory chapter of this thesis, the central objec-

tive is to explore the orthornormal basis functions developed by Sherlock and Monro (1998),

parameterize it in the state-space, and develop the extension of this idea for M decompo-

sition levels of the filter bank therewithal. In these proposals, it is a main concern to keep

the properties that make the state-space realization attractive like observability, reachability

and minimality. Moreover, the existing advantages for orthonormal basis functions and finite

impulse response filters should be automatically held.

In Section 5.1, an initial idea to parameterize a finite impulse response filter in the

state-space was proposed. That approach is interesting and is a novelty when using the

filter coefficients from Sherlock and Monro formulation. Also, it is interesting because the
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state-space realization achieved is minimal. Nevertheless, this thesis is focused in the system

implementation in lattice structure.

Lattice filter structures have a range of interesting and important properties that make

them very common in applications. Among these properties, one can cite modularity, low

sensitivity to parameter quantization effects and a simple stability test (KAPLAN; ERER;

KENT, 2007). A FIR filter implemented in lattice structure was used to obtain the Sherlock

and Monro orthonormal basis functions, and the same approach was used in Section 5.2 to

obtain the state-space realization from these functions. The obtained state-space realization

is minimal.

For one single FIR filter and for the lattice structure, the minimality condition is

satisfied, proofs are in Theorems 15 and 16. The single filter parameterization is simpler

while the lattice structure carries some advantages related to this kind of structure. It is

worth noting that after the achievement of this results, both ideas will be equally easy for

implementation.

The state-space realization obtained for one-single decomposition level was extended

to the case of M decomposition levels in Section 5.3. This is equivalent to the fast wavelet

transform with M decomposition levels. The difficulties associated with the downsampling

operators in the filter bank were overcome by exploiting the concept of the Algorithme à

Trous.

The final state-space realization, for M decomposition levels, holds the properties ver-

ified for one-single decomposition level state-space realization, e.g., observability, reachability

and minimality, as shown in Theorem 18.
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6 Application and decomposition examples

The state-space description for the fast wavelet transform and its properties are de-

veloped in Chapter 5. In order to illustrate the proposed technique, this chapter presents

some decomposition examples in Section 6.1, and one application example in Section 6.2.

First, the state-space realization used in all cases is presented. In Section 6.1, com-

parisons among results from FWT and the equivalent state-space description are presented

for some applications: Electrocardiogram (ECG) signal in Subsection 6.1.1, Random white

Gaussian noise signal in Subsection 6.1.2, Pseudo-random binary signal in Subsection 6.1.3,

speech signal in Subsection 6.1.4, and a simulation model of the lateral dynamics of a Boeing

747 aircraft in landing configuration in Subsection 6.1.5.

Finally, in Section 6.2 an application on dynamic state feedback control is presented.

A dynamic state feedback approach employing the state-space description for the FWT is

presented in order to illustrate the advantages of the theory developed in Chapter 5.

6.1 Comparisons between FWT and the proposed state-space de-

scription

For standardization purposes, in all applications, the same wavelet filter bank is used,

db3 wavelet and four decomposition levels were chosen. In this way, filters have considerable

length and number of decomposition levels. Thus, A, B, C and D, given respectively by

(136), (137), (138) and (139), are:

A =














0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0.3812 0 0 0 0

0.4431 0.8777 0 0 0














, B =














1

0

0

0.9245

−0.1827














,

C =




−0.0854 0.0505 0.9944 0 0

0.8069 −0.4766 0.1053 0 0



 and D =




0.0352

−0.3327



 ,
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and AM , BM , CM and DM , given respectively by (157), (158), (159) and (160), are:

AM =






































A 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 I 0 0 0 0 0 0 · · · 0

0 0 0 0 0 I 0 0 0 0 0 · · · 0

0 0 0 0 0 0 0 0 I 0 0 · · · 0

BC1 A 0 0 0 0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 I 0 0 0 0 · · · 0

0 0 0 0 0 0 0 I 0 0 0 · · · 0

BD1C1 BC1 A 0 0 0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 0 0 0 I 0 · · · 0

0 0 0 0 0 0 0 0 0 0 I · · · 0
...

...
...

...
...

...
...

...
...

...
...

. . .
...

0 0 0 0 0 0 0 0 0 0 0 · · · I

BD2
1C1 BD1C1 BC1 A 0 0 0 0 0 0 0 · · · 0






































, BM =






































B

0

0

0

BD1

0

0

BD2
1

0

0
...

0

BD3
1






































,

CM =














D3
1C1 D2

1C1 D1C1 C1 0 · · · 0

D2D
2
1C1 D2D1C1 D2C1 C2 0 · · · 0

D2D1C1 D2C1 C2 0 0 · · · 0

D2C1 C2 0 0 0 · · · 0

C2 0 0 0 0 · · · 0














and DM =














D4
1

D2D
3
1

D2D
2
1

D2D1

D2














.

Fast wavelet transform is widely used in signal processing and control theory. Five

examples of broadly studied signals are processed by FWT and the proposed state-space

description. These examples are ECG, Random white Gaussian noise, Pseudo-random binary

and signals from a Boeing 747 aircraft model in landing configuration. Subsequently, is shown

each signal and its approximation and details in all levels as result of the processing by the

state-space proposal after convenient decimation. There are no differences when these signals

are decomposed by FWT, i.e., state-space description and FWT obtain the same curves when

used to decompose a signal.

6.1.1 Example 1: Electrocardiogram signal

An abdominal electrocardiogram (ECG) signal was taken from MIT-BIH Arrhyth-

mia Database (GOLDBERGER et al., 2000; MOODY; MARK, 2001), it has 10000 samples

recorded in ten seconds. Figure 27 shows the ECG signal and its approximation and details

in all levels.

In this section, for all decomposition examples the original signal is denoted by S(n),

samples or time is n, approximation at level four signal is S4

A
[n], details at level i is Si

D
[n].
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Figure 27: ECG signal, its approximation at level 4 and details in 4 levels processed using
the state-space description.
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Source: Elaborated by the author.

Figure 28 shows approximation and detail ECG decomposition using FWT. As it

can be seen, there are no differences between Figures 27 and 28, i.e., the proposal wavelet

state-space description and FWT provide the same decompositions for the ECG signal in

all decomposition levels, which was verified for the other signals tested in the remainder of

this section. For this reason, for the other signals presented here, only decompositions in

the state-space description will be shown, always remembering that FWT provides the same

decompositions.
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Figure 28: ECG signal, its approximation at level 4 and details in 4 levels decomposed by
FWT.
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Source: Elaborated by the author.

6.1.2 Example 2: Random white Gaussian noise signal

Figure 29 shows a random white Gaussian noise signal and its approximation and

details in all levels.
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Figure 29: Random white Gaussian noise signal, its approximation at level 4 and details in 4
levels processed using the state-space description. FWT provides similar results.
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Source: Elaborated by the author.

6.1.3 Example 3: Pseudo-random binary signal

Figure 30 shows a pseudo-random binary signal and its approximation and details in

all levels.
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Figure 30: Pseudo-random binary signal, its approximation at level 4 and details in 4 levels
processed by the state-space description. Results when this signal is decomposed
by FWT are the same.
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Source: Elaborated by the author.

6.1.4 Example 4: Speech signal

A speech signal was obtained from NOIZEUS database (HU; LOIZOU, 2007). An

airport noise signal was added to the speech signal at SNR of 10dB. The resulting signal and

its approximation at level 4 and details in all levels are shown in Figure 31.
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Figure 31: Speech signal, its approximation at level 4 and details in 4 levels processed by the
state-space description. Results when this signal is decomposed by FWT are the
same.
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Source: Elaborated by the author.

6.1.5 Example 5: Boeing 747 aircraft in landing configuration

This example consists of a simulation model of the lateral dynamics of a Boeing

747 aircraft in landing configuration (BRYSON, 1994). Signals from Boeing were specially

considered here since they are obtained from a state-space model.

The lateral dynamics model of a Boeing 747 aircraft in landing configuration (BRYSON,
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1994) is










v̇

ṙ

ṗ

φ̇











=











−0.089 −2.19 0.328 0.319

0.076 −0.217 −0.166 0

−0.602 0.327 −0.975 0

0 0.150 1 0





















v

r

p

φ











+











0 0.0327

0.0264 −0.151

0.227 0.0636

0 0














δa

δr



+











0.089

−0.076

0.602

0











d,

(164)

where




δa

δr



 = −



−4.15 7.6 5.36 5.57

3.43 −14.24 0.62 −0.24















v

r

p

φ











, (165)

v is the sideslip velocity, r is the yaw rate, p is the roll rate, φ is the roll angle, δa is the

aileron angle, δr is the rudder angle, and d is an exogenous disturbance. The adopted units

are feet, seconds, and crad (0.01 rad) (DUARTE; GALVÃO; PAIVA, 2013). These signals

are shown in Figure 32.

Figure 32: Simulation of the 747 aircraft model (angles in degrees).
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Source: Elaborated by the author.

Following, in Figure 33, p signal (roll rate), its approximation and details in all levels

as a processing result by the proposed state-space and after convenient decimation are shown.
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Figure 33: Roll rate signal p, its approximation at level 4 and details in 4 levels processed
using the state-space description. Decomposition results by FWT are the same.
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As expected, in every case (electrocardiogram signal, random white Gaussian noise

signal, pseudo-random binary signal, speech signal and a Boeing roll rate signal) the proposed

state-space description leads to the same results as FWT algorithm. Therefore, the researcher

could choose the technique best suited to the problem to be considered.
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6.2 A dynamic state feedback approach employing the state-space

description for FWT

Considering that the examples presented in the previous section illustrate the equiva-

lency between FWT and the proposed state-space description, an application example beyond

simple decomposition becomes necessary. In order to achieve it, a dynamic state feedback

approach employing the FWT state-space description is presented.

Feedback gains are obtained through a discrete linear quadratic regulator (DLQR)

formulation, with cost weights adjusted according to suitable performance metrics. Linear

quadratic regulator (LQR) is an automated way of finding an appropriate state feedback

controller and it provides a key role in many control design methods. Besides being a powerful

design method, it is, in many aspects, the principle of several current systematic control design

procedures (LEVINE, 1996).

6.2.1 Preliminaries: Discrete linear quadratic regulator (DLQR)

Consider a plant described by the discrete-time model

xp[k + 1] = Apxp[k] + Bpup[k], (166)

(167)

where xp[k] ∈ R
n, up[k] ∈ R

p are the state and control vectors, and Ap, Bp, are matrices

with compatible dimensions. It is assumed that the plant is controllable and the state xp[k]

is available for feedback. The quadratic cost function for the states and the control signals is

J =
∞∑

k=0

(

xTp [k]Qpxp[k] + uTp [k]Rpup[k]
)

, (168)

with positive-definite weight matrices Qp,Rp. The feedback is obtained with the control law:

up[k] = −Kpxp[k], (169)

wherein the solution u[k] for the optimal quadratic control problem can be expressed as

Kp = (BT
p PBp + Rp)−1BT

p PAp, (170)

where P is the positive-definite solution of the following Riccati equation, (LEWIS, 1986),

P = AT
p PAp − AT

p PBp(Rp + BT
p PBp)−1BT

p PAp + Qp. (171)

Figure 34 shows the block diagram for the resulting control loop.
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Figure 34: Discrete linear quadratic regulator.
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6.2.2 Discrete linear quadratic regulator employing a wavelet filter bank (DLQR-

WFB)

In the DLQR-WFB approach, the plant is coupled to a filter bank, namely, a filter

bank is included in the feedback path, described in Figure 35. Therefore, each plant state is

decomposed by the Fast Wavelet Transform, in order to obtain an augmented state vector

xpw = [xTp xTw]T , where xw comprises the filter bank state variables. Since the fast wavelet

transform is applied to each of the n components of the plant state xp, the filter bank state

xw is formed as

xw =











xFB1

xFB2

...

xFBn











, (172)

where xFBi
is a vector with the filter bank states involved in the decomposition of the i-th

plant state.

The dynamics of the plant coupled with the filter bank can then be described by a

state equation of the form

xpw[k + 1] = Apwxpw[k] + Bpwup[k], (173)

where

xpw[k] =




xp[k]

xw[k]



 , Apw =




Ap 0

Bw Aw



 , Bpw =




Bp

0



 , (174)
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and Aw and Bw are obtained from the filter bank equations as

Aw =











AM 0 · · · 0

0 AM · · · 0
...

...
. . .

...

0 0 · · · AM











, Bw =











BM 0 · · · 0

0 BM · · · 0
...

...
. . .

...

0 0 · · · BM











. (175)

Therefore, a DLQR with weight matrices Qpw,Rpw can be designed for the augmented system

(173) in order to obtain a feedback gain Kpw, as described in Figure 35.

Figure 35: Discrete linear quadratic regulator employing a wavelet filter bank.
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An important remark is the fact that, when the dynamical system has an unsatisfac-

torily large number of states, an order reduction method can be applied to the states xM of

the description (157), (158), (159) and (160).

6.2.3 Numerical comparisons between DLQR and DLQR-WFB approaches

In what follows, the effectiveness of the proposed approach has been interpreted in

terms of the sensitivity of the controller’s performances to changes in the control inputs. Both

approaches, employing the filter bank or not, are evaluated and compared in terms of the

sensitivity of the systems to changes in the control inputs.

6.2.3.1 Sensitivity metrics

Let S(z) be a sensitivity function defined for the DLQR case as

S(z) =
1

1 + Kp(zI − Ap)−1Bp

. (176)

Consider a similar definition of the sensitivity function in the DLQR-WFB case (replacing

Kp, Ap, Bp by Kpw, Apw, Bpw, respectively).
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This sensitivity function can be used as a robustness measure, since the value |S(ejω)|
is the reciprocal for the distance between the Nyquist curve and the critical point −1, con-

sidering the loop broken at the plant input (FRANKLIN; POWELL; WORKMAN, 1998).

In this sense, a possible design goal may consist of obtaining small values of |S(ejω)| at a

given set of frequencies ω. This can be achieved by using a numerical optimization method

to adjust the control and state weights in the DLQR or DLQR-WFB formulations.

In these examples, diagonal weight matrices are adopted for simplicity. The control

weight is set to a fixed scalar value and the state weights are optimized by using the Sequential

Quadratic Programming (SQP) method (NOCEDAL; WRIGHT, 2006). The index to be

minimized is defined as |S(ejω1)| + ρ|S(ejω2)|, where ω1 = π/2, ω2 = π/4 and ρ is a positive

scalar that can be adjusted to place larger emphasis on the minimization of |S(ejω1)| or

|S(ejω2)|.

Let

Ap =




1 1

0 1



 , Bp =




0.5

1



 . (177)

be a double integrator plant of the form (166). Model (177) can be regarded as a simplified

representation of translational or rotational movements with one degree of freedom, and it is

often used for illustration in control studies (RAO; BERNSTEIN, 2001). Different wavelets

filters banks are considered for the DLQR-WFB approach. By using balanced realizations

and removing the states corresponding to small Hankel singular values (LAUB et al., 1987),

the model order for all filter banks is reduced.

Firstly, for the DLQR-WFB are considered the db4, sym4, and an optimized orthonor-

mal wavelet filter from Paiva and Galvão (2012) (with length 2N = 8 and denoted here as

frN , namely, fr4) decomposed in four levels. Now, the intention is to compare DLQR and

DLQR-WFB (db4, sym4, fr4) results. Such the filters have the same length (2N = 8), but

from different wavelet families.

DLQR and DLQR-WFB (db4, sym4, fr4) results obtained by varying the value of ρ

are presented in Figure 36. As can be seen, smaller values of |S(ejω1)| and |S(ejω2)| can be

achieved by using the proposed DLQR-WFB formulation, mainly, when using fr4.

Considering the results obtained with DLQR-WFB, in the following are presented

results for DLQR and DLQR-WFB using optimized wavelet filters from Paiva and Galvão

(2012), but with different lengths (2N = 8, 2N = 10, 2N = 12 and 2N = 20). In all cases,

M = 4. Results are displayed in Figure 37. It can be noted that smaller values of |S(ejω1)|
and |S(ejω2)| are achieved when using DLQR-WFB formulation with longer filters. It is worth

noting that longer filters lead to more states variables.
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Figure 36: Sensitivity values at ω1 = π/2 and ω2 = π/4 obtained by optimizing the state
weights in the DLQR and DLQR-WFB formulations.
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Figure 37: Sensitivity values at ω1 = π/2 and ω2 = π/4 obtained by optimizing the state
weights in the DLQR and DLQR-WFB (using optimized wavelet filters) formula-
tions.
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Optimized orthonormal wavelet filters lead to better results, mainly for longer filters,

e.g. 2N = 20, as seen in Figures 36 and 37. In Figure 38, results comparing DLQR and

DLQR-WFB (with the longer filter presented by Paiva and Galvão (2012), 2N = 20, but

with the wavelet filter bank decomposed in three, four and five levels) are presented.

Figure 38: Sensitivity values at ω1 = π/2 and ω2 = π/4 obtained by optimizing the state
weights in the DLQR and DLQR-WFB (using optimized wavelet filters for M = 3,
M = 4 and M = 5) formulations.
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From Figures 36, 37 and 38: smaller values of |S(ejω1)| and |S(ejω2)| can be achieved by

using the DLQR-WFB formulation. Those results can be improved by using optimized wavelet

filters from Paiva and Galvão (2012), mainly by using longer filters with fewer decomposition

levels.

6.2.3.2 External disturbances and measurement noise effects

In the following, both state feedback systems (DLQR and DLQR-WFB) are exposed

to external disturbances and measurement noise in order to compare the effects over them.

Consider the plant model (177) with a scalar output yp defined as

yp[k] = Cpxp[k], (178)

where Cp is a row vector of compatible dimension. Here, the output is defined as the first

state variable, i.e. Cp = [1 0].
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Assume that a disturbance d is applied at the plant input. In the DLQR case, the

disturbance effect on the plant output yp can be evaluated by replacing (169) with

up[k] = −Kpxp[k] + d[k]. (179)

From (166), (178) and (179), a transfer function Hdy(z) can be obtained as

Hdy(z) =
Yp(z)
D(z)

= Cp(zI − Ap + BpKp)−1Bp. (180)

Disturbance effect on the plant output can then be evaluated in terms of the H2 norm

of Hdyp
(z), which is defined as, (BUNSE-GERSTNER et al., 2010),

‖Hdy‖2 =

√

1
2π

∫ 2π

0
|Hdy(ejω)|2dω. (181)

A similar transfer function can be obtained in the DLQR-WFB case, replacing Kp,

Ap, Bp and Cp by Kpw, Apw, Bpw and [Cp 0], respectively.

On the other hand, instead of considering an input disturbance, assume that the state

values employed in the feedback control law are corrupted by a measurement noise term n

such that

up[k] = −Kp(xp[k] + Epn[k]) (182)

in the DLQR case, where Ep is a column vector of compatible dimension. Here, noise is

included in the state measurement, i.e. Ep = [1 0]T . From (166), (178) and (182), a transfer

function Hny(z) can be obtained as

Hny(z) =
Yp(z)
N(z)

= −Cp(zI − Ap + BpKp)−1BpKpEp. (183)

Thus, H2 norm of Hny(z) can be used to evaluate the measurement noise effect on the

plant output. A similar transfer function can be obtained in the DLQR-WFB case, replacing

Kp, Ap, Bp, Cp and Ep by Kpw, Apw, Bpw, [Cp 0] and [ET
p 0]T , respectively.

State weights in the DLQR and DLQR-WFB formulations are optimized by using the

SQP method, while the index to be minimized is defined as ‖Hdy‖2 + ρ‖Hny‖2.

Figure 39 presents DLQR and DLQR-WFB (using db4, sym4 and fr4 wavelet filters

decomposed at level four) results obtained by varying the value of ρ. Note that, in general,

DLQR-WFB-db4 and DLQR-WFB-sym4 approaches lead to better results, in that smaller

values of ‖Hdy‖2 and ‖Hny‖2 can be achieved as compared to the DLQR formulation. It is
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worth mentioning that ρ varies from 0.1 to 10. Smaller ρ values lead to smaller ‖Hny‖2 values,

mainly with db4, while for ρ values higher than 2.5 sym4 provides better results mainly for

‖Hdy‖2.

Figure 39: Comparative evaluation for DLQR and DLQR-WFB formulations in terms of
external disturbance and measurement noise effects.
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Now, wavelets filters with different lengths shall be compared. As in the sensitivity

case, optimized wavelets filters frN with different lengths (2N = 8, 2N = 10 and 2N = 20)

are employed in the DLQR-WFB and compared with DLQR approach, as shown in Figure

40. It can be noted that a better adjustment between measurement noise and disturbance

effects in the system is reached with the system DLQR-WFB-fr5. Fr10 also produces good

values, but they are greater than the ones provided by fr5. In the other systems, there is not

a balance between ‖Hdy‖2 and ‖Hny‖2, i.e., minimizing one will not assure the minimization

to the other.

The last comparison between DLQR and DLQR-WFB approaches in order to eval-

uate external disturbances and measurement noise effects over them is by using different

decomposition levels. Fr10 wavelet filter is evaluated with three, four and five decomposition

levels, as shown in Figure 41.

According to the plots shown in Figure 41, there are no advantages in increasing

the number of decomposition levels when the system is subject to measurement noise and

external disturbance, since there is no balance in the minimization of noise and disturbance
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Figure 40: Comparative evaluation of the DLQR and DLQR-WFB (using optimized wavelet
filters) formulations subject to external disturbance and measurement noise.
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Figure 41: Comparative evaluation of the DLQR and DLQR-WFB (using optimized wavelet
filters for M = 3, M = 4 and M = 5) formulations subject to external disturbance
and measurement noise.
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effects. In general, it is noted in Figure 41 that the higher is the decomposition level the

greater will be noise measurements and disturbance effects in the system.

In order to make easy noting the dominance of the system DLQR-WFB-fr10-M3 over

DLQR, ρ = 0.1 is shown separately in Figure 42.

Figure 42: Comparative evaluation of the DLQR and DLQR-WFB-fr10-M3 formulations in
term of external disturbance and measurement noise effects, when ρ = 0.1.
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6.2.4 Multiple wavelet filter banks: multiple inputs and multiple outputs ap-

proach

It is worth noting that the state-space description for the FWT has multiple outputs

and one input (SIMO system). Here, it is shown that n SIMO systems can be seen as one

MIMO system. This extension to MIMO is presented here only for future works purposes,

with no application shown.
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Consider n systems, F1, F2, · · ·Fn, such that:






x1[k + 1] = A1x1[k] + B1u1[k],

y1[k] = C1x1[k] + D1u1[k],

x2[k + 1] = A2x2[k] + B2u2[k],

y2[k] = C2x2[k] + D2u2[k],

...

xn[k + 1] = Anxn[k] + Bnun[k],

yn[k] = Cnxn[k] + Dnun[k].

(184)

Writing the state vector, input and output, respectively, as:






x[k] = [x1[k]T x2[k]T · · · xn[k]T ]T ,

y[k] = [y1[k]T y2[k]T · · · yn[k]T ]T ,

u[k] = [u1[k] u2[k] · · · un[k]]T .

Thus, state equation and outputs from (184) become











x1[k + 1]

x2[k + 1]
...

xn[k + 1]











=











A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · An





















x1[k]

x2[k]
...

xn[k]











+











B1 0 · · · 0

0 B2 · · · 0
...

...
. . .

...

0 0 · · · Bn





















u1[k]

u2[k]

· · ·
un[k]











, (185)











y1[k]

y2[k]
...

yn[k]











=











C1 0 · · · 0

0 C2 · · · 0
...

...
. . .

...

0 0 · · · Cn





















x1[k]

x2[k]
...

xn[k]




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





+











D1 0 · · · 0

0 D2 · · · 0
...

...
. . .

...

0 0 · · · Dn










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




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u1[k]
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· · ·
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
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. (186)

The FWT can be applied to a plant with multiple inputs when each filter bank is

separated (PAIVA; GALVÃO; RODRIGUES, 2009; DUARTE; GALVÃO; PAIVA, 2013).

Nevertheless, when using the proposed state-space for the FWT, all filter banks can be

considered as one single MIMO system given by (185) and (186).
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7 Final remarks and future works

7.1 Discussions

Representing transfer functions for linear dynamical systems through the Finite Im-

pulse Response model is highly common, and these kind of systems are very useful in several

engineering areas since they have attractive properties, computational and analytical advan-

tages, the guarantee of BIBO stability and robustness to some parameter changes, and others.

On the other hand, representing transfer functions for linear time-invariant dynamic systems

through the orthonormal basis functions also is very interesting. This representation has some

characteristics that make it attractive for dynamical systems modeling: absence of output

recursion, not requiring prior knowledge of the exact structure of the vector of regression;

possibility to increase the model capacity of representation by increasing the number of or-

thonormal functions employed; natural outputs uncoupling in multivariable models; tolerance

to unmodeled dynamics, and others.

The possibility of applications with interesting results for representing transfer func-

tions for linear dynamic systems through the orthonormal basis functions and the fact that

FIR structure guarantee BIBO stability, robustness to some parameter changing and improv-

ing the filter divergence problem justifies the combination of these two representations.

Wavelet transform is also a widely used mathematical tool in engineering to work on

signal processing and control. There is a relation between FIR filters and wavelet transform

which is discussed in this thesis (Chapter 4). Furthermore, it can be stated that the Fast

Wavelet Transform is an algorithm that turns a signal in the time domain into a sequence of

coefficients based on an orthogonal basis of small finite wavelet functions.

The three concepts previously mentioned are about transfer functions, and it is possi-

ble to represent them in the state-space form. There are cases where the state-space approach

is more suitable than other classical methods of modeling, for instance, transfer functions.

Some advantages of the state-space form are: it is easier to work with MIMO systems, it is

best suited both for the theoretical treatment of control systems and for numerical calcula-

tions, and it gives a better insight into the inner system behavior, for instance, the study of

system controllability and observability.

This work concerns a study of orthonormal functions, orthonormal basis functions

and finite impulse response models, where the main objective was the exploitation of the
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orthonormal functions space in order to formulate a set of orthonormal filter banks and

parameterize it in the state-space. An extension of this idea for M decomposition levels

for the filter bank from this initial parameterization, and everything carrying important

properties was also proposed.

7.2 Conclusions and contributions

This work consisted of developing a realization in the state-space for a wavelet filter

bank with M decomposition levels, with the explicit presence of parameters that can be freely

adjusted keeping the guarantees of perfect-reconstruction and orthonormality.

Parameterizations in the state-space using special orthonormal basis functions that

forms FIR filter banks were proposed in two different manners: for one single filter and for the

lattice structure. In both cases, all properties that make them attractive like observability,

reachability and minimality are satisfied. The single filter parameterization is simpler while

the lattice structure carries some advantages related to this kind of structure. It is worth

noting that after the achievement of these results both ideas will be equally easy to implement.

Lattice structure features mentioned in the previous paragraph, e.g., modularity and

low sensitivity to the effects of quantization parameters, are the reasons that make the pa-

rameterization in the state-space using this kind of structure the most important one in this

research.

An extension for the state-space formulation to multiple levels of decomposition was

also developed. Those features that make it attractive, e.g., observability, reachability and

minimality, were held for the fast wavelet transform state-space realization with M decom-

position levels. This extension can be applied for both kinds of parameterizations considering

that this extension was done in a general way.

Summarizing, both state-space realizations and the extension for M decomposition

levels provide a combination between two different ways to represent transfer functions for

discrete-time linear dynamic systems: systems through Finite Impulse Response model and

through orthonormal basis functions. In this way, the advantages that make each idea at-

tractive are combined in one technique. In addition to it, a new approach to work with the

fast wavelet transform was achieved.

Some broadly studied signals in signal processing by using wavelets were decomposed

by the state-space approach with the intention of showing the equivalence of these math-

ematical tools. However, in order to show advantages of using the state-space description,

an application on dynamic state feedback control was presented, which is a dynamic state
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feedback approach employing the proposed state-space realization.

7.2.1 Published and submitted papers

• Julio C. Uzinski, Henrique M. Paiva, Marco A.Q. Duarte, Roberto K.H. Galvão, Fran-

cisco Villarreal, A state-space description for perfect-reconstruction wavelet FIR filter

banks with special orthonormal basis functions, Journal of Computational and Applied

Mathematics, Volume 290, 15 December 2015, Pages 290-297. (Published)

• Julio C. Uzinski, Henrique M. Paiva, Roberto K.H. Galvão, Edvaldo Assunção, Marco

A.Q. Duarte, Francisco Villarreal, A dynamic state feedback approach employing a

new state-space description for the fast wavelet transform with multiple decomposition

levels, Journal of Control, Automation and Electrical Systems. (Submitted).

7.3 Future works

There are many applications that could be managed with the state-space realization

proposed in this thesis. In Chapter 6, some applications were shown on signal processing and

control. However, other engineering areas also use wavelets in some manner, finite impulse

response filters or orthonormal basis functions, and they could be considered for further

studies.

For some of the fast wavelet transform applications, it is important to use the synthesis

filter bank, which means that the development of a state-space realization that would be the

inverse of the one developed in this thesis would be interesting.
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APPENDIX A – Orthonormality for the

Sherlock and Monro formulation (PAIVA, 2003;

UZINSKI, 2013)

Lemma 19. The formulation given by (93):

h
(N+1)
0 = cos(βN)h(N)

0

h
(N+1)
2i = cos(βN)h(N)

2i − sin(βN)h(N)
2i−1

h
(N+1)
2N = − sin(βN)h(N)

2N−1

h
(N+1)
1 = sin(βN)h(N)

0

h
(N+1)
2i+1 = sin(βN)h(N)

2i + cos(βN)h(N)
2i−1

h
(N+1)
2N+1 = cos(βN)h(N)

2N−1

(187)

where h
(1)
0 = cos(β0), h

(1)
1 = sin(β0) and i = 0, 1, · · · , N − 1, satisfies the orthonormality

requirements, (STRANG; NGUYEN, 1996),

2N−1∑

i=0

[

h
(N)
i

]2
= 1, N ≥ 1, (188)

2N−1−2m∑

i=0

h
(N)
i h

(N)
i+2m = 0, m = 1, 2, · · · , N − 1, N ≥ 2. (189)

Proof. Condition (188):

For N = 1:
1∑

i=0

[

h
(1)
i

]2
=
[

h
(1)
0

]2
+
[

h
(1)
1

]2
= cos2 α1 + sin2 α1 = 1

Inductive step:

If
2N−1∑

i=0

[

h
(N)
i

]2
= 1 check that

2N+1∑

i=0

[

h
(N+1)
i

]2
= 1.

From (93) it has

2N+1∑

i=0

[

h
(N+1)
i

]2
=

[

cosαNh
(N)
0

]2
+

N−1∑

i=1

[

cosαNh
(N)
2i − sinαNh

(N)
2i−1

]2
+
[

sinαNh
(N)
2N−1

]2
+

[

sinαNh
(N)
0

]2
+

N−1∑

i=1

[

sinαNh
(N)
2i + cosαNh

(N)
2i−1

]2
+
[

cosαNh
(N)
2N−1

]2
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= (sin2 αN + cos2 αN)
[

h
(N)
0

]2
+ (sin2 αN + cos2 αN)

[

h
(N)
2N−1+

]2
+

N−1∑

i=1

{

cos2 αN
[

h
(N)
2i

]2
− 2 sinαN cosαNh

(N)
2i h

(N)
2i−1 + sin2 αN

[

h
(N)
2i−1

]2
+

sin2 αN
[

h
(N)
2i

]2
+ 2 sinαN cosαNh

(N)
2i h

(N)
2i−1 + cos2 αN

[

h
(N)
2i−1

]2
}

=
[

h
(N)
0

]2
+
[

h
(N)
2N−1+

]2
+

N−1∑

i=1

{

(sin2 αN + cos2 αN)
[

h
(N)
2i

]2
+ (sin2 αN + cos2 αN )

[

h
(N)
2i−1

]2
}

=
[

h
(N)
0

]2
+
[

h
(N)
2N−1+

]2
+

N−1∑

i=1

{[

h
(N)
2i

]2
+
[

h
(N)
2i−1

]2
}

=
[

h
(N)
0

]2
+
[

h
(N)
2N−1+

]2
+

2N−2∑

i=1

[

h
(N)
i

]2

=
2N−1∑

i=1

[

h
(N)
i

]2
= 1

thus
2N+1∑

i=0

[

h
(N+1)
i

]2
= 1.

Condition (189):

For N = 2:

1∑

i=0

h
(2)
i h

(2)
i+2 = h

(2)
0 h

(2)
2 +h(2)

1 h
(2)
3 = (cosα2 cosα1)(− sinα2 sinα1)+(sinα2 cosα1)(cosα2 sinα1) = 0

Inductive step:

If
2N−1−2m∑

i=0

h
(N)
i h

(N)
i+2m = 0 (190)

check that
2N+1−2m∑

i=0

h
(N+1)
i h

(N+1)
i+2m = 0 (191)

for N ≥ 2 N ∈ Z.

This proof is made in three stages:

a) m = N :



137

Equation (191) can be written as

1∑

i=0

hN+1
i hN+1

i+2N = h
(N+1)
0 h

(N+1)
2N + h

(N+1)
1 h

(N+1)
2N+1 . (192)

Replacing (93) in (192) it leads to

1∑

i=0

hN+1
i hN+1

i+2N = (cos(αN)h(N)
0 )(− sin(αN)h(N)

2N−1) + (sin(αN)h(N)
0 )(cos(αN)h(N)

2N−1)

= (− sin(αN) cos(αN)h(N)
0 h

(N)
2N−1) + (sin(αN) cos(αN)h(N)

0 h
(N)
2N−1) = 0.

b) m = N − 1:

Now, equation (191) can be written as

3∑

i=0

h
(N+1)
i h

(N+1)
i+2N−2 = h

(N+1)
0 h

(N+1)
2N−2 + h

(N+1)
1 h

(N+1)
2N−1 + h

(N+1)
2 h

(N+1)
2N + h

(N+1)
3 h

(N+1)
2N+1 (193)

Replacing (93) in (193) one obtains

3∑

i=0

h
(N+1)
i h

(N+1)
i+2N−2 = (cos(αN)h(N)

0 )(cos(αN)h(N)
2N−2 − sin(αN)h(N)

2N−3) + (sin(αN)h(N)
0 )

(sin(αN )h(N)
2N−2 + cos(αN)h(N)

2N−3) + (cos(αN)h(N)
2 − sin(αN)h(N)

1 )

(− sin(αN )h(N)
2N−1) + (sin(αN)h(N)

2 + cos(αN)h(N)
1 )(cos(αN)h(N)

2N−1)

= cos2(αN)h(N)
0 h

(N)
2N−2 − sin(αN ) cos(αN)h(N)

0 h
(N)
2N−3 + sin2(αN)h(N)

0 h
(N)
2N−2 +

sin(αN ) cos(αN)h(N)
0 h

(N)
2N−3 − cos(αN ) sin(αN )h(N)

2 h
(N)
2N−1 +

sin2(αN)h(N)
1 h

(N)
2N−1 + cos(αN) sin(αN)h(N)

2 h
(N)
2N−1 + cos2 h

(N)
1 h

(N)
2N−1

= (cos2(αN) + sin2(αN))h(N)
0 h

(N)
2N−2 + (sin(αN) cos(αN) − sin(αN) cos(αN))

h
(N)
0 h

(N)
2N−3 + (cos2(αN ) + sin2(αN ))h(N)

1 h
(N)
2N−1 +

(sin(αN ) cos(αN) − sin(αN) cos(αN))h(N)
2 h

(N)
2N−1

= h
(N)
0 h

(N)
2N−2 + h

(N)
1 h

(N)
2N−1 =

1∑

i=0

h
(N)
i h

(N)
i+2N−2 (194)

By the inductive step (190), when m = N − 1
1∑

i=0

h
(N)
i h

(N)
i+2N−2 = 0, so

3∑

i=0

h
(N+1)
i h

(N+1)
i+2N−2 =

1∑

i=0

h
(N)
i h

(N)
i+2N−2 = 0. (195)
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c) 0 < m < N − 1:

2N+1−2m∑

i=0

h
(N+1)
i h

(N+1)
i+2m = h

(N+1)
0 h

(N+1)
2m + h

(N+1)
1 h

(N+1)
1+2m +

[
2N−1−2m∑

i=2

h
(N+1)
i h

(N+1)
i+2m

]

+

h
(N+1)
2N−2mh

(N+1)
2N + h

(N+1)
2N+1−2mh

(N+1)
2N+1

= h
(N+1)
0 h

(N+1)
2m + h

(N+1)
1 h

(N+1)
1+2m +

N−m−1∑

i=1

[

h
(N+1)
2i h

(N+1)
2i+2m + h

(N+1)
2i+1 h

(N+1)
2i+1+2m

]

+

h
(N+1)
2N−2mh

(N+1)
2N + h

(N+1)
2N+1−2mh

(N+1)
2N+1

= h
(N+1)
0 h

(N+1)
2m +

[
N−m−1∑

i=1

h
(N+1)
2i h

(N+1)
2i+2m

]

+ h
(N+1)
2N−2mh

(N+1)
2N +

h
(N+1)
1 h

(N+1)
1+2m +

[
N−m−1∑

i=1

h
(N+1)
2i+1 h

(N+1)
2i+1+2m

]

+ h
(N+1)
2N+1−2mh

(N+1)
2N+1 . (196)

Replacing (93) in (196) it leads to

2N+1−2m∑

i=0

h
(N+1)
i h

(N+1)
i+2m = (cos(αN)h(N)

0 )(cos(αN)h(N)
2m − sin(αN )h(N)

2m−1) +

N−m−1∑

i=1

[

(cos(αN )h(N)
2i − sin(αN)h(N)

2i−1)(cos(αN )h(N)
2i+2m − sin(αN)h(N)

2i−1+2m)
]

+(cos(αN)h(N)
2N−2m − sin(αN )h(N)

2N−2m−1)(− sin(αN)h(N)
2N−1) +

(sin(αN)h(N)
0 )(sin(αN )h(N)

2m + cos(αN )h(N)
2m−1 +

N−m−1∑

i=1

[

(sin(αN)h(N)
2i + cos(αN )h(N)

2i−1)(sin(αN )h(N)
2i+2m + cos(αN)h(N)

2i−1+2m)
]

+(sin(αN)h(N)
2N−2m + cos(αN)h(N)

2N−2m−1)(cos(αN)h(N)
2N−1)

= cos2(αN)h(N)
0 h

(N)
2m − sin(αN ) cos(αN)h(N)

0 h
(N)
2m−1 +

N−m−1∑

i=1

[

cos2(αN)h(N)
2i h

(N)
2i+2m − sin(αN) cos(αN)h(N)

2i h
(N)
2i−1+2m −

sin(αN) cos(αN)h(N)
2i−1h

(N)
2i+2m + sin2(αN)h(N)

2i−1h
(N)
2i−1+2m

]

−
sin(αN) cos(αN)h(N)

2N−1h
(N)
2N−2m + sin2(αN )h(N)

2N−1h
(N)
2N−2m−1 +

sin2(αN)h(N)
0 h

(N)
2m + sin(αN ) cos(αN)h(N)

0 h
(N)
2m−1 +

N−m−1∑

i=1

[

sin2(αN)h(N)
2i h

(N)
2i+2m + sin(αN) cos(αN)h(N)

2i h
(N)
2i−1+2m +

sin(αN) cos(αN)h(N)
2i−1h

(N)
2i+2m + cos2(αN )h(N)

2i−1h
(N)
2i−1+2m

]

−
sin(αN) cos(αN)h(N)

2N−1h
(N)
2N−2m + cos2(αN)h(N)

2N−1h
(N)
2N−2m−1
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= cos2(αN)h(N)
0 h

(N)
2m − sin(αN) cos(αN)h(N)

0 h
(N)
2m−1 −

sin(αN) cos(αN)h(N)
2N−1h

(N)
2N−2m + sin2(αN)h(N)

2N−1h
(N)
2N−2m−1 +

sin2(αN)h(N)
0 h

(N)
2m + sin(αN) cos(αN)h(N)

0 h
(N)
2m−1 +

sin(αN) cos(αN)h(N)
2N−1h

(N)
2N−2m + cos2(αN)h(N)

2N−1h
(N)
2N−2m−1 +

N−m−1∑

i=1

[

cos2(αN )h(N)
2i h

(N)
2i+2m − sin(αN) cos(αN )h(N)

2i h
(N)
2i−1+2m−

sin(αN) cos(αN)h(N)
2i−1h

(N)
2i+2m + sin2(αN)h(N)

2i−1h
(N)
2i−1+2m +

sin2(αN)h(N)
2i h

(N)
2i+2m + sin(αN) cos(αN)h(N)

2i h
(N)
2i+2m−1 +

sin(αN) cos(αN)h(N)
2i−1h

(N)
2i+2m + cos2(αN)h(N)

2i−1h
(N)
2i+2m−1

]

= (cos2(αN) + sin2(αN))h(N)
0 h

(N)
2m + (cos2(αN) + sin2(αN))h(N)

2N−1h
(N)
2N−2m−1

+
N−m−1∑

i=1

[

(cos2(αN) + sin2(αN))h(N)
2i h

(N)
2i+2m+

(cos2(αN) + sin2(αN))h(N)
2i−1h

(N)
2i−1+2m

]

= h
(N)
0 h

(N)
2m + h

(N)
2N−1h

(N)
2N−2m−1 +

N−m−1∑

i=1

[

h
(N)
2i h

(N)
2i+2m + h

(N)
2i−1h

(N)
2i−1+2m

]

= h
(N)
0 h

(N)
2m + h

(N)
2N−1h

(N)
2N−2m−1 +

2N−2m−2∑

i=1

h
(N)
i h

(N)
i+2m

=
2N−2m−1∑

i=1

h
(N)
i h

(N)
i+2m (197)

From (197) and (190) it leads to

2N+1−2m∑

i=0

h
(N+1)
i h

(N+1)
i+2m = 0. (198)
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