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The future has many names:

For the weak, it means the unattainable.

For the fearful, it means the unknown.

For the courageous, it means opportunuty. Victor Hugo



RESUMO

Esta dissertação de mestrado discute sobre o investimento em capacidade de transmissão em

mercados elétricos competitivos e sua relação com o investimento em capacidade de geração.

O principal problema que surge ao descentralizar os investimentos são as externalidades, devido

à dependência entre os custos de oportunidade da capacidade transmissão e geração. As exter-

nalidades são distorções no mercado que se apresentam quando as decisões de um agente afetam

o bem-estar de outro agente, porém não vice-versa. Em presença de externalidades não é válido

afirmar que a solução descentralizada seja igual ao resultado centralizado (ótimo de Pareto).

Para solucionar este problema deve-se implementar um processo descentralizado através de es-

quemas regulatórios. Logo, é proposto um modelo binível que procura o ótimo de Pareto e

serve como referência para implementação de esquemas regulatórios que permitam avaliar os

investimentos em capacidade de transmissão e geração em um mercado competitivo. O modelo

binível proposto é transformado em um problema de programação linear inteira mista, usando a

teoria de dualidade e técnicas de linearização. O modelo proposto foi implementado em AMPL

e solucionado usando o solver comercial CPLEX. Finalmente, são apresentados os resultados

obtidos para dois sistemas testes e um sistema real.

Palavras-chave: Planejamento da expansão de sistema de transmissão. Modelos de progra-

mação binível. Mercados elétricos. Externalidades.



ABSTRACT

This dissertation discusses about the investing in transmission capacity in competitive electric-

ity markets and its relation with the investing in generation capacity. Since opportunity costs

of transmission and generation capacity are dependent, externalities arise when the investments

decisions are decentralized. Externalities are present whenever a decision of a certain agent

affects another agent’s welfare but not vice versa. In presence of externalities, the decentralized

outcome does not lead to a Pareto optimal solution. In order to overcome this problem, the

Pareto optimal solution should be found, and set in the market by means of regulation. More-

over, a bi-level multistage model is proposed, which finds the Pareto optimal solution. This

solution can be used as reference for the implementation of regulatory mechanisms that asses

the investments in transmission and generation capacity. The proposed bi-level model is trans-

formed into a mixed integer linear problem using duality theory and linearization techniques.

Finally, the proposed model is implemented in AMPL and solved using CPLEX; results for

several study cases are presented.

Keywords: Transmission planning. Bi-level models. Electricity markets. Externalities.
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1 INTRODUCTION

The transmission planning problem (TPP) consist in finding the new transmission lines

which should be built in order to have an adequate operation for the future. Traditionally, the

TPP is formulated as the minimization of the total investment cost for a specific point in the

future, subject to the network equations and the transmission lines limits.

In mathematical terms, the TPP corresponds to a mixed integer nonlinear programming

problem and for the moment there is no algorithm that guarantees finding the global optimal

solution. In consequence, a gradual progress has been made in respect to the modeling of the

problem and solution techniques. The more complex is the model the more difficult to solve is.

Thus, the main approach to TPP is to use the DC representation of the network, which is given

by the two Kirchhoff’s laws equations.

The first application of optimization techniques to TPP begins in 1970 with the article of

Garver (GARVER, 1970). Garver only uses the Kirchhoff’s current law, and presents a con-

structive heuristic algorithm for finding solutions. Later articles in this regard proposed very

similar algorithms based on the idea of Garver; algorithms such the minimum effort (MON-

TICELLI et al., 1982) and the Villasana - Garver - Salon (VILLASANA; GARVER; SALON,

1985) were very popular. Constructive Heuristic algorithms can find solutions through a se-

quence of linear programming problems; a candidate is selected at each step according to a

sensibility index. These algorithms are simple, fast but they can lead to poor quality solutions.

Moreover, classic optimization techniques were applied to the TPP, including Benders de-

composition (ROMERO; MONTICELLI, 1994b) an the Branch and Bound algorithm (ROMERO;

MONTICELLI, 1994a; HAFFNER et al., 2000). These algorithms find the global optimal so-

lution through a systematized search in the solution space. This is possible only with some

simplifications and a lot of computational effort, so these algorithms usually present conver-

gence troubles for large systems.

In the middle of the nineties, metaheuristic algorithm were applied to the TPP, includ-

ing Simulated Annealing (ROMERO; GALLEGO; MONTICELLI, 1996), genetic algorithms

(ROMERO; RIDER; SILVA, 2007; GALLEGO; MONTICELLI; ROMERO, 1998), Tabu search

(GALLEGO; ROMERO; MONTICELLI, 2000; SILVA et al., 2001), GRASP (FARIA H. et al.,

2005), Ant Colony, etc. These algorithms make an intelligent search through the solution space;

however, they do not guarantee finding the global optimal solution. Nonetheless, these algo-
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rithms are simple, fast and can find solutions of good quality.

Finally, the disjunctive linear model was proposed in (BAHIENSE et al., 2001). In simple

words, the original problem is represented by a mixed integer linear model by using the Fortuny-

Amat representation (FORTUNY-AMAT; MCCARL, 1981). In consequence, the global op-

timal solution can be found in the equivalent system. Nowadays, this model is the general

reference for further research (VINASCO; RIDER; ROMERO, 2011; RAHMANI et al., 2013).

The referred models use the DC model of the network since it’s highly complex of obtain

solutions, even for such simplification. However, with the advances in the operation research,

it has been claimed that AC representation of the network is possible. The article of Rider

(RIDER; GARCIA; ROMERO, 2007) has the first AC formulation of the transmission planning

problem. Since then, many others have researched in this regard (ZHANG et al., 2012; JABR,

2013; TAYLOR; HOVER, 2013). The AC model is the natural extension of the problem and

it is a research topic in development. This dissertation always refers to the DC model unless

specification of the opposite.

Furthermore, the classic TPP was formulated as a static problem, in other words, trans-

mission reinforces should be found for a certain point in the future. The real problem should

represent the dynamics of the generation and demand for the planning horizon. The dynamic

or multistage formulation of the problem finds the optimal solution for a set of stages subject to

inter-temporal restrictions: a line built at staget must be available for the staget+1. In this re-

gard, the article of Escobar (ESCOBAR; GALLEGO; ROMERO, 2004) proposes the nonlinear

formulation of the problem. Then, Vinasco (VINASCO; RIDER; ROMERO, 2011) presents the

mixed integer linear formulation of the problem.

Traditional minimization of total investment cost is valid only for vertical integrated market,

in which a monopoly is in charge of the generation, transmission and distribution activities.

The main problem of a monopoly is that it has no incentive for being efficient and can create

unnecessary investments. Economic theory claims that a competitive market would lead to a

more efficient outcome (MAS-COLLEL; WHISTON; GREEN, 1995). For this reason, at the

end of the seventies competition was introduced in several public utilities including electricity

(KIRSCHEN; STRBAC, 2004).

With the introduction of competition in the electricity market, traditional approach in not

valid. In a competitive market, there is no central planner who decide investments in generation

and transmission capacity. Investments are made in function of the possible profit that agents

can made in the market. In contrast to perfect competition, each agent has its own objective

function and the equilibrium is the simultaneous solution of all optimization problems, which

is known as market equilibrium (TIROLE, 1988).

In a competitive framework, the transmission and generation investing problem can be rep-
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resented by a multilevel optimization problem. A multilevelproblem represents the Nash equi-

librium of a game in which a certain player makes the first move. In specialized literature,

several multilevel models have been proposed in order to represent the investments in transmis-

sion and generation capacity in competitive markets, for further details see (GARCES et al.,

2009; JENABI; FATEMI; SMEERS, 2013; POZO; SAUMA; CONTRERAS, 2013).

In this context, investment models for transmission capacity implicitly take the premise

that opportunity cot of transmission capacity depends only in the difference of marginal prices

between the terminal (HOGAN, 1999; HOGAN; ROSELLON; VOGELSANG, 2010). For a

static game, this is correct; however, for a multistage model this proposition is not correct.

This dissertation recognizes that opportunity cost of transmission capacity not only depends

on the marginal costs but also on the possible generation investments. So, when decentralizing

investment decisions implies existing of externalities between the generation and transmission

investments, those externalities can make that decentralized result can reach a Pareto optimal

solution, market failures and a bad use of the economy resources.

The problem of externalities can be overcome through regulatory mechanism. In this sense,

it is necessary to find the the Pareto optimal solution and set in the decentralized market; ex-

amples of regulatory mechanisms are taxes, price regulation, normativeness, etc. Finally, a

multistage bi-level model is proposed, which finds the Pareto optimal solution. This solution

can be used as a reference for the implementation of regulatory mechanism. The proposed

model is implemented and solved with CPLEX and results for several study cases are shown.

1.1 OBJECTIVES

The general objectives of this dissertation are the following:

• To review the transmission and generation planning problem in a competitive market.

• To develop a multistage bi-level mode for investing in transmission and generation ca-

pacity for competitive electricity markets.

The specific objectives of this dissertation are the following:

• To present the microeconomic concepts for electricity markets.

• To review the externalities and how they can make that a market cannot reach Pareto

optimal solution.

• To present multilevel optimization as a standard for modeling sequential decisions and

how can be applied to the investments in transmission and generation capacity.
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• To present the opportunity cost dependence of the investments in transmission and gen-

eration capacity.

• To present a discussion showing how externalities surge when decentralizing investments

in transmission and generation capacity.

• To formulate a model that finds Pareto optimal solution as a reference solution.

• To present the results of the proposed model and show the developed discussion.

1.2 CONTRIBUTIONS

This dissertation has important contributions. From a theoretical standpoint, this disser-

tation explains how externalities arise when the investment decisions are decentralized; thus,

market outcome does not lead to a Pareto optimal solution. Implications of the externalities

can change the way transmission planning is perceived, since a decentralized market is not

completely efficient in comparison to a centralized market.

From a practical standpoint, this dissertation presents a multistage bi-level model which

finds the optimal solution considering the electricity as the only good in the market (known as

partial equilibrium, in microeconomics). The proposed model can be used to asses investments

in transmission and generation capacity as an additional tool in the decision process.

1.3 ORGANIZATION OF THE WORK

This dissertation is divided into five chapters, where the first chapter is the introduction.

The remaining chapters have the following structure:

• Chapter 2 presents the theoretical framework of the dissertation: fundamental of microe-

conomics, electricity markets, investing in transmission and generation capacity, multi-

level optimization and review of existing multilevel models for investing in transmission

and generation capacity.

• Chapter 3 discusses about transmission investments and its dependence with investments

in generation capacity, the problem of externalities is pointed out and a bi-level model is

proposed from the discussion bases.

• Chapter 4 presents the results for several study cases.

• Finally, Chapter 5 presents the conclusions of the dissertation.
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2 THEORETICAL FRAMEWORK

This chapter is organized as follows. First, section 2.1 introduces the key microeconomic

concepts in order to understand the market performance: how prices are determined, what is

the outcome of perfect competition and how perfect competition leads to a Pareto optimal so-

lution. Moreover, market failures are discussed, specially the externalities and how market

outcome does not lead to a Pareto optimal solution because of the externalities. Section 2.2

presents the fundamentals of the electricity market operation. Section 2.3 discusses the nature

of investing in transmission and generation capacity; a basic mathematical formulation is pre-

sented. Section 2.4 introduces multilevel optimization as a useful tool for modeling sequential

decisions in which one player makes the first movement. In this sense, investments in capacity

are made before the market operation, so the investment models can be expressed as a multi-

level optimization problem. Finally, section 2.5 presents the state-of-the-art models; their main

advantages and disadvantages are discussed.

2.1 FUNDAMENTALS OF MICROECONOMICS

Microeconomics is the branch of economics that studies the behavior of economic agents

and its interrelation in the market; this section provides a basic introduction to the key microe-

conomic concepts which will be used later.

2.1.1 Consumer theory

The consumer is the basic agent of the economy; it is modeled as an optimizing agent with

preferences over goods. Preferences are represented by a convex functionU(x) called utility

function; wherex is a vector of quantities of all consumption goods. Prices are represented

by the price vectorp. Also, the consumer has a limited budgetL̄, then that problem of the

consumer consists in maximizing its utilityU(x) subject to its consumption possibilities set

(MAS-COLLEL; WHISTON; GREEN, 1995):

Maximizex U(x)

Subject to:

p ·x≤ L̄

x≥ 0

(1)
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The demand functionxd
i = xi(p, L̄) for each good is derived from the solution of the con-

sumer problem. This function depends on the pricesp and the budget̄L. The plot of the demand

function versus its price is known as the demand curve. Figure 1 shows a demand curve for a

certain good.

Figure 1 -Demand curve.

p

x

xd

Source: Kirschen e Strbac (2004).

According to Figure 1, when the price is high, the consumer would decide to buy less units.

If the price decreases, consumer would buy more units until the price equals its valuation. Then,

consumer would be disposed to pay more money for the first consumption units and less for the

next units, however in a market the consumer always pays the same price for all the units. This

difference between consumer valuation and the market price represents a profit, which decrease

until the valuation reaches the market price. The total difference between valuation and price

market is called net consumer surplus (CS) and its represented in Figure 1 by the shaded area.

Later, it will be shown that through a market a consumer can get the maximum consumer net

surplus.

2.1.2 Producer theory

Producers, or firms, are economic agents which are able to transform goods. Each firm is

determined by a function of transformation of goods called technology The objective of a firm

is to maximize its profit subject to its technological restriction.

A firm has a production vectory whose components are the inputs and output for the pro-

duction of goods; the negative sign of the components ofy is to distinguish between an input

and an output. Price vectorp represents price for the input and outputs. The problem of the
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firm is to maximize its profitπ subject to the set of production possibilitiesY (MAS-COLLEL;

WHISTON; GREEN, 1995):

Maximizey p ·y

Subject to:

y∈Y

(2)

The previous problem can be expressed as the maximization of the difference between in-

come and cost functionC(x). For this moment, consider that the firm takes the pricep as given,

which id true for perfect competition and will be discussed in the next section. Also, consider

the firm only produces one goodx, optimal production is given by the following problem:

Maximizeπ(x) = p ·x−C(x) (3)

d(p ·x)
dx

=
dC(x)

dx
(4)

p(x) =
dC(x)

dx
(5)

The economic cost of producing an additional unit is called themarginal costand it is given

by the derivative of the cost function respect the produced quantity. This cost not only includes

the accounting costs, but also the opportunity cost. The opportunity cost is the cost of the

following best alternative; in other words, it is what an agent refuses when it takes a decision.

According to last equation, the firm maximizes its profit when its marginal cost equals the

market price. This basic principle says that a price should reflect the economic cost of producing

an additional unit of the good, in perfect competition (ALBOUE, 1983).

The inverse functionxo
i = p−1(x) is called the supply function, and is represented in the

Figure 2. For each market price, the firm produce quantityx∗ which maximize its profit.
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Figure 2 -Supply curve.
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Source: Kirschen e Strbac (2004).

According to Figure 2, the marginal cost is an increasing function. Then, the first produced

units are cheaper than the next units, this cost increases as production does. The difference

between the market price and the marginal cost represents the profit of the firm and its known

as producer surplus (PS). Figure 2 represents the PS by the shaded area; in the next section it is

shown that through a market the firm can get the maximum surplus.

2.1.3 Competitive equilibrium of the market

After modeling agent behavior, it is important to model their interaction in the market. In

the previous section, market price was assumed to be given; if this is true, the market is of

perfect competition, because no part can modify the price by itself. In a perfectly competitive

market, the joint action of consumers and firms is what determines the price of a good. A market

of perfect competition has the following characteristics:

• There are a large number of firms and consumers.

• Products are homogeneous, in other words, the output of a firm is exactly the same of the

output of another firm for the same good.

• There is perfect information among all consumers and firms.

• The firms take the price as given, so no individual action can affect the price.

• There is perfect mobility for entry and exit of firms.
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Then, the market equilibrium is reached when supply is equal to demand for all goods.

xd
i = xo

i (6)

Figure 3 presents the market equilibrium for a certain good, equilibrium prices are obtained

intercepting the supply and demand functions. The shaded area represents the sum of the net

consumer surplus plus the net producer surplus, which is called social welfare. The social

welfare is an index of the welfare of the overall economy.

Figure 3 -Market equilibrium - Pareto optimal solution.
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Source: Kirschen e Strbac (2004).

According to Figure 3, market equilibrium reaches the maximum social welfare. This im-

portant property is known as the first welfare theorem and says that every market equilibrium is

a Pareto optimal solution so maximum social welfare is reached (MAS-COLLEL; WHISTON;

GREEN, 1995).

The First Welfare Theorem is very important because it implies that the global optimal so-

lution can be implemented through a market in a natural fashion from the own agent’s behavior;

which is the main argue for introducing competence in the electricity sector.

Finally, the first welfare theorem is based on very restrictive premises, sadly this is very

ideal. however it can be use as a reference and with the help of a regulator, the market outcome

can be near to the global optimal solution (ALBOUE, 1983).
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2.1.4 Market failures: externalities

The market equilibrium discussed in the previous section is referential, because there are

many premises that do not hold in practice. In this sense, the presence of market failures would

not lead to a Pareto optimal solution; one of these failures are theexternalities(DAMMERT;

GARCIA; MOLLINELLI, 2010).

Externalities are present when the utility of one individual includes decision variables that

are made by another individual without taking in count the welfare of the first individual. The

second condition is that the individual who make the decisions that affect other individuals does

not receive any pay for it (BAUMOL; OATES, 1988).

It can be demonstrated that in presence of externalities, the market outcome does leads

to Pareto optimal solution, for further details see (BAUMOL; OATES, 1988). The following

example shows this proposition. Consider two firms, firmA produces steel and firmM produces

apples. The production level of steel affects negatively the apple production, but not vice versa.

Let xa and andxm be steel production and apple production respectively, production functions

are given by the following expressions:

xa = f (La) (7)

xm = g(Lm)+h(xa) (8)

∂h
∂xa

≤ 0 (9)

WhereLa is the labor in producing steel andLm is the labor in producing apples. Further-

more, total labor is restricted to a number of hours a dayLa+ Lm = L̄. The central planner

maximizes the social welfare given by the profit of both firms. Ifpa andpm are the prices for

steel and apples respectively. Then, central planner solves the following problem:

Maximize

La,Lm
pa ·xa+ pm ·xm

Subject to:

La+Lm = L̄

xa = f (La)

xm = g(Lm)+h(xa)

(10)

Replacing the restrictions in the objective function leads to the following Lagrangian:
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Ł : pa · f (La)+ pm · (g(Lm)+h(xa))+λ (L̄−La−Lm) (11)

First order conditions are the following:

∂Ł
∂La

= pa ·
∂ f
∂La

+ pm ·
∂h
∂xa

·
∂ f
∂La

−λ = 0 (12)

∂Ł
∂Lm

= pm ·
∂g

∂Lm
−λ = 0 (13)

In the other hand, in a decentralized market each firm maximizes its profit. Letω be the

cost of labor, firmA maximizes its profit:

πa = pa ·xa−ω ·La (14)

∂πa

∂La
= 0 (15)

=⇒ pa ·
∂ f
∂La

−ω = 0 (16)

In a similar way, firmM maximizes its profit:

πm = pm ·xm−ω ·Lm (17)

∂Πm

∂Lm
= 0 (18)

=⇒ pm ·
∂g

∂Lm
−ω = 0 (19)

Comparing the results for the central planner (*) and decentralized market (d), Lagrange

multiplier of the labor restriction is equal to the cost of labor (λ = ω). The production of

apples is the same in both cases; nonetheless, the production of steel is different. The following

inequality stands for steel production:

=⇒ pm ·
∂h
∂xa

·
∂ f ∗

∂La
≤ 0 (20)

Replacing the conditionλ = ω in the inequality:
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pa ·
∂ f ∗

∂La
+ pm ·

∂h
∂xa

·
∂ f ∗

∂La
= pa ·

∂ f d

∂La
(21)

=⇒
∂ f ∗

∂La
≥

∂ f d

∂La
(22)

=⇒ x∗a ≤ xd
a (23)

This result says that the production of steel in a decentralized marketxd
a is higher than

the Pareto optimal solutionx∗a. Thus, welfare for a decentralized market is lower since with a

reduction of steel production leads to a higher social welfare.

2.2 FUNDAMENTALS OF ELECTRICITY MARKETS

Electricity is a good with very particular characteristics that are not observed in other mar-

kets; in this section the fundamentals of electricity markets and its main characteristics are

introduced.

2.2.1 Organization of the electricity market

A modern electricity market is organized according to the generation, transmission and

distribution activities. The following functions can be found in a modern market (STOFT,

2002):

• Generation companiesthat produce and sell electricity. They can own one generation

unit or a portfolio of generation units with different technologies.

• Distribution companieswhich own and operate the distribution networks. They have the

monopoly for the sale of electricity to all the consumers connected to their network.

• The Market Operatorwho matches the bid and offers and set the financial equilibrium

between supply and demand. Cares about the commercial relation among consumers and

producers.

• The Independent System Operator(ISO) determine the equilibrium of supply and demand

in real time, maintains the security in the electric system in a way that does not favor any

party.

• Transmission companywhich own the transmission network: lines, transformers and

compensation equipments. Usually there is only one company because the transmission
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activity is a natural monopoly; however, competition can exist.

• The regulator is the governmental body for ensuring fair and efficient operation of the

electric sector. It determines and approve the market rules and set the prices for the

monopolies in the sector.

• Small consumers, usually are the residential consumers, buy electricity to distribution

companies that own the monopoly over their geographic area. The prices they pay are set

by theregulator.

• Large consumers, usually are industrial consumers who buy electricity directly from the

market. These consumers can be connected directly to the transmission system or the

distribution system.

The agents usually interact according to the structure of a wholesale market shown in Figure

4. In this structure, no central organization is in charge of the sale of electricity; distribution

companies and large consumers buy electricity directly from the generation companies.

Figure 4 -Organization of the electricity market: wholesale market.

Source: Stoft (2002).
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2.2.2 Market operation

The real time market operation is operated as a wholesale market, also known as thespot

market. A spot market is the most traditional form of a market; producers sell their product and

buyers pay on the spot the real time price.

The spot market must be managed in a centralized manner, since it is very difficult to reach

a market equilibrium in real time through interaction of generation companies and consumers.

Thus, spot market operates as apool; a pool basically operates in the following manner (HUNT,

2002):

• Generation companies submit bids to supply a certain amount of electricity at an certain

price for a certain period. These bids are ranked in order of increasing price and from this

rank the supply curve is determined.

• A similar procedure can be applied for obtaining the demand curve. However, a forecast

of the demand can be used instead, since electricity demand can be considered as an

inelastic vertical line.

• Intersection of supply and demand curves represents the market equilibrium at a equilib-

rium price, which represent the marginal cost of the system. The marginal cost reflects

the additional cost of providing one more MWh.

• The operator pays the marginal cost to all the generation companies for each MWh they

produce, independently of the price they bid.

The spot market equilibrium is represented in Figure 5.

Figure 5 -Spotmarket equilibrium.

Source: Hunt (2002).
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The previous procedure is valid only when generation and demand are located on the same

node. However, almost never, loads are located at generation nodes. Thus, a transmission sys-

tem is needed to transmit the electricity. Since the transmission system is composed by a set of

lines, the market operation is constrained by its capacity limits. Then, the market operator must

represent the network equations in its problem.

For this purpose, the network is represented by a set of nodesΩN and a set of existing

branchesΩL0. Each nodei has an angleθi. Also, each linei j ∈ ΩL0 has a susceptancebi j , a

transmission capacitȳfi j , and a power flowfi j . ΩL0
i represents the set of lines connected to

nodei. The supply side is represented by a set of existing generatorsΩG0, whereΩG0
i is the

set of generators connected to nodei. Each generator has a variable costσk, a fixed capacity ¯gk

and a productiongk. The market operator maximizes the social welfare subject to the network

equations and the capacity limits. LetWi be the social welfare at nodei, then the market operator

solves the following optimization problem (KIRSCHEN; STRBAC, 2004):

Maximize

gk, fi j ,θi
∑

i∈ΩN

Wi

Subject to:

∑
i j∈ΩL0

i

fi j − ∑
ji∈ΩL0

i

f ji + ∑
k∈ΩG0

i

gk = di ∀i ∈ ΩN

bi j · (θi −θ j) = fi j ∀i j ∈ ΩL0

| fi j | ≤ f̄i j ∀i j ∈ ΩL0

gk ≤ ḡk ∀k∈ ΩG0

gk ≥ 0 ∀k∈ ΩG0

(24)

The social welfare is given by he area between the supply and demand curve. If demand

is inelastic (constant with variations of price), the social welfare is given only by the supply

curve. Thus, the maximization problem reduces to the following minimization of total cost

(KIRSCHEN; STRBAC, 2004):
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Minimize

gk, fi j ,θi
∑

k∈ΩG0

σk ·gk

Subject to:

∑
i j∈ΩL0

i

fi j − ∑
ji∈ΩL0

i

f ji + ∑
k∈ΩG0

i

gk = di ∀i ∈ ΩN

bi j · (θi −θ j) = fi j ∀i j ∈ ΩL0

| fi j | ≤ f i j ∀i j ∈ ΩL0

gk ≤ ḡk ∀k∈ ΩG0

gk ≥ 0 ∀k∈ ΩG0

(25)

The problem is compatible with the optimal power flow problem OPF (WOOD; WOL-

LENBERG, 1992). The market equilibrium is given by the joint solution of the market operator

problem and the profit maximization problems for each firm. Finally, the market operator allo-

cates the production and sets the nodal prices equal to the nodal marginal cost.

2.3 INVESTMENTS IN THE ELECTRICITY MARKET

In the long run, transmission and generation capacity need to be increased in order to meet

the demand. This section introduces the key concepts of investing in transmission and genera-

tion capacity, and presents the basic modeling of both problems.

2.3.1 Investing in generation capacity

For the investor, investing in generation capacity depends on the possible revenues he could

make in the market during the lifetime of the project. Note that decision investments not only

depends on electricity prices, but also on the opportunity costs of the investors. Depending on

their opportunity costs, investors would decide to invest in other industries instead.

Thus, investors forecast electricity prices for the lifetime of the project and make some

financial calculus in order to decide if they invest. This approach is compatible with the theory

of producers and both lead to the same result.

Involved costs must be analyzed for the financial evaluation of a generation project. Basi-

cally, generation costs are divided into two groups: fixed costsFC and variable costsVC. The

fixed costs consist in the investment cost of the plantIC plus the operation and maintenance

costO&M.

FC= IC+O&M (26)
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The investment cost is not necessarily equal to the cost of theprojectCP. Since the involved

cost are high and investors usually has a own capitalK ≤ CP, part of the cost of the project is

financed with debtD at an interest rateβ which depends on the project lifetime and the risk

aversion of the lender.

CP= K +D (27)

Then, inside the annual fixed costs the investor should consider the annual payment of the

debtCDt at an interest rateβ . In order to computeCDt , we consider a project lifetime ofT

years; the present value of the cash flows must be equal to the total debts.

D =
CDt

(1+β )
+

CDt

(1+β )2 + · · ·+
CDt

(1+β )T (28)

Making some simplifications We have the following expression:

CDt =
β ·D

1+ 1
(1+β )T

(29)

In the other hand, variable costsVC are given by the consumption of fuel associated to a

certain technology. In consequence, total cost faced by the investor is given by the following

expression:

Ct = Kt +CDt +O&Mt +VCt (30)

Cash flow during the project lifetime is presented in Figure 6. In the first period the invest-

ment is made. In the following periods, the investor has an income for the sell of electricity and

faces the variable cost plus the cost of operation and maintenance. Also, the payment of the

debt is considered during the project lifetime.
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Figure 6 -Cash flow for the investor in generation capacity.

Source: the author.

The revenue of the investor is given by the income minus the cost. This income depends

on the electricity prices and also a capacity payment would exist depending on the regulation

of the country. Investor maximizes his profits given by the present value of his incomePV(I)

minus the present value of his costsVP(C) subject to opportunity cost̄Π and available capital

K̄.

Maximizeπ = PV(I)−PV(C)

Subject to:

π ≥ π̄

K ≤ K̄

(31)

The solution space of the problem is given for all projects whose profits are higher than

the investor’s opportunity cost. Thus, the investor would choose a project that has the highest

profit. Note that opportunity costs must no be considered in the costs, since they are explicitly

included in the restrictions of the problem.

It is possible to reduce the model using an adequate interest rate. For an given cash flow,

there is an associated interest rate for which its present value is equal to zero. For a investor,

the opportunity cost can be represented by a minimum acceptable rate of return. Thus, if the

cash flow of the selected project is zero, the investor recovers his opportunity cost at least. In

consequence,̄π = 0 and the restriction is not necessary anymore.

2.3.2 Investing in transmission capacity

The transmission business is considered a natural monopoly because of its high fixed costs

and low variable costs. This leads to only one company in the market structure; so, the trans-

mission business must be regulated. There are two used approaches in order to incentive invest-
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ments in transmission capacity: an approach based on cost andapproach based on value.

In the approach based on cost, the transmission company receives enough income to re-

cover his investment cost plus an attractive rate of return. The transmission company prepares a

transmission plan, the regulator reviews the plan and decides which reinforces should be built.

Finally, the transmission company recovers its investment through a charge in the tariff of con-

sumers. Under this approach the regulator only has to create mechanisms that incentive efficient

investments.

The other approach is based on value. The transmission company invests in those trans-

mission lines that produce revenues through the market . The main idea for any transportation

business is to bring a product from a certain location to a more expensive location. Then the

transportation is efficient if the transportation cost does not exceed the price difference of the

locations. The same idea can be used to value a transmission line and the transmission company

can recover its investment through a pay for the use of the network.

For both approaches, it has been argued that the opportunity cost of the transmission capac-

ity depends on the price difference of the line terminals. If the product of a transmission com-

pany is transmission capacity, then a transmission line should be built only when its marginal

cost equals to its opportunity cost, which is given by the price difference of the line terminals

(HOGAN, 1999).

Transmission linei j has a cost functionC with a fixed costFC that does not depends on line

capacity f̄i j and a variable costVC which depends on the line capacitȳfi j , the line longitude

l i j and the annualized cost per unit of km and capacityηi j . The costηi j is obtained from the

following expression:

ηi j = β ·ci j/l i j · f̄i j ·

(

1+
1

(1+β )T

)

(32)

If we consider that transmission capacityf max
i j can be increased continuously, we have the

following marginal cost of transmission capacity:

C( f max
i j ) = FC+VC( f max

i j ) (33)

VC( f max
i j ) = ηi j · l i j · f max

i j (34)

dCT

d fmax
i j

= ηi j · l i j (35)
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The previous marginal cost assumes that transmission capacity can be increased continu-

ously. If this is accepted, optimal capacity for each line ca be found by equation 35. Further-

more, the planner needs to value the performance of the overall transmission system. Thus, the

planner uses the concept of a reference network. Topologically, a reference network considers

the existing network and the candidate lines, but with variable line capacities. The planner ob-

jective is to find optimal capacity for each line minimizing total cost. (KIRSCHEN; STRBAC,

2004).

Let ΩD be the set of demand levels with aτo number of hours associated at each level; let

ΩG be the set of generators with marginal costσk and productiongk,o; let ΩN be the set of nodes

andOmegaL the set of lines; each line has a power flowfi j for i j ∈ ΩL and the constant factors

ϕi j ,i represent the power distribution factors. The central planner solves the following problem:

Minimize

gk,o, f max
i j

∑
o∈ΩD

∑
k∈ΩG

τo ·σk ·gk,o+ ∑
i j∈ΩL

ηi j · l i j · f max
i j

Subject to:

∑
i j∈ΩL

i

fi j ,o− ∑
ji∈ΩL

i

fi j ,o+ ∑
k∈ΩG

i

gk,o = di,o ∀i ∈ ΩN,∀o∈ ΩD

fi j ,o = ∑
i∈ΩN

ϕi j ,i · ( ∑
k∈ΩG

i

gk,o−di,o) ∀i j ∈ ΩL,∀o∈ ΩD

| fi j ,o|< f max
i j ∀i j ∈ ΩL,∀o∈ ΩD

(36)

Whenever the objective function considers operation plus investment costs, implicitly it is

recognized that the opportunity cost of a transmission line only depends on the price difference

of the line terminals. A detailed discussion on these issues is developed in Chapter 3.

2.4 MULTILEVEL OPTIMIZATION AND TRANSMISSION PLANNING

2.4.1 Formulation and solution of multilevel optimization problems

Multilevel models are optimization problems that has a subset of variables restricted to be

an optimal solution of other optimization problems which are parameterized on the remaining

variables. A bi-level problem can be represented by the following formulation:

First level:
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Minimizex,y F(x,y)

Subject to:

g(x,y)≤ 0

(37)

Wherey must be the solution of the lower level problem given the optimal solution ofx:

Second level:

Minimizey f (x,y)

Subject to:

h(x,y)≤ 0

(38)

Multilevel problems are very difficult to solve; the classic procedure is to transform the

problem into just one level problem. Consider the following second level problem:

Minimize ct ·x

Subject to:

Ax= b : y

Dx≤ e : w

xi unrestricted ∀xi ∈ Ω1

xi ≥ 0 ∀xi ∈ Ω2

Wherey andw are the dual variables of the restrictions. The dual problem is given for the

following:

Maximize bt ·y+et ·w

Subject to:

Aty+Dtw= c

w≤ 0

y unrestricted

(39)

According to the Karush-Kuhn-Tucker conditions, the following conditions applies for the

optimal solution:

A ·x∗ = b, D ·x∗ ≤ e, x unrestricted (40)



2.4 MULTILEVEL OPTIMIZATION AND TRANSMISSION PLANNING 39

At ·y∗+Dt ·w∗ = c, w≤ 0, y unrestricted (41)

(e−D ·x∗)t ·w∗ = 0 (42)

Rearranging the third condition:

etw∗ = (x∗)tDtw∗ (43)

Multiplying by (x∗)t :

bt ·y∗+etw∗ = ct ·x∗ (44)

Equation (44) is know as the strong dual condition. Thus, the second level problem can be

represented by the following system:

ctx−bty−etw= 0

A ·x= b

D ·x≤ e

x unrestricted

Aty+Dtw= c

w≤ 0

y unrestricted































































(45)

The previous system can be included in the first level problem so that the bi-level model

is formulated as one level problem. Since Karush-Kuhn-Tucker conditions produce nonlinear

terms; the one level problem usually is linearized using the Fortuny - Amat representation(FORTUNY-

AMAT; MCCARL, 1981), for further details see Section 3.2.2.

In game theory, a bi-level model represents a sequential game of two players. In this se-

quential game, a certain player makes the first move; in contrast to the classic static game, where

both players move at the same time. This model was first proposed by Stackelber (TIROLE,

1988). The classic example consists in a game of two firms deciding their capacity and then

they compete using the produced quantity as their decision variable.

Let k1 be the capacity of the first firm andk2 be the capacity of the second firm, demand

function is given byp = 1− k1− k2 . Then, profit for both firms are given by the following
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functions:

π1(k1,k2) = k1 · (1−k1−k2) (46)

π2(k1,k2) = k2 · (1−k1−k2) (47)

If both firms decide their capacity at the same time, both firms maximize their profit taking

as given their rivals decisions:

∂π1

∂k1
=

∂π2

∂k2
= 0 (48)

k1 =
1−k2

2

k2 =
1−k1

2

Solving the system of equations leads to the following result:

k1 = k2 = 1/3

π1 = π2 = 1/9

In the Stackelberg model, the first firm maximizes its profit taking in count decision of the

second firm. Thus, the first firm replaces optimality condition of the second firm in its profit

function:

π1(k1,k2) = k1 · (1−k1−
1−k1

2
) (49)

π1(k1,k2) = k1 · (
1−k1

2
) (50)

Then, the first firm maximizes its profit:

∂Π1

∂k1
= 0 (51)
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k1 = 1/2, k2 = 1/4

π1 = 1/8, π2 = 1/16

The player who moves first has a better profit in comparison to the simultaneous move

game. In general, this result holds for any problem.

2.4.2 Transmission planning and multilevel optimization

The problem of investing in transmission and generation capacity can be formulated as a

multilevel optimization problem. Previously, the market operation problem and the investing

problem were presented as two separate problems. Actually, these two problems are related; in-

vesting in transmission and generation capacity depends on future market prices and the market

operation depends on the new transmission and generation capacity.

In order to formulate the multilevel problem, investing problem should be represented at the

first level since investments in new capacity must anticipate the market operation. Moreover,

generation companies anticipate the transmission decisions. In (SAUMA; OREN, 2006), it is

claimed that the transmission company can anticipate the generation investments in a proactive

manner; but in practice, the new generation units are the main drivers for transmission invest-

ments, for further details see Chapter 3.

Consider the price vectorp, the production vectorg , f̄ is the new transmission capacity

andḡ is the new generation capacity. The basic multilevel formulation of the problem takes the

following form:

First level:
Minimize f̄ Investment cost(p,g)

Subject to:

Investment restrictions

(52)

Second level:
Maximizep,g Social welfare( f̄ , ḡ)

Subject to:

Equipment limits

Network equations

(53)
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This basic model has two levels: the first level has the investment problem while the second

level has the market operation problem. This basic structure is used in several existing models

as shown in the next section.

2.5 STATE-OF-THE ART MODELS

2.5.1 Garces, Conejo, Bertrand and Romero Model

Garces, Conejo, Bertrand and Romero (GARCES et al., 2009) propose a bi-level model

for investing in transmission capacity. The first level represents the investment problem where

decisions are made by a central planner who maximize the social welfare. The second level

represents the market operator problem who minimizes the operation cost of the spot market.

The network is modeled by a set of nodesΩN and a set of branchesΩL. Each nodei has an

angleθi . Each branchi j has a susceptancebi j , a fixed capacityf̄i j and a power flowfi j . The

investment cost of a circuit in branchi j is given byci j , total cost is multiplication of each cost

multiplied by a the binary variablezi j which represents investment decisions.

The demand is represented by a set of consumersΩC with a demandda and a reserve price

δa. Also, there could be a level of load curtailmentra with costρa for each consumer. The

supply is represented by a set of generatorsΩG, with variable costσk, fixed capacity ¯gk and

productiongk.

The objective function of the first level problem is the social welfare minus the total invest-

ment cost in transmission capacity. Restrictions are the following in order of appearance: (i)

budget restriction̄L, (ii) z= 1 for existing lines and (iii) decision variables must be binary.

The objective function of the second level problem is the social welfare for the considered

period (τ hours). Restrictions are the following in order of appearance: (i) Kirchhoff’s current

law, (ii) Kirchhoff’s voltage law, (iii) capacity limits of the lines, (iv) angle limits, (v) generation

capacity limits, (vi) consumer demand limits, (vii) load curtailment limit for each consumer,

(viii) slack angle for the network and (ix) non negativity of the variables. The mathematical

formulation of the model is the following:
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First level:

Maximize

zi j
τ

[

∑
a∈ΩC

δa ·da− ∑
k∈ΩG

σk ·gk− ∑
a∈ΩC

ρa · ra

]

− ∑
i j∈ΩL′

ci j ·zi j

Subject to:

∑
i j∈ΩL

ci j ·zi j ≤ L̄

zi j = 1 ∀i j ∈ ΩL0

zi j ∈ {0,1} ∀i j ∈ ΩL

(54)

Second level:

Maximize

gk, fi j ,θi,da, ra
∑

a∈ΩC

δa ·da− ∑
k∈ΩG

σk ·gk− ∑
a∈ΩC

ρa · ra

Subject to:

∑
k∈ΩG

i

gk+ ∑
i j∈ΩL

i

fi j − ∑
ji∈ΩL

i

fi j + ∑
a∈ΩC

i

ra = ∑
a∈ΩC

i

da ∀i ∈ ΩN

fi j = bi j · (θi −θ j) ·zi j ∀i j ∈ ΩL

| fi j | ≤ f̄i j ∀i j ∈ ΩL

|θi | ≤ π ∀i ∈ ΩN

gk ≤ ḡk ∀k∈ ΩG

da ≤ d̄a ∀a∈ ΩC

ra ≤ d̄a ∀a∈ ΩC

θslack= 0

gk, ra,da ≥ 0

(55)

2.5.2 Jenabi, Ghomi and Smeers Model

Jenabi, Ghomi and Smeers (JENABI; FATEMI; SMEERS, 2013) propose two bi-level mod-

els for investing in transmission and generation capacity. For both models, the network is model

by a set of nodesΩN with angleθi and a set of branchesΩL. The setΩL is the union of the set

of existing branchesΩL0 and the set of candidate branchesΩL′
. Each branch has a susceptance

bi j , a fixed capacityf̄i j and a power flowfi j ,o at demand levelo. The total investment cost in

transmission capacity is given by the cost of each lineci j multiplied by the investment decision

variablezi j .

The proposed models consider a linear function demand at each node:
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pi = α0
i +α1

i ·di (56)

Whereα0 andα1 are constant parameters. Also, a set of demand levelsΩD with a duration

of τo hours for each level is considered. The consumer surplusCSi,o at nodei at the demand

levelo is given by the following expression:

CSi,o =

∫ di,o

0
(α0

i +α1
i ·h)dh (57)

CSi,o = α0
i ·di,o+

α1
i

2
·d2

i,o (58)

CSi,o = α0
i ·di,o+

α1
i

2
· (di,o)

2 (59)

Wheredi,o is the demand at nodei at demand levelo. So, the total consumer surplus is the

sum of consumer surplus for all nodes in the network, total consumer surplus is given by the

following expression:

CS= ∑
o∈ΩD

CSo = ∑
o∈ΩD

∑
i∈ΩN

[

α0
i ·di,o+

α1
i

2
· (di,o)

2
]

(60)

The supply is represented by set of existing generators with fixed capacityΩG0 and a set of

candidate technologiesΩS2 whose capacitygmax
s,i can be increased continuously. Each technol-

ogy has an investment costεs and productiongs,i,o at nodei for demand levelo. Furthermore,

each existing generator has fixed capacity ¯gk, marginal costσk and productiongk,o at demand

levelo.

The first model consider a transmission company which maximize the social welfare subject

to the operation of the spot market. The first level has an objective function that represent

the social welfare; restrictions are the following in order of appearance: (i)z= 1 for existing

lines and (ii) investment decision variables must be binary. The second level represents the

market operator problem which maximizes the social welfare minus the total investment cost;

restrictions are the following in order of appearance: (i) Kirchhoff’s current law, (ii) Kirchhoff’s

voltage law, (iii) line capacity limits, (iv) slack angle in the network, (v) generation capacity

limits for candidate technologies and (vi) generation capacity limits for existing generators.

The mathematical formulation is the following:
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First level:

Maximize

zi j ,gmax
s,i

CS− ∑
s∈ΩS2

∑
i∈ΩN

εs ·g
max
s,i − ∑

i j∈ΩL′

ci j ·zi j

− ∑
o∈ΩD

∑
i∈ΩN

∑
s∈ΩS2

τo ·σs ·gs,i,o− ∑
o∈ΩD

∑
k∈ΩG0

τo ·σk ·gk,o

Subject to:

zi j = 1 ∀i j ∈ ΩL0

zi j ∈ {0,1} ∀i j ∈ ΩL

(61)

Second level:

Maximize

gs,i,o,gk,o, fi j ,o,θi,o,di,o
EC− ∑

i∈ΩN
∑

s∈ΩS2

εi,s ·g
max
s,i − ∑

i j∈ΩL′

ci j ·zi j

− ∑
o∈ΩD

∑
i∈ΩN

∑
s∈ΩS2

τo ·σs ·gs,i,o

− ∑
o∈ΩD

∑
k∈ΩG0

τo ·σk ·gk,o

Subject to:

∑
i j∈ΩL

i

fi j ,o− ∑
ji∈ΩL

i

f ji ,o+ ∑
s∈ΩS2

i

gi,s,o

+ ∑
k∈ΩG0

i

gk,o = di,o ∀i ∈ ΩN,∀o∈ ΩD

fi j ,o = bi j · (θi,o−θ j ,o) ·zi j ∀i j ∈ ΩL,∀o∈ ΩD

| fi j ,o| ≤ zi j · f i j ∀i j ∈ ΩL,∀o∈ ΩD

θslack,o = 0 ∀o∈ ΩD

gs,i,o ≤ gmax
s,i ∀i ∈ ΩN,∀s∈ ΩS2,∀o∈ ΩD

gk,o ≤ ḡk ∀k∈ ΩG0,∀o∈ ΩD

(62)

For the second model, the first level represents the investment problem of the transmission

company which maximizes its profit; a payγi j to transmit power from nodei to node j is

considered. The objective function of the first level represents the sum of all payments minus

the investment cost. The second level problem has the same formulation of the previous model;

the mathematical formulation is the following:
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First level:

Maximize

zi j
∑

o∈ΩD
∑

i j∈ΩL′

τo · γi j · | fi j ,o|− ∑
i j∈ΩL′

ci j ·zi j

Subject to:

zi j = 1 ∀i j ∈ ΩL0

zi j ∈ {0,1} i j ∈ ΩL

(63)

Second level:

Maximize

gs,i,o,gk,o, fi j ,o,θi,o,di,o
CS− ∑

i∈ΩN
∑

s∈ΩS2

εi,s ·g
max
s,i − ∑

i j∈ΩL′

ci j ·zi j

− ∑
o∈ΩD

∑
i∈ΩN

∑
s∈ΩS2

τo ·σs ·gs,i,o

− ∑
o∈ΩD

∑
k∈ΩG0

τo ·σk ·gk,o

Subject to:

∑
i j∈ΩL

i

fi j ,o− ∑
ji∈ΩL

i

f ji ,o+ ∑
s∈ΩS2

i

gi,s,o

+ ∑
k∈ΩG0

i

gk,o = di,o ∀i ∈ ΩN,∀o∈ ΩD

fi j ,o = bi j · (θi,o−θ j ,o) ·zi j ∀i j ∈ ΩL,∀o∈ ΩD

| fi j ,o| ≤ zi j · f i j ∀i j ∈ ΩL,∀o∈ ΩD

θslack,o = 0 ∀o∈ ΩD

gs,i,o ≤ gmax
s,i ∀i ∈ ΩN,∀s∈ ΩS2,∀o∈ ΩD

gk,o ≤ ḡk ∀k∈ ΩG0,∀o∈ ΩD

(64)

2.5.3 Pozo, Sauma and Contreras Model

Pozo, Sauma and Contreras (POZO; SAUMA; CONTRERAS, 2013) propose a three level

model for investing in transmission and generation capacity. The network is represented by a

set of nodesΩN and a set of branchesΩL. Each nodei has an angleθi . Also, each branch

i j has a susceptancebi j , a initial capacityf max,0
i j which can be increased continuously without

affecting the line reactance, a final capacityf max
i j with an annualized costηi j and a power flow

fi j . Also, there is a set of demand levelsΩD and each level has a duration ofτo hours and a

demanddi,o associated to nodei.
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The supply is represented by a set of generatorsΩG0 with fixed capacity ¯gk and a set of

generatorsΩG1 whose initial capacitygmax,0
k can be increased continuously, the final capacity

is given bygmax
k with a investment costεk. The setsOmegaG0 andΩG1 are indexed to the set

of nodesΩN so that the generatork is connected to nodei andk = i. The model considers

that marginal cost decrease linearly with the installed capacity and is given byσk+ ξk∆gmax
k .

Finally, each generator has a productiongk,o.

The first level problem represents the investment problem in transmission capacity; the

objective function represent the investment cost in transmission and generation capacity plus

operation costs of the spot market:

First level:

Minimize

f max
i j

∑
o∈ΩD

τo

{

∑
k∈ΩG1

[pi,o− (σk−ξk ·∆gmax
k ]gk,o+ ∑

k∈ΩG0

[pi,o−σk]gk,o

}

− ∑
i∈ΩG1

εk ·∆gmax
k − ∑

i j∈ΩL

ηi j ( f max
i j − f max,0

i j )

(65)

The second level represents the investment problem in generation capacity; in this level

each firmv∈ ΩV choose their capacity:

Second level:

Maximize

gmax
k

∑
o∈ΩD

τo







∑
k∈ΩG1

v

[pi,o− (σk−ξk∆gmax
k )]gk,o+ ∑

k∈ΩG2
v

[pi,t −σk]gk,o







− ∑
k∈ΩG0

v

εk ·∆gmax
k



























∀v∈ ΩV

(66)

Finally, the third level represents the market operator problem; in this level the market

operator decide the prices and the production of each generator. Restrictions are the following in

order of appearance: (i) capacity limits for existing generators, (ii) capacity limits for candidate

generators, (iii) Kirchhoff’s voltage law using constant power distribution factors, (iv) capacity

limits for lines, (v) Kirchhoff current law and (vi) non negativity of production.
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Third level:

Minimize

gk,o, fi j ,o, r i,o
∑

o∈ΩD

τo

{

∑
k∈ΩG1

[σk−ξk ·∆gmax
k ]gk,o+ ∑

k∈ΩG2

σk ·gk,o

}

Subject to:

gk,o ≤ ḡk ∀k∈ ΩG0,∀o∈ ΩD

gk,o ≤ gmax,0
k ∀k∈ ΩG1,∀o∈ ΩD

fi j ,o = ∑
i∈N

ϕi j ,i · (gk,o−di,o) ∀i j ∈ ΩL,∀o∈ ΩD

| fi j ,o| ≤ f̄i j ∀i j ∈ ΩL

gk,o+ r i,o = di,o ∀i ∈ ΩN,o∈ ΩD

gk,o ≥ 0 ∀k∈ ΩG1∪ΩG0,∀o∈ ΩD

(67)

Each firm must choose their bid prices according to the following problem; restrictions are

the following in order of appearance: (i) capacity limits for existing generators, (ii) capacity

limits for candidate generators and (iii) non negativity of production.

Maximize

gk,o
∑

o∈ΩD
∑

k∈ΩG1
v

τo[pi,o− (σk−ξk ·∆gmax
k )]gk,o

+ ∑
o∈ΩD

∑
k∈ΩG0

v

τo[pi,o−σk]gk,o

Subject to:

gk,o ≤ ḡk ∀k∈ ΩG0
V ,∀o∈ ΩD

gk,o ≤ gmax,0
k ∀k∈ ΩG1

v ,∀o∈ ΩD

gk,o ≥ 0 ∀k∈ ΩG1
v ∪ΩG

v ,∀o∈ ΩD







































































∀v∈ΩV

(68)

2.5.4 Fan and Cheng Model

Fan and Cheng (FAN; CHENG; YAO, 2009) propose a multistage bi-level model for in-

vesting in transmission capacity. The model considers a set of stagesΩT . The network is repre-

sented by a set of nodesΩN and a set of branchesΩL. Each node has angleθi,t at staget.The set

ΩL is the union of the existing transmission linesΩL0 and the set of candidate linesΩL′
. Each

line i j has a susceptancebi j , a fixed capacitȳfi j , and a power flowfi j ,t at staget. Variablesni j ,t

represent the investment decisions. The supply is represented by a set of generatorsΩG with a

productiongk,t at staget.
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In order to define the objective function for the first level, the profit functionπt
(

f̄
)

is used.

These profits are brought to present value using a set or interest ratesβt. The social welfare is

given byW(di,t,gk,t). Restrictions are the following in order of appearance: (i) lines built at

staget∗ are available for staget∗+1 and (ii) investment decision variables must be integer.

The second level represents the market operator problem which maximizes the social wel-

fare; restrictions are the following in order of appearance: (i)Kirchhoff voltage law for existing

lines, (ii) Kirchhoff’s voltage law for candidate lines, (iii) Kirchhoff’s current law, (iv) capacity

limits for existing lines, (v) capacity limits for candidate lines, (vi) reference angle for the net-

work and (vii) capacity limits for generators. The mathematical formulation of the following

:

First level:
Maximize

ni j ,t
∑

t∈ΩT

1
(1+βt)t

·πt
(

f̄i j ,t
)

Subject to:

ni j ,t ≥ ni j ,t+1 ∀i j ∈ ΩL

ni j integer ∀i j ∈ ΩL

(69)

Second level:

Maximize

gk,t , fi j ,t,θi,t
∑

t∈ΩT

W(di,t,gk,t)

Subject to:

fi j ,t = (θi,t −θ j ,t) ·bi j ∀i j ∈ ΩL

fi j ,t = ni j ,t · (θi,t −θ j ,t) ·bi j ∀i j ∈ ΩL

∑
i j∈ΩL

i

fi j ,t − ∑
ji∈ΩL

i

f ji ,t + ∑
k∈ΩG0

i

gk,t = di,t ∀i ∈ ΩN

| fi j ,t| ≤ f̄i j ∀i j ∈ ΩL0

| fi j ,t| ≤ ni j ,t · f̄i j ∀i j ∈ ΩL′

θslack,t = 0

0≤ gk,t ≤ gk ∀k∈ ΩG







































































































∀t ∈ ΩT (70)

2.5.5 Centeno, Wogrin, Lopez-Peña and Vasquez Model

Centeno, Wogrin, Lopez Peña and Vazquez (CENTENO et al., 2011) propose a multistage

bi-level model for investing in generation capacity. The model only considers investment de-

cisions for one company, taking in count that the remaining firms decision’s are given. The

company faces a trade -off between investing more and selling more with lower prices, or in-
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vesting less and selling less with higher prices.

The model considers that generation and load are located on the same node. The supply is

represented by a set of existing generatorsΩG with fixed capacity ¯gk and a set of technologies

ΩS2 whose capacitygmax
s,t can be increased continuously. Each generator has a productiongk,o,t

at demand levelo∈ ΩD, at staget ∈ ΩT . Each demand levelo∈ ΩD has a number of hoursτo

and a demanddo,t at staget. The cost of new capacity of technologys is εs with marginal cost

σs. The market prices are given by the dual variablespo,t from the power balance equation.

In the first level the company maximizes its profit. In the second level the market operator

determines prices and production for the time horizon.

Objective function for the first level is given by the firm profit during the time horizon, the cash

flows are brought to present value using a set of interest ratesβt. The restriction for the first

level is that capacity at staget∗ must be available at staget∗+1. The second level represents

the spot market equilibrium, the objective function represents the social welfare; restrictions

are the following in order of appearance: (i) capacity limits for existing generators, (ii) capacity

limits for new generators and (iii) power balance equation. The mathematical formulation is the

following:

First level:

Maximize

gmax
s,t

∑
t∈ΩT

∑
o∈ΩD

∑
s∈ΩS2

τo

(1+βt)t
· (po,t −σs) ·gs,o,t

− ∑
t∈T

∑
s∈S2

1
(1+βt)t

· εs · (g
max
s,t+1−gmax

s,t )

Subject to:

gmax
s,t ≤ gmax

s,t+1 ∀s∈ ΩS2,∀t ∈ ΩT |t < T

(71)

Second level:

Maximize

gk,o,t
W(do,t,gk,o,t ,gk,o,t)

Subject to:

gk,o,t ≤ ḡk ∀k∈ ΩG

gs,o,t ≤ gmax
s,t ∀s∈ ΩS2

∑
k∈ΩG0

gk,o,t + ∑
s∈S2

gs,o,t = do,t : po,t























































∀o∈ ΩD,∀t ∈ ΩT (72)
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2.5.6 Discussion about the state-of-the-art multilevel models

The state-of-the art models presented in the previous section have important contributions

to the TPP. A common characteristic is that all models use the DC representation of the network,

since the AC models would be very complex to solve. The objective functions for the market

operator problem seems to differ from one model to another. However, the minimization of total

costs is equivalent to social welfare maximization for an inelastic demand; thus, the objective

functions are the same in all cases.

The main difference between the state-of-the-art models is that some of them ( Garcés

and Fan) minimizes the total investment cost plus operation cost taking as given generation

investments. When only investment plus operation costs are considered, implicitly the models

consider that opportunity cost of transmission capacity depends only on the marginal cost of

line terminals.

Only, the first model proposed by Jenabi as well the model of Pozo consider investing in

generation; however, the models are static and they cannot see the dynamic of investments. In

practice, opportunity costs of transmission and generation capacity can be observed during a

time horizon and not in a static point of view.

Furthermore, the model of Pozo considers constant power distribution factors, but when

increasing capacity those distribution factors do not remain constant. The models of Jenabi,

Pozo and Centeno consider that line capacity can be increased continuously which is not a real

assumption.

The proposed model in this dissertation make some contributions to the state-of-the-art

models. The details of the proposed model are discussed in the next chapter.
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3 PROPOSAL OF A MULTISTAGE BI-LEVEL MODEL FOR INVESTING IN
TRANSMISSION AND GENERATION CAPACITY

Opportunity cost of transmission capacity is closely dependent on the generation capacity

investments. In consequence, externalities arise when investment decisions in transmission

and generation capacity are decentralized. This chapter discuses these issues and leads to the

conclusion that transmission and generation investment should clear in the same market. Thus,

a multistage bi-level model is proposed in order to find the Pareto optimal solution, which can

be used for implementation of regulatory mechanisms.

3.1 COMPLEMENTARITY IN TRANSMISSION AND GENERATION CAPACITY

This section explains how opportunity cost of transmission capacity depends on the gener-

ation capacity investments. Furthermore, it is shown how externalities arise when investment

decisions are decentralized.

3.1.1 The opportunity cost of the transmission capacity

Section 2.3 considered that opportunity cost of transmission capacity depends only on the

marginal costs of line terminals (HOGAN, 1999). Thus, if electricity demand is inelastic, mini-

mization of total investment cost in transmission capacity plus the total operation costs leads to

the Pareto optimal solution. This result is correct for a static approach, where there is no need to

increase generation capacity. However, with demand growth, new generation capacity must be

built and this can also change marginal prices. Then, opportunity cost of transmission capacity

must take in count investments in generation capacity.

Furthermore, it is not correct to consider that transmission capacity has an variable cost.

Investments in transmission capacity has fixed capacity and are a sunk cost. After a transmission

line starts its operation, the additional cost to transmit a MW from one node to another is zero.

In conclusion, it is not correct to consider the annualized investment cost as the variable cost

since this cost does not exist.

To put it simple, consider the following example of the two bus system showed in Figure 7.

If electricity is produced at nodeA at pricepA = 4$/MWhand it has to be transported to nodeB

with pricepB = 7$/MWh, the transmission businesses is efficient only if the transportation cost

does not exceed the price difference between nodes (∆p= 3$/MWh). In this static approach,

it is assumed that the line is already built and also a transportation cost is considered.
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Figure 7 -Results for the two bus system - base case.

A B

pa=4 $/MWh pb=7 $/MWh

Δp=3 $/MWh

Source: the author.

Now consider that the transmission line is not built yet. Then, transmission capacity must

be built until it equals it opportunity cost. In the short run, the opportunity cost of transmission

capacity is given by the possibility of buying electricity from the remote node. In the long run,

the opportunity cost is also given by the possibility of building local generation with equal or

less marginal price. Then, the investment is efficient only if investment cost plus operation cost

does not exceed investment cost of local generation plus new operation cost.

From the previous example, consider that transmission line is not built and there are two

options: building a transmission line of capacityf̄ = 1000 MW (see Figure 7) whose investment

cost isC( f̄ ) = 1 ·106 $. or building local generation at node B with capacity ¯g = 1000 MW

whose investment cost isC(ḡ) = 200·106 $ with marginal priceσ = 2$/MWh. Node B needs

1000 MW for 15 years in order to supply its demand. Then , total costs are compared for both

options:

C( f̄ )+C(g)≤C(ḡ)+C(g′) (73)

$1·106+
15

∑
j=1

8760h ·1000MW ·4$/MWh
(1+0.1) j ≤ $200·106+

15

∑
j=1

8760h ·1000MW ·2$/MWh
(1+0.1) j

$2,68·108 ≤ $3,33·108

In this first case, building the transmission line is better than building local generation,

solution is showed in Figure 8.
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Figure 8 -Results for the two bus system - case 1.

A B

pa=4 $/MWh pb=7 $/MWh

1000 MW

Source: the author.

Now consider a second case in which investment cost for local generation at node B de-

creases to $ 100·106 (see Figure 9). Total costs are compared for both options.

C( f̄ )+C(g)≥C(ḡ)+C(g′) (74)

$1·106+
15

∑
j=1

8760h ·1000MW ·4$/MWh
(1+0.1) j ≥ $100·106+

15

∑
j=1

8760h ·1000MW ·2$/MWh
(1+0.1) j

$2,68·108 ≥ 2,33·108

Figure 9 -Results for the two bus system - case 2.

A B

pa=4 $/MWh pb=7 $/MWh

1000 MW

pc=3 $/MWh

Source: the author.

In this second case, building local generation is better than building the transmission line.

These results shows that opportunity costs depends on the investments on generation; thus,

investments must be cleared in the same market.
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3.1.2 Externalities in the investments in transmission and generation capacity

Externalities are present when one agent decisions affect the welfare of another agent but

not vice-versa. In a decentralized framework investments follows this temporal setting:

• t = 1 Generation companies decide their investments in function of available resources

and future prices in the spot market.

• t = 2 The transmission company decides the new transmission capacity for the generation

built at t = 1.

• t = 3 Given generation and transmission capacity built att = 1 andt = 2, market operator

maximizes the social welfare and determine market prices.

Since generation companies decide first, they maximize their profit without considering the

transmission capacity cost. This introduce negative externalities to the the transmission capacity

investment problem and can lead to a non-optimal solution.

The mathematical formulation of the problem consists of three levels. At first level, gen-

eration companies choose their generation capacity in order to maximize their profits subject

to its opportunity cost̄πk. Profit is the incomep ·gk minus the investment costC(ḡk) and the

operation costCk(gk). The mathematical formulation of the first level is the following:

First level:
Maximize

ḡ
p ·gk−Ck(ḡk)−Ck(gk)

Subject to:

πk ≥ π̄k



























∀v∈ ΩV (75)

Furthermore, the transmission company chooses the new transmission capacityf̄ so that

the company minimizes total investment costC( f̄ ) plus operation costC(g) subject to network

equations. The transmission company takes as given the generation ¯g built at the first level:

Second level:
Minimize

f̄
C′( f̄ )+C(g)

Subject to:

Restrictions(ḡ, f̄ ,g)

(76)

Finally, at the third level, the market operator minimizes the total operation costC(g).
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Third level:
Minimize

ḡ
C(g)

Subject to:

Restrictions(ḡ, f̄ ,g)

(77)

Generation companies do not take in count the transmission costs. In the other hand, Pareto

optimal solution is given by the following two level problem :

First level:
Minimize

f̄ , ḡ
C(ḡ)+C′( f̄ )+C(g)

Subject to:

Restrictions(ḡ,g)

(78)

Second level:
Minimize

ḡ
C(g)

Subject to:

Restrictions(ḡ, f̄ ,g)

(79)

It can be seen that optimality conditions for both problems are different. Thus, the decen-

tralized outcome does not lead to a Pareto optimal solution. Since Pareto optimal solution gives

a solution of maximum social welfare, a decentralized outcome would not lead to the maximum

social welfare.

In order to overcome the externalities, regulatory mechanisms can be proposed so that gen-

eration companies take in count the transmission costs on their objective functions (BAUMOL;

OATES, 1988); this can be accomplished through taxes, normativeness, etc. The proposition of

such regulatory mechanism is out of the purposes of the present dissertation.

3.2 THE PROPOSED MODEL

The proposed model finds the Pareto optimal solution which can be used as a reference for

implementation of regulatory mechanisms. Without loss of generality, some aspects are left

apart such reliability and security of the system; these aspects can be added posteriorly, for

further details see (GARCES; ROMERO; LOPEZ-LEZAMA, 2010).
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3.2.1 Mathematical formulation of the model

The proposed model considers the DC model of the network, which is represented by a set

of nodesΩN ans a set of branchesΩL. Each branchi j connects nodesi and j. Each branchi j

has a number of existing circuitsn0
i j , with suceptancebi j , and fixed capacitȳfi j . Moreover, a

set of stagesΩT is considered so that transmission an generation capacity is fixed during each

stage. Each stage has a subset of demand levelsΩD of durationτo hours with a demanddi,o,t at

nodei, at demand levelo and at staget.

Each node has an angleθi,o,t associated to demand levelo at staget. A reference angle

slack is considered so thatθslack,o,t = 0. Power flows though existing lines are represented

by variablesfi j ,o,t . Candidate lines are represented by a set of circuitsΩ2,q ∈ Ω2 = 1,2· · · q̄

available at each branchi j , with investment costci j . Binary variablezq,i j ,t represents investment

decision for circuitsq, in branchi j at staget. Power flows in candidate circuits are given by

variablesfq,i j ,o,t at demand levelo and staget.

The supply is given by a set of existing generatorsΩG0. Each generatork has a marginal

costσk and a fixed capacity ¯gk. At each demand level, existing generator has a productiongk,o,t .

Candidate generators at nodei are represented by a set of technologiesΩS, each technology

has a set of candidate units of similar characteristicsΩ1,u ∈ Ω1 = 1,2· · · ū. Binary variables

wu,s,i,t represent investment decisions for unitu, for technologys, at nodei, at staget. The

investment cost for technologys at nodei is given byεs,i with marginal costσs,i . Each unit has

fixed capacity ¯gs,i and a productiongu,s,i,o,t at demand levelo. It is considered that generation

units lifetime is the same for all technologies and it is longer than the horizon time in analysis.

The first level problem is given by the investment problem in transmission and generation

capacity. Objective function is given by the present value of the total investment cost plus the

operation cost. Restrictions are the following in order of appearance: (i) margin reserve of

generation capacity , (ii) maximum number of generation units at a certain node, (iii) inter-

temporal constraint for generation units: units built at staget∗ are available at staget∗+1, (iv)

construction order for generation units, (v) maximum number of circuits at a certain branch,

(vi) inter-temporal restriction for transmission circuits: circuits built att∗ are available at stage

t∗+1, (vii) construction order of transmission circuits, (viii) investment decision variables in

transmission circuits must be binary and (ix) investment decision variables din generation units

must be binary.

The second level is given by the market operator problem for each demand level at each

stage. Objective function represents total operation cost. restrictions are the following in order

of appearance: (i) Kirchhoff’s current law, (ii) Kirchhoff’s voltage law for existing lines, (iii)

capacity limits of existing lines, (iv) Kirchhoff’s voltage law for candidate lines, (v) capacity
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limits for candidate lines, (vi) capacity limits for existing generators and (vii) capacity limits

for candidate generators. The mathematical formulation is the following:

First level

Minimize

zq,i j,t ,wu,s,i,t
∑

i j∈ΩL
∑

q∈Ω2

1
(1+β1)

·ci j ·zq,i j ,1+

∑
t∈ΩT |t>1

∑
i j∈ΩL

∑
r∈Ω2

1
(1+βt)t

·ci j · (zq,i j ,t −zq,i j ,t−1)+

∑
i∈ΩN

∑
s∈ΩS

∑
u∈Ω1

1
(1+β1)

· εs,i · ḡs,i ·wu,s,i,1+

∑
t∈ΩT |t>1

∑
i∈ΩN

∑
s∈ΩS

∑
u∈Ω1

1
(1+βt)t

· εs,i · ḡs,i · (wu,s,i,t −wu,s,i,t−1)+

∑
t∈ΩT

∑
o∈ΩD

∑
k∈ΩG0

1
(1+βt)t

· τo ·σk ·gk,o,t+

∑
t∈ΩT

∑
o∈ΩD

∑
i∈ΩN

∑
s∈ΩS

∑
u∈Ω1

1
(1+βt)t

· τo ·σs,i ·gu,s,i,o,t

Subject to:

∑
k∈ΩG0

gk+ ∑
i∈ΩN

∑
s∈ΩS

∑
u∈Ω1

gs,i ·wu,s,i,t ≥ φ · ∑
i∈ΩN

di,o,t ∀o∈ ΩD, t ∈ ΩT

∑
u∈ΩS

wu,s,i,T ≤ ws,i ∀s∈ ΩS, i ∈ ΩN

wu,s,i,t−1 ≤ wu,s,i,t ∀u∈ ΩS,s∈ ΩS, i ∈ ΩN, t > 1∈ ΩT

wu,s,i,t ≤ wu−1,s,i,t ∀u> 1∈ ΩS,s∈ ΩS, i ∈ ΩN, t ∈ ΩT

∑
q∈Ω2

zq,i j,T ≤ ni j ∀i j ∈ ΩL

zq,i j ,t−1 ≤ zq,i j ,t ∀q∈ Ω2, i j ∈ ΩL, t > 1∈ ΩT

zq,i j ,t ≤ zq−1,i j ,t ∀q> 1∈ Ω2, i j ∈ ΩL, t ∈ ΩT

zq,i j ,t ∈ {0,1} ∀q∈ Ω2, i j ∈ ΩL, t ∈ ΩT

wu,s,i,t ∈ {0,1} ∀u∈ ΩS,s∈ ΩS, i ∈ ΩN, t ∈ ΩT

(80)

The two first lines of the objective function correspond to the investment cost in transmis-

sion capacity, the next two lines correspond to the investment cost in generation capacity and

the last two lines correspond to the total operating cost of the spot market.
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Second level

Minimize

gk,gs, fi j ,θ
∑

k∈ΩG0

σk ·gk,o,t + ∑
i∈ΩN

∑
s∈ΩS

∑
u∈Ω1

σs,i ·gu,s,i,o,t

Subject to:

∑
i j∈ΩL′

i

∑
q∈Ω2

fq,i j ,o,t − ∑
ji∈ΩL′

i

∑
q∈Ω2

fq, ji ,o,t

+ ∑
i j∈ΩL0

i

fi j ,o,t − ∑
ji∈ΩL0

i

fi j ,o,t

+ ∑
k∈ΩG0

i

gk,o,t + ∑
s∈ΩS

i

∑
u∈Ω1

gu,s,i,o,t = di,o,t ∀i ∈ ΩN

fi j ,o,t −bi j ·n
0
i j · (θi,o,t −θ j,o,t) = 0 ∀i j ∈ ΩL

| fi j ,o,t | ≤ f i j ·n
0
i j ∀i j ∈ ΩL

fq,i j ,o,t −bi j ·zq,i j ,t · (θi,o,t −θ j,o,t) = 0 ∀q∈ Ω2, i j ∈ ΩL

| fq,i j ,o,t | ≤ f i j ∀q∈ Ω2, i j ∈ ΩL

0≤ gk,o,t ≤ gk ∀k∈ ΩG0

0≤ gu,s,i,o,t ≤ gs,i ·wu,s,i,t ∀u∈ Ω1,s∈ ΩS, i ∈ ΩN

θslack,p,t = 0


























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











































































































































∀o∈ ΩD,

t ∈ ΩT

(81)

The second level is linear in its variables:g, fi j ,andθ ; this because market operator take as

given first level variableszq,i j ,t andwu,s,i,t . Thus, its dual problem can be formulated as shown

in section 2.4.

3.2.2 Single-level formulation of the bi-level model

According to section 2.4, a bi-level problem can be transformed in one level problem replac-

ing the dual problem of the second level in the first level. In (82), dual variables are presented

next to each restriction:λ 1, λ 2, λ 3, λ 4, λ 6, λ 7, λ 8, λ 9, andλ 10. Dual variableλ 1 has an

economic interpretation, since Lagrange multipliers of the power balance equation represents

additional cost of producing one more MW for a certain node, dual variablesλ 1 = pi represent

the nodal marginal cost.
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∑
i j∈ΩL′

i

∑
q∈Ω2

fq,i j ,o,t − ∑
ji∈ΩL′

i

∑
q∈Ω2

fq, ji ,o,t + ∑
i j∈ΩL0

i

fi j ,o,t

− ∑
ji∈ΩL0

i

f ji ,o,t + ∑
k∈ΩG0

i

gk,o,t + ∑
s∈ΩS

i

∑
u∈Ω1

gu,s,i,o,t = di,o,t : λ 1
i,o,t ∀i ∈ ΩN

fi j ,o,t −bi j ·n
0
i j · (θi,p,t −θ j,p,t) = 0 : λ 2

i j ,o,t ∀i j ∈ ΩL

− fi j ,o,t ≥− f i j ·n
0
i j : λ 3

i j ,o,t ∀i j ∈ ΩL

fi j ,o,t ≥− f i j ·n
0
i j : λ 4

i j ,o,t ∀i j ∈ ΩL

fq,i j ,o,t −bi j ·zq,i j ,p,t · (θi,o,t −θ j,o,t) = 0 : λ 5
q,i j ,o,t ∀q∈ Ω2, i j ∈ ΩL

− fq,i j ,o,t ≥− f i j : λ 6
q,i j ,o,t ∀q∈ Ω2, i j ∈ ΩL

fq,i j ,o,t ≥− f i j : λ 7
q,i j ,o,t ∀q∈ Ω2, i j ∈ ΩL

−gk,o,t ≥−gk : λ 8
k,o,t ∀k∈ ΩG0

−gu,s,i,o,t ≥−gs,i ·wu,s,i,t : λ 9
u,s,i,o,t ∀u∈ Ω1,s∈ ΩS, i ∈ ΩN

θslack,o,t = 0 : λ 10
o,t

gk,o,t ,gu,s,i,o,t ≥ 0


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∀o∈ ΩD,

t ∈ ΩT

(82)

The strong dual condition states that objective of primal problem equals the dual problem

objective at the optimal solution:

0 = ∑
i∈ΩN

di,o,t ·λ 1
i,o,t

− ∑
i j∈ΩL

n0
i j · f i j · (λ

3
i j ,o,t +λ 4

i j ,o,t)

− ∑
i j∈ΩL

∑
q∈Ω2

f i j · (λ 6
q,i j ,o,t +λ 7

q,i j ,o,t)

− ∑
k∈ΩG0

gk ·λ
8
k,o,t − ∑

i∈ΩN
∑

s∈ΩS
∑

u∈Ω1

gs,i ·λ
9
u,s,i,o,t ·wu,s,i,o,t

− ∑
k∈ΩG0

σk ·gk,o,t − ∑
i∈ΩN

∑
s∈ΩS

∑
u∈Ω1

σs,i ·gu,s,i,o,t (83)

Finally the dual problem is given by the following problem:
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Maximize

λ 1...10 ∑
i∈ΩN

di,o,t ·λ 1
i,o,t − ∑

i j∈ΩL

n0
i j · f i j · (λ 3

i j ,o,t +λ 4
i j ,o,t)

− ∑
i j∈ΩL

∑
r∈Ω2

f i j · (λ 6
q,i j ,o,t +λ 7

q,i j ,o,t)

− ∑
k∈ΩG0

g0
k ·λ

8
k,o,t − ∑

i∈ΩN
∑

s∈ΩS
∑

u∈Ω1

gs,i ·λ 9
u,s,i,o,t ·wu,s,i,o,t

Subject to:

λ 1
j,o,t −λ 1

i,o,t +λ 2
i j ,o,t −λ 3

i j ,o,t +λ 4
i j ,o,t = 0 ∀i j ∈ ΩL

λ 1
j,o,t −λ 1

i,o,t +λ 5
q,i j ,o,t −λ 6

q,i j ,o,t +λ 7
q,i j ,o,t = 0 ∀r ∈ Ω2, i j ∈ ΩL

λ 1
k,o,t −λ 8

k,o,t ≤ σk ∀k∈ ΩG0

λ 1
k,o,t −λ 9

u,s,i,o,t ≤ σs,i ∀u∈ Ω1,s∈ ΩS, i ∈ ΩN

− ∑
i j∈ΩL

bi j ·n
0
i j ·λ 2

i j ,o,t

− ∑
i j∈ΩL

∑
q∈Ω2

bi j ·zq,i j ,t ·λ 5
q,i j ,o,t = 0 ∀i ∈ ΩN, i 6= slack

− ∑
i j∈ΩL

bi j ·n
0
i j ·λ 2

i j ,o,t

− ∑
i j∈ΩL

∑
q∈Ω2

bi j ·zq,i j ,t ·λ 5
q,i j ,o,t +λ 10

o,t = 0 i = slack

λ 3
i j ,o,t ≥ 0 ∀i j ∈ ΩL

λ 4
i j ,o,t ≥ 0 ∀i j ∈ ΩL

λ 6
q,i j ,o,t ≥ 0 ∀r ∈ Ω2, i j ∈ ΩL

λ 7
q,i j ,o,t ≥ 0 ∀r ∈ Ω2, i j ∈ ΩL

λ 8
k,o,t ≥ 0 ∀k∈ ΩG0

λ 9
u,s,i,o,t ≥ 0 ∀u∈ Ω1,s∈ ΩS, i ∈ ΩN
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
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∀o∈ ΩD,

t ∈ ΩT

(84)

The second level problem can be represented by the primal problem restrictions (82), the

dual problem restrictions (83) and the strong dual condition (84) of the second level problem.

3.2.3 Mixed integer linear formulation of the model

With the one level representation the problem turns no lineal since some equations has bilin-

ear terms where two decision variables are multiplied. In order to linearize the bilinear terms,

the Fortuny - Amat representation is used. Letx be a binary variable and lety a continuous

variable, then the following relations applies:
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x·y =⇒











x·y= y−y∗

|y−y∗| ≤ M ·x

|y∗| ≤ M · (1−x)

(85)

Wherey∗ is an auxiliary continuous variable, M is the upper limit ofy. If x = 0 =⇒

y− y∗ = 0 and ifx = 1 =⇒ y− y∗ = y. By the use of the Fortuny - Amat representation the

nonlinear problem can be expressed as a mixed integer linear problem. For the equation 86;

bilinear terms have multiplications ofzr,i j ,p,t andθi,p,t.

fq,i j ,o,t −bi j ·zq,i j ,o,t · (θi,o,t −θ j ,o,t) = 0 (86)

Equation 86 can be replaced by inequalities (87) and (88); ifzq,i j ,t = 1 then| fr,i j ,p,t −bi j ·

(θi,p,t − θ j ,p,t)| ≤ 0 which implies that the term is zero. Ifzq,i j ,t = 0 then| fr,i j ,p,t| ≤ 0 =⇒

fr,i j ,p,t = 0, whereM is a large number in order to not constraint the problem.

| fq,i j ,o,t −bi j · (θi,o,t −θ j ,o,t)| ≤ M · (1−zq,i j ,t) (87)

| fq,i j ,o,t| ≤ f i j ·zq,i j ,t (88)

Similarly, for equation (89); bilinear terms have multiplications of variableszq,i j ,t and

λ 5
q,i j ,o,t.

− ∑
i j∈ΩL

bi j ·n
0
i j ·λ 2

i j ,o,t − ∑
i j∈ΩL

∑
q∈Ω2

bi j ·zq,i j ,t ·λ 5
q,i j ,o,t = 0 (89)

Equation (89) can be replaced by inequalities (90), (91) and (92). Ifzq,i j ,t = 0 thenλ 5
q,i j ,o,t −

λ 5∗
q,i j ,o,t = 0 and|λ 5∗

q,i j ,o,t| ≤ M′. If zq,i j ,t = 1 thenλ 5∗
q,i j ,o,t = 0 and|λ 5

q,i j ,o,t| ≤ M′, whereM′ is a

large number in order to not constrain the problem.

− ∑
i j∈ΩL

bi j ·n
0
i j ·λ

2
i j ,o,t − ∑

i j∈ΩL
∑

r∈Ω2

bi j · (λ 5
q,i j ,o,t −λ 5∗

q,i j ,o,t) = 0 (90)

|λ 5
q,i j ,o,t −λ 5∗

q,i j ,o,t | ≤ M′ ·zq,i j ,t (91)

|λ 5∗
q,i j ,o,t| ≤ M′ · (1−zq,i j ,t) (92)

Finally, for the strong dual condition, bilinear terms have multiplication of variableswu,s,i,p,t
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andλ 9
u,s,i,p,t.

− ∑
i∈ΩN

∑
s∈ΩS

∑
u∈Ω1

σs,i ·gu,s,i,o,t = ∑
i∈ΩN

di,o,t ·λ 1
i,o,t

− ∑
k∈ΩG0

σk ·gk,o,t − ∑
i j∈ΩL

n0
i j · f i j · (λ

3
i j ,o,t +λ 4

i j ,o,t)

− ∑
i j∈ΩL

∑
r∈Ω2

f i j · (λ 3
q,i j ,o,t +λ 7

q,i j ,o,t)

− ∑
k∈ΩG0

gk ·λ 8
k,o,t − ∑

i∈ΩN
∑

s∈ΩS
∑

u∈Ω1

gs,i ·λ 9
u,s,i,o,t ·wu,s,i,o,t

(93)

Strong dual condition can be replaced by inequalities (94), (95) y (96). Ifwu,s,i,o,t = 0 then

λ 9
u,s,i,o,t −λ 9∗

u,s,i,o,t = 0 and|λ 9∗
u,s,i,o,t| ≤ M′′. If wu,s,i,p,t = 1 then|λ 9∗

u,s,i,p,t|= 0 and|λ 9
u,s,i,o,t| ≤ M′′,

whereM′′ is a large number in order to not constrain the problem.

− ∑
i∈ΩN

∑
s∈ΩS

∑
u∈Ω1

σs,i ·gu,s,i,o,t = ∑
i∈ΩN

di,o,t ·λ 1
i,o,t − ∑

i j∈ΩL

n0
i j · f i j · (λ

3
i j ,o,t +λ 4

i j ,o,t)

− ∑
k∈ΩG0

σk ·gk,o,t − ∑
i j∈ΩL

∑
r∈Ω2

f i j · (λ 3
q,i j ,o,t +λ 7

q,i j ,o,t)− ∑
k∈ΩG0

g0
k ·λ

8
k,o,t

− ∑
i∈ΩN

∑
s∈ΩS

∑
u∈Ω1

gs,i · (λ
9
u,s,i,o,t −λ 9∗

u,s,i,o,t)

(94)

|λ 9
u,s,i,o,t −λ 9∗

u,s,i,o,t | ≤ M′′ ·wu,s,i,o,t (95)

|λ 9∗
u,s,i,o,t| ≤ M′′ · (1−wu,s,i,o,t) (96)

Finally, replacing the bilinear terms by their linear representation leads to the following

mixed integer linear problem:
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Minimize

z,w

g, f ,θ
λ 1...10

∑
i j∈ΩL

∑
q∈Ω2

1
(1+β1)

·ci j ·zq,i j ,1+

∑
t∈ΩT |t>1

∑
i j∈ΩL

∑
q∈Ω2

1
(1+βt)t

·ci j · (zq,i j ,t −zq,i j ,t−1)+

∑
i∈ΩN

∑
s∈ΩS

∑
u∈Ω1

1
(1+β1)

· εs,i · ḡs,i ·wu,s,i,1+

∑
t∈ΩT |t>1

∑
i∈ΩN

∑
s∈ΩS

∑
u∈Ω1

1
(1+βt)t

· εs,i · ḡs,i · (wu,s,i,t −wu,s,i,t−1)+

∑
t∈ΩT

∑
o∈ΩD

∑
k∈ΩG0

1
(1+βt)t

· τo ·σk ·gk,o,t+

∑
t∈ΩT

∑
o∈ΩD

∑
i∈ΩN

∑
s∈ΩS

∑
u∈Ω1

1
(1+βt)t

· τo ·σs,i ·gu,s,i,o,t

Subject to:

∑
k∈ΩG0

gk+ ∑
i∈ΩN

∑
s∈ΩS

∑
u∈Ω1

gs,i ·wu,s,i,t ≥ φ · ∑
i∈ΩN

di,o,t ∀o∈ ΩD, t ∈ ΩT

∑
u∈Ω1

wu,s,i,T ≤ ws,i ∀s∈ ΩS, i ∈ ΩN

wu,s,i,t−1 ≤ wu,s,i,t ∀u∈ Ω1,s∈ ΩS, i ∈ ΩN, t >∈ ΩT

wu,s,i,t ≤ wu−1,s,i,t ∀u> 1∈ Ω1,s∈ ΩS, i ∈ ΩN, t ∈ ΩT

∑
q∈Ω2

zq,i j,T ≤ ni j ∀i j ∈ ΩL

zq,i j ,t−1 ≤ zq,i j ,t ∀q∈ Ω2, i j ∈ ΩL, t > 1∈ ΩT

zq,i j ,t ≤ zq−1,i j ,t ∀q> 1∈ Ω2, i j ∈ ΩL, t ∈ ΩT

zq,i j ,t ∈ {0,1} ∀q∈ Ω2, i j ∈ ΩL, t ∈ ΩT

wu,s,i,t ∈ {0,1} ∀u∈ Ω1,s∈ ΩS, i ∈ ΩN, t ∈ ΩT

∑
i j∈ΩL′

i

∑
q∈Ω2

fq,i j ,o,t − ∑
ji∈ΩL′

i

∑
q∈Ω2

fq, ji ,o,t + ∑
i j∈ΩL0

i

fi j ,o,t

∑
ji∈ΩL0

i

f ji ,o,t + ∑
k∈ΩG0

i

gk,o,t + ∑
s∈ΩS

i

∑
u∈Ω1

gu,s,i,o,t = di,o,t ∀i ∈ ΩN,o∈ ΩD, t ∈ ΩT

fi j ,o,t −bi j ·n
0
i j · (θi,o,t −θ j,o,t) = 0 ∀i j ∈ ΩL,o∈ ΩD, t ∈ ΩT

| fi j ,o,t | ≤ f i j ·n
0
i j ∀i j ∈ ΩL,o∈ ΩD, t ∈ ΩT

| fq,i j ,o,t −bi j · (θi,o,t −θ j,o,t)| ≤ M · (1−zq,i j ,t) ∀q∈ Ω2, i j ∈ ΩL,o∈ ΩD, t ∈ ΩT

| fq,i j ,o,t | ≤ f i j ·zq,i j ,t ∀q∈ Ω2, i j ∈ ΩL,o∈ ΩD, t ∈ ΩT

0≤ gk,o,t ≤ gk ∀k∈ ΩG0,∀o∈ ΩD,∀t ∈ ΩT

0≤ gu,s,i,o,t ≤ gs,i ·wu,s,i,t ∀u∈ Ω1,s∈ ΩS, i ∈ ΩN,o∈ ΩD, t ∈ ΩT

θslack,o,t = 0 ∀o∈ ΩD, t ∈ ΩT

(97)
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λ 1
j,o,t −λ 1

i,o,t +λ 2
i j ,o,t −λ 3

i j ,o,t +λ 4
i j ,o,t = 0 ∀i j ∈ ΩL,o∈ ΩD, t ∈ ΩT

λ 1
j,o,t −λ 1

i,o,t +λ 5
r,i j ,p,t −λ 6

q,i j ,o,t +λ 7
q,i j ,o,t = 0 ∀r ∈ Ω2, i j ∈ ΩL,o∈ ΩD, t ∈ ΩT

λ 1
k,o,t −λ 8

k,o,t ≤ σk ∀k∈ ΩG0,o∈ ΩD, t ∈ ΩT

λ 1
i,o,t −λ 9

u,s,i,o,t ≤ σs,i ∀u∈ Ω1,s∈ ΩS, i ∈ ΩN,o∈ ΩD, t ∈ ΩT

− ∑
i j∈ΩL

bi j ·n
0
i j ·λ 2

i j ,o,t

− ∑
i j∈ΩL

∑
r∈Ω2

bi j · (λ 5
q,i j ,o,t −λ 5∗

r,i j ,o,t) = 0 ∀i ∈ ΩN|i 6= slack,o∈ ΩD, t ∈ ΩT

− ∑
i j∈ΩL

bi j ·n
0
i j ·λ 2

i j ,o,t

− ∑
i j∈ΩL

∑
r∈Ω2

bi j · (λ 5
q,i j ,o,t −λ 5∗

r,i j ,o,t)+λ 10
o,t = 0 i = slack,∀o∈ ΩD, t ∈ ΩT

|λ 5
q,i j ,o,t −λ 5∗

q,i j ,o,t | ≤ M′ ·zq,i j ,t ∀q∈ Ω2, i j ∈ ΩL,o∈ ΩD, t ∈ ΩT

|λ 5∗
q,i j ,o,t | ≤ M′ · (1−zq,i j ,t) ∀q∈ Ω2, i j ∈ ΩL,o∈ ΩD, t ∈ ΩT

λ 3
i j ,o,t ≥ 0 ∀i j ∈ ΩL,o∈ ΩD, t ∈ ΩT

λ 4
i j ,o,t ≥ 0 ∀i j ∈ ΩL,o∈ ΩD, t ∈ ΩT

λ 6
q,i j ,o,t ≥ 0 ∀r ∈ Ω2, i j ∈ ΩL,o∈ ΩD, t ∈ ΩT

λ 7
q,i j ,o,t ≥ 0 ∀r ∈ Ω2, i j ∈ ΩL,o∈ ΩD, t ∈ ΩT

λ 8
k,o,t ≥ 0 ∀k∈ ΩG0,o∈ ΩD, t ∈ ΩT

λ 9
u,s,i,o,t ≥ 0 ∀u∈ Ω1,s∈ ΩS, i ∈ ΩN,o∈ ΩD, t ∈ ΩT

∑
i∈ΩN

di,o,t ·λ 1
i,o,t − ∑

i j∈ΩL

n0
i j · f i j · (λ 3

i j ,o,t +λ 4
i j ,o,t)

− ∑
i j∈ΩL

∑
q∈Ω2

f i j · (λ 6
q,i j ,o,t +λ 7

q,i j ,o,t)

− ∑
k∈ΩG0

g0
k ·λ

8
k,o,t − ∑

i∈ΩN
∑

s∈ΩS
∑

u∈Ω1

gs,i · (λ 9
u,s,i,o,t −λ 9∗

u,s,i,o,t)

− ∑
k∈ΩG0

σk ·g
0
k,o,t − ∑

i∈ΩN
∑

s∈ΩS
∑

u∈Ω1

σs,i ·g
′
u,s,i,o,t = 0 ∀o∈ ΩD, t ∈ ΩT

|λ 9
u,s,i,o,t −λ 9∗

u,s,i,o,t | ≤ M′′ ·wu,s,i,o,t ∀u∈ Ω1,s∈ ΩS, i ∈ ΩN,o∈ ΩD, t ∈ ΩT

|λ 9∗
u,s,i,o,t | ≤ M′′ · (1−wu,s,i,o,t) ∀u∈ Ω1,s∈ ΩS, i ∈ ΩN,o∈ ΩD, t ∈ ΩT

Since the problem is linear, it can be solve by a linear programming solver such CPLEX as

shown in the next chapter.
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4 TEST AND RESULTS

In this chapter, test and results for some systems are presented: the Garver system, the IEEE

24 buses system and the Peruvian system. For each system, several study cases are presented

which are divided in two groups. The first group is intended to verify the results of the pro-

posed model with the standard results known in the literature. The second group is intended to

show discussion of the previous chapter: how opportunity cost of investment in transmission

and generation capacity are dependent (Garver system), and how externalities arise when the

investment decisions are decentralized (IEEE 24 buses system). Finally, the Peruvian system

study cases are intended to show how the proposed model can be applied to a real system.

4.1 THE GARVER TEST SYSTEM

This system was proposed by L. Garver (GARVER, 1970). The system has 6 nodes, 3

existing generators and 15 branches. The data for the Garver test system is shown in Appendix

A1; Figure 10 shows the Garver system topology:

There were considered the following study cases:

• Case 1: only consider one stage, existing capacity is enough to supply the demand.

Marginal costs of existing generators are zero, in consequence operation cost is not rele-

vant in the objective function.

• Case 2: similar to the previous study case with the only difference that existing generation

is greater than demand, then is possible generation reprogramming.

• Case 3: similar to the previous study case with the only difference that the marginal cost

of generators G1 and G2 increase to 150 $/MWh so that operation cost is relevant in the

objective function.

• Case 4: consider two stages; demand grows for the second stage. The marginal cost of

existing generators are equal to zero.

• Case 5: similar to the previous case with the difference that the marginal cost for diesel

generatorsπdieseldecreases from 74.4 $/MWh to 1 $/MWh.

• Case 6: similar to case 4 with the difference that existing generators have a marginal cost

of 75 $/MWh.
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• Case 7: similar to the previous case, but investment costs for diesel units decreases to

εdiesel= 105$/MW.

Figure 10 -Garver system.

2

1

3

4

5

G1

G2

G3

Source: the author.

The first two cases are intended to verify the results of the proposed model with standard re-

sults for the Garver system without generation reprogramming and with generation reprogram-

ming respectively (ROMERO et al., 2002). The third case is intended to show how marginal

costs can affect investment decisions. The next four study cases are intended to show how

opportunity costs of transmission and generation capacity are dependent.

For all cases, only one demand level was considered withτ = 8760 hours. The margin

of reserve used wasφ = 1. The same generation candidates were considered for all nodes,

the investment and operation cost were adapted from (DAMMERT; GARCIA; MOLLINELLI,

2010). An interest rate of 5% was used and the parametersM = π/2, M′ = 1000000 and

M′′ = 1000000 were obtained so that they do not constrain the problem as explained in the

previous chapter.

Table 1 presents the new transmission lines for the three first study cases, Table 2 presents
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the production in MW for existing generation and Table 3 presents the summary of results. The

results coincide with the optimal global solution (ROMERO et al., 2002).

Also, Figures 11 and 12 presents DC power flow solutions for cases 1 and cases 2 and 3

respectively. Power flow simulations were done using the educational version of the program

Powerworld Simulator (OVERBYE et al., 1995).

Table 1 - New transmission lines - Garver system, cases
1,2 and 3

Case 1 Case 2 Case 3

i j ni j ni j ni j

1 5 0 0 1

2 6 4 0 4

3 5 1 1 0

4 6 2 3 2
Source: the author

Table 2 - Production for existing generation in MW -
Garver system, cases 1, 2 and 3

Unit Case 1 Case 2 Case 3

G1 50 150 126.66

G2 165 312.1 33.34

G3 545 297.9 600
Source: the author

Table 3 - Sumary of results - Garver system, cases 1, 2
and 3

Case 1 Case 2 Case 3

Investment in transmission $ 200·105 $ 110·105 200·105

Investment in generation $0 $ 0 $ 0

Operating cost $0 $ 0 $ 607,19·105

Source: The author



4.1 THE GARVER TEST SYSTEM 69

Figure 11 -Results for the Garver system - case 1.

Source: the author.
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Figure 12 -Results for Garver system cases 2 and 3.

Source: the author.
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It is interesting to compare results for cases 2 and 3. The maindifference between both

cases is that the marginal cost for existing generation is greater in case 3. In case 2, operation

cost is zero, the generation at the isolated node is limited in order to reduce the investment

cost. In contrast, in case 3 the isolated node has its maximum generation output because the

investment cost is less than the savings in the operating cost (its opportunity cost).

The additional investment cost would be∆CI = 200·105−110·105= $90·105 , the savings

would be∆CO= 8760h ·15$/MWh· (150+312.1−126.66−33.34)MW = $3969·105, then

the additional investment cost is less than the savings in the operation cost.

In a static approach, opportunity cost of transmission capacity only depends on the marginal

cost at nodes. In consequence, this proposition is correct when one stage is considered.

The following four study cases have two stages with load growth. Table 4 presents new

transmission lines for each study case, Table 4 presents the production for existing generation

and Table presents the summary of results for the four study cases.

In contrast to the previous study cases, the model obtains new generation capacity; diesel

units were selected in all cases. Figures 13, 14, 15 and 16 present the DC power flow solutions

for cases 4, 5, 6 and 7 respectively, new generation units are colored in orange. Power flow

simulations were done using the educational version of the program Powerworld Simulator

(OVERBYE et al., 1995).

Table 4 - New transmission lines - Garver system, cases
4, 5, 6 and 7

Case 4 Case 5 Case 6 Case 7

i j ni j ,t=1 ni j ,t=2 ni j ,t=1 ni j ,t=2 ni j ,t=1 ni j ,t=2 ni j ,t=1 ni j ,t=2

2 6 0 4 3 1 1 3 1 3

3 5 1 1 2 0 2 0 1 1

4 6 3 0 0 2 2 0 1 1
Source: the author
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Table 5 - Production for existing generation in MW -
Garver system, cases 4, 5, 6 and 7

Unit Case 4 Case 5 Case 6 Case 7

t = 1 t = 2 t = 1 t = 2 t = 1 t = 2 t = 1 t = 2

G1 150 150 137.5 150 150 150 150 150

G2 312.12 360 322.5 360 350 360 280 360

G3 297.88 600 300 590 260 590 170 590
Source: the author

Table 6 - Summary of results - Garver system, cases 4, 5,
6 and 7

Case 4 Case 5

t = 1 t = 2 t = 1 t = 2

Investment in transmission $ 100·105 $ 140·105 $ 130·105 $ 90·105

Investment in generation $ 0 $ 56·106 $0 $ 56·106

Operating cost $ 0 $ 997·105 $0 $ 14·105

Case 6 Case 7

t = 1 t = 2 t = 1 t = 2

Investment in transmission $ 140·105 $ 90·105 $ 90·105 $ 140·105

Investment in generation $ 0 $ 56·106 $ 56·106 $ 0

Operating cost $ 4993·105 $ 8251·105 $ 4984·105 $ 8251·105

Source: the author
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Figure 13 -Results for the Garver system - case 4

Source: the author.
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Figure 14 -Results for the Garver system - case 5.

Source: the author.



4.1 THE GARVER TEST SYSTEM 75

Figure 15 -Results for the Garver system - case 6.

Source: the author.
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Figure 16 -Results for the Garver system - case 7.

Source: the author.
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For the last four study cases, generation units are located atthe demand nodes instead of

the isolated node.

Let’s compare cases 4 and 5, the main difference is that the marginal costs for diesel units

decreases in the case 5. Results are almost the same with the only exception of the staget = 2 of

case 4, which has an additional linen46 (See Figures 13 and 14). Generation at isolated node is

cheaper for the case 4 (0 $/MWh), then generation output at isolated node is at its maximum and

construction of additional linen46 is justified. In case 5, isolated node only produces 590 MW

and the additional linen4−6 is not built; this saving is greater than the saving when producing

electricity with diesel units. Since the opportunity cost of the transmission capacity depends in

part on the marginal costs, if the marginal costs difference decrease then the opportunity cost

of the transmission line decreases. In consequence, for case 5, investment cost of linen46 is

greater than its opportunity cost.

Notice that marginal cost difference affects opportunity costs even in a dynamic approach.

However, even with the same investment cost in both cases, location of the generation units

are different; this because transmission capacity opportunity cost does not depends only on the

marginal costs but also on the location of the generation units.

In the other hand, cases 6 and 7 are almost the same except for the investment cost of diesel

generation units. Those examples are important because if opportunity costs only depends on

marginal costs, there should be no differences in both solutions. Nonetheless, results show that

this assumption is not correct, for staget = 1 of case 7, transmission capacity is replaced with

generation capacity (See Figures 15 and 16). Case 6 has two more additional lines:n35 andn46;

the investments cost of these lines are greater than its opportunity costs, which is not only given

by marginal costs but also by the possibility of increase local generation capacity.

Additionally, notice that both study cases have the same results at staget = 2. In spite of

at the horizon the results are the same, the possibility of building local generation could make

anticipate the investments and make important savings in the operating cost. In general, this is

very frequent in real systems; thus, transmission planning must take in count generation invest-

ments. All the examples show that opportunity cost of transmission and generation capacity

are dependent. Next section shows the main implications of this result when the investment

decisions are decentralized.
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4.2 THE IEEE 24 BUSES TEST SYSTEM

The IEEE 24 buses system was initially proposed for reliability purposes (SUBCOMMIT-

TEE, 1979); but later it was used as a standard test system for the transmission planning prob-

lem. The system has 24 nodes; 10 existing generators and 41 branches. Data for the system is

shown in Appendix A2. Figure 17 shows the IEEE 24 buses system topology. The following

study cases were considered:

• Case 1: only considers one stage; existing generation capacity is greater than demand.

• Case 2: considers two stages; for the second stage demand grows 30% in respect to the

first stage.

• Case 3: similar to the previous case, but for a decentralized framework.

Case 1 is intended to verify results of the proposed model with standard results for the IEEE

24 buses system with generation reprogramming (ROMERO et al., 2002), while cases 2 and 3

are intended to show the difference between a centralized versus a decentralized outcome.

Only one demand level was considered withτ = 8760 hours. Three generation projects

were considered, all the projects have the same investment and operation cost, but can be built

at different nodes. The reserve margin used wasφ = 1. Finally, an interest rate of 5% was used

in order to bring costs to present value. ParametersM = π/2,M′=1000000 andM′′= 1000000,

were obtained so that they do not constrain the problem as explained in the previous chapter.

Table 7 presents new transmission lines for all study cases, Table 8 presents production for

existing generation for all cases and Table 9 shows the summary of results for all cases.

Figures 18, 19, 20, 21 and 22 show the DC power flow solutions for cases 1, 2 (t = 1), 2

(t = 2), 3 (t = 1) and 3 (t = 2) respectively. Case 1 does not has new generation units, results

coincide with the optimal solution (ROMERO et al., 2002). The two first cases have the same

new transmission lines for the first stage.
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Figure 17 -IEEE 24 buses system.

Source: the author.
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Table 7 - New transmission lines - IEEE 24 buses system,
cases 1 and 2

Case 1 Case 2 Case 3

i j ni j ,t=1 ni j ,t=1 ni j ,t=2 ni j ,t=1 ni j ,t=2

1 3 0 0 1 0 1

2 6 0 0 1 1 0

3 24 0 0 1 0 1

4 9 0 0 1 0 1

5 10 0 0 1 1 0

6 10 1 1 0 0 1

7 8 1 1 0 1 0

8 9 0 0 0 1 0

8 10 0 0 1 0 1

9 11 0 0 1 1 0

9 12 0 0 1 1 0

10 12 1 1 0 0 0

11 13 1 1 0 1 0

12 23 0 0 1 0 0

14 16 1 1 0 1 0

15 21 0 0 0 1 1

15 24 0 0 1 0 1

16 17 0 0 1 0 1

20 23 0 0 0 1 1
Source: the author.



4.2 THE IEEE 24 BUSES TEST SYSTEM 81

Table 8 - Production for existing generation in MW -
IEEE 24 buses system, cases 1, 2 and 3

Case 1 Case 2 Case 3

Unit t = 1 t = 1 t = 2 t = 1 t = 2

G1 571.48 546.56 576 576 576

G2 576 576 576 576 576

G3 717.42 725 796.87 725 837.5

G4 1773 1725.16 1773 1564.73 1773

G5 233.93 267.68 645 645 645

G6 465 465 465 28.54 448.83

G7 442.7 396.79 1094.25 354.73 1200

G8 1156.3 1200 1200 1200 1200

G9 900 900 900 900 900

G10 1714.17 1747.8 1980 1980 1979.9
Source: the author

Table 9 - Summary of results - IEEE 24 buses system,
cases 1, 2 and 3

Case 1 Case 2 Case 3

t = 1 t = 1 t = 2 t = 1 t = 2

Investment in transmission $ 202·106 $ 202·106 $ 590·106 $ 450·106 $ 397·106

Investment in generation $ 0 $ 0 $ 120·1010 $ 0 $ 120·1010

Operating cost $ 748,9·105 $ 748,9·105 $ 973,6·105 $ 748,9·105 $ 973,6·105

Source: the author.

In order to compare the second study case with a decentralized outcome, it should be added

a third level to the proposed model in which generation companies decide their investments.

Since this is out of the purposes of the dissertation, let’s use the symmetry of the problem. No-

tice that the marginal cost for existing and candidate units is the same ( See Table 19 and 20

from Appendix A2). Also, investments cost for all generation projects are the same indepen-

dently of the node. Then, if profits for investors are large enough to exceed its opportunity cost,

an investor could build a generation unit at any node until meeting the demand. Three genera-

tion units are needed to meet the demand at staget = 2; location of the units are not relevant for

the investors so any location can be a decentralized outcome.
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Let’s choose a certain decentralized outcome: building two generation units at node 10 and

one generation unit at node 15 (See Figure 22). If generation investments are taken as given,

the proposed model can be used choosing proper values of ¯w.

The difference in total cost (generation, transmission and operation cost) between the cen-

tralized and the decentralized outcome is $55· 106. This shows that under a decentralized

framework, optimal solutions for each agent does not lead to a Pareto optimal solution. In

consequence, market outcome does not reach the maximum social welfare in a decentralized

electricity market.
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Figure 18 -Results for the IEEE 24 buses system, case 1.

Source: the author.
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Figure 19 -Resultados del sistema IEEE 24 barras, caso 2,t = 1.

Source: the author.
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Figure 20 -Results for the IEEE 24 buses system, case 2,t = 2.

Source: the author.
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Figure 21 -Results for the IEEE 24 buses system, case 3,t = 1.

Source: the author.
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Figure 22 -Results for the IEEE 24 buses system, case 3,t = 2.

Source: the author.
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4.3 THE PERUVIAN SYSTEM

Data for the Peruvian system was adapted from the data of the Peruvian independent system

operator (COES). The system has 131 nodes, 92 existing generators and 202 branches; data for

the Peruvian system is shown in Appendix A3.

This system is intended to show how the proposed model can be used with a real system

with large scale (131 nodes). Because of the size and the characteristics of the Peruvian system

only the main characteristics of the results are commented. Figure 23 presents the Peruvian

system topology.

The following study cases were considered:

• Case 1: it is a simplified Peruvian network for years 2019 and 2023.

• Case 2: it is a sensibility of the previous case considering delaying of the generation

projects CC El Faro and CT Quillabamba.

Only one demand level was considered withτ = 8760 x 3 hours. The margin of reserve

considered wasφ = 1. Finally, an interest rate of 5% was used to bring cost to present value

and simulation parametersM = π/2, M′ = 1000000 andM′′ = 1000000 were obtained in order

to not constrain the problem as explained in the previous chapter.

Table 10 presents new transmission lines for the first study case:

Table 10 - New transmission lines - Peruvian system,
case 1

i j n i j ,t=1 ni j ,t=2

31 32 1 0

42 32 1 0

121 94 1 0

121 81 1 0

125 89 1 0
Source: the author
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Table 11 presents production for existing generation for thefirst study case:

Table 11 - Production for existing generation in MW -
Peruvian system, case 1

Unit gt=1 gt=2 Unidad gt=1 gt=2

Pariac 2 2 Santa Rosa UTI 5 0 50

Yanapampa 2 2 Santa Rosa UTI 6 0 50

Marcara 3 3 Chimay 70 70

Caña Brava 5 5 Marañon 70 70

Las Pizarras 5 5 Rapay 70 70

Macon 5 5 Pisco 0 70.7

Manta 6 6 Aguaytia TG1 80 80

Shima 6 6 Aguaytia TG2 80 80

Curumuy 7 7 Huanza 80 80

Gera 7 7 Quitaracsa 80 80

El carmen 8 8 Santa Teresa 80 80

Esperanza 8 8 Tulumayo 80 80

Mushcapata 8 8 Yaupi 80 80

Tumbes TG1 0 9.17 Machupicchu 87 87

Tumbes TG2 0 9.17 Machupicchu II 90 90

8 de agosto 10 10 Malacas TG4 0 90

Cola 10 10 San Gaban II 90 90

Pias 10 10 Charcani V 100 100

Poechos 10 10 Yuncan 100 100

Santa Cruz 11 11 Cañon del Pato 120 120

Las Cruces 14 14 El Faro CC 120 120

Eolica Marcona 15 15 Matucana 120 120

Eolica Talara 15 15 Santa Rosa TG7 0 121

Gallito Ciego 15 15 Nueva Esperanza 135 135

Renovaandes 15 15 Cheves 140 140

Malacas TG1 0 16 Pucara 140 140

Charcani 18 18 Ilo 2 0 141

Rucuy 18 18 Belo Horizonte 150 150

Vilcanota 18 18 Curibamba 150 150

Cahua 20 20 Huinco 150 150

Pelagatos 20 20 Malacas TGD5 0 177

Runatullo 20 20 Las Flores TG1 192 192

Aipsa 23 23 Santa Rosa TG8 199 199

Independencia 23 23 Quillabamba 56.79 200

Tablazo 29 29 Restitucion 200 200

Callahuanca 30 30 Platanal 210 210

Chancay 2 30 30 ETEN 0 223

Yanango 30 30 Termochilca CC 286 286

Maple 37.5 37.5 Chaglla 360 360

El Angel 40 40 RF Ilo 0 321.31

Eolica Cupisnique 40 40 Ventanilla CC 480 480

RF Pucallpa 0 40 Cerro del Aguila 500 500

Olmos 45 45 Fenix CC 534 534

Tres hermanas 45 45 Mantaro 650 650

Carhuaquero 50 50 Chilca CC 811 811

El Tambo 50 50 Kallpa CC 857 857

Source: the author
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In the first study case, new generation capacity is obtained atstaget = 2: CH San Gaban

I and CH San Gaban III. Both projects are hydro and produce their maximum output for the

second stage. In this case is better to reprogram the existing generation instead of building new

transmission capacity.

Table 12 presents new transmission lines for the second study case:

Table 12 - New transmission lines - Peruvian system,
case 2

i j n i j ,t=1 ni j ,t=2

31 32 1 0

43 42 1 0

42 32 1 0

95 94 1 0

92 121 1 0

121 94 1 0

42 123 1 0

123 122 1 0

122 32 1 0

121 81 1 0

81 125 1 0

125 89 1 0
Source: the author

Table 13 presents the production for existing generation for the second study case:
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Table 13 - Production for existing generation in MW -
Peruvian system, case 2

Unit gt=1 gt=2 Unit gt=1 gt=2

Pariac 2 2 Santa Rosa UTI 5 0 50

Yanapampa 2 2 Santa Rosa UTI 6 0 50

Marcara 3 3 Chimay 70 70

Caña Brava 5 5 Marañon 70 70

Las Pizarras 5 5 Rapay 70 70

Macon 5 5 Pisco 0 70.7

Manta 6 6 Aguaytia TG1 16.79 80

Shima 6 6 Aguaytia TG2 0 80

Curumuy 7 7 Huanza 80 80

Gera 7 7 Quitaracsa 80 80

El carmen 8 8 Santa Teresa 80 80

Esperanza 8 8 Tulumayo 80 80

Mushcapata 8 8 Yaupi 80 80

Tumbes TG1 0 9.17 Machupicchu 87 87

Tumbes TG2 0 9.17 Machupicchu II 90 90

8 de agosto 10 10 Malacas TG4 0 90

Cola 10 10 San Gaban II 90 90

Pias 10 10 Charcani V 100 100

Poechos 10 10 Yuncan 100 100

Santa Cruz 11 11 Cañon del Pato 120 120

Las Cruces 14 14 El Faro CC 0 0

Eolica Marcona 15 15 Matucana 120 120

Eolica Talara 15 15 Santa Rosa TG7 0 121

Gallito Ciego 15 15 Nueva Esperanza 135 135

Renovaandes 15 15 Cheves 140 140

Malacas TG1 0 16 Pucara 140 140

Charcani 18 18 Ilo 2 0 141

Rucuy 18 18 Belo Horizonte 150 150

Vilcanota 18 18 Curibamba 150 150

Cahua 20 20 Huinco 150 150

Pelagatos 20 20 Malacas TGD5 0 177

Runatullo 20 20 Las Flores TG1 192 192

Aipsa 23 23 Santa Rosa TG8 199 199

Independencia 23 23 Quillabamba 0 0

Tablazo 29 29 Restitucion 200 200

Callahuanca 30 30 Platanal 210 210

Chancay 2 30 30 ETEN 0 223

Yanango 30 30 Termochilca CC 286 286

Maple 37.5 37.5 Chaglla 360 360

El Angel 40 40 RF Ilo 0 321.31

Eolica Cupisnique 40 40 Ventanilla CC 480 480

RF Pucallpa 0 40 Cerro del Aguila 500 500

Olmos 45 45 Fenix CC 534 534

Tres hermanas 45 45 Mantaro 650 650

Carhuaquero 50 50 Chilca CC 811 811

El Tambo 50 50 Kallpa CC 857 857

Source: the author

In contrast to the previous study case, the model chooses new generation projects for the

first stage:CH San Gaban IIIdispatching 160 MW and a unit of theSouthern Energetic Node
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dispatching 500 MW. The new transmission capacity increase with respect to the previous case.

The models minimizes joint total cost.If the problem were solved by separate, common sense

would indicate that the construction of hydro units is more efficient from the generator perspec-

tive. However, this would increase investment cost in transmission capacity so that does not

lead to an optimal solution.

4.4 CONCLUSIONS OF THE CHAPTER

It can be seen that there is a closely dependence between investments in transmission and

generation capacity. Because of this dependence, externalities arise when investment decisions

are decentralized. All the examples make a parallel with the previous chapter and the results

support the proposed hypothesis.
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5 CONCLUSIONS

An important conclusion of the dissertation is that the transmission and generation invest-

ment problem can be successfully modeled as a multilevel optimization problem with the market

operator problem in the lower level. Multilevel formulation of the problem can model decision

sequence among the market agents; so the investment problem is solved first provided that the

market operator maximize the social welfare.

Another important conclusion of the dissertation is that a decentralized market must lead

to a Pareto optimal solution in the context of perfect competition. This result is known as the

First Welfare Theorem, very well known in economic literature. However, the state-of-the-art

models do not give much attention to this theorem. This important theorem allowed to establish

a reference model in order to find the Pareto optimal solution, which is found through the

solution of the centralized model.

Moreover, it was shown that the opportunity costs of transmission and generation capacity

are closely dependent, then Pareto optimal solution is reached only when investments in both

capacities are cleared in the same market (in mathematical terms, the investments problems

should be modeled in the same level). Since this result, decentralizing the capacity investments

leads to a non-Pareto optimal solution. Thus, maximum social welfare is not reached and there

will not be an efficient use of resources. Distortions caused by the externalities can be overcome

by implementing regulatory mechanisms. Thus, it is concluded that investments in transmission

and generation capacity should be under some level of regulation in order to get a Pareto optimal

solution.

Finally, a multistage bi-level model was proposed in order to get the Pareto optimal solution

for generation and transmission investments. The results were successful and the presented

study cases supported the hypothesis of the dissertation.

5.1 FUTURE WORK

During the research, there were observed some future contributions to this dissertation:

• To design proper regulatory mechanisms to overcome the externalities problem.

• To develop a decentralized model and compared the results with the proposed model.

• To propose a stochastic formulation of the problem that consider uncertainty in the de-
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mand considering the risk aversion of the decision maker.

• To implement an AC formulation of the model in order to represent more exactly the

problem.
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APPENDIX A - TEST SYSTEMS DATA

APPENDIX A.1 - GARVER TEST SYSTEM DATA

Table 14 - Garver system - data for transmission lines

i j xi j (pu) f̄i j (MW) n0
i j ci j (105$) n̄i j

1 2 0.4 100 1 40 5

1 3 0.38 100 0 38 5

1 4 0.6 80 1 60 5

1 5 0.2 100 1 20 5

1 6 0.68 70 0 68 5

2 3 0.2 100 1 20 5

2 4 0.4 100 1 40 5

2 5 0.31 100 0 31 5

2 6 0.3 100 0 30 5

3 4 0.59 82 0 59 5

3 5 0.2 100 1 20 5

3 6 0.48 100 0 48 5

4 5 0.63 75 0 63 5

4 6 0.3 100 0 30 5

5 6 0.61 78 0 61 5
Source: Garver (1970)

Table 15 - Garver system - data for existing generation

Unit π1,2 ($ / MWh) π3 ($ / MWh) nodo i ḡ1
k MW ḡ2

k MW ḡ3
k MW

G1 0 150 1 50 150 150
G2 0 150 3 165 360 360
G3 0 0 6 545 600 600

Source: adapted from Garver (1970)
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Table 16 - Garver system - data for investment project in
generation units

Node εdiesel πdiesel ḡdiesel w̄diesel εgas πgas ḡgas w̄gas

(106 $ / MW) ($ / MWh) MW (106 $ / MW) ($ / MWh) MW

1 7 74.4 20 3 8 18.2 20 3

2 7 74.4 20 3 8 18.2 20 3

3 7 74.4 20 3 8 18.2 20 3

4 7 74.4 20 3 8 18.2 20 3

5 7 74.4 20 3 8 18.2 20 3

6 7 74.4 20 3 8 18.2 20 3
Source: adapted from Dammert, Garcia e Mollinelli (2010)

Table 17 - Garver system - data for demand levels in MW

Node di,t=1 di,t=2

1 80 160

2 240 400

3 40 100

4 160 260

5 240 340

6 - -
Source: adapted from Garver (1970)
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APPENDIX A.2 - IEEE 24 BUSES TEST SYSTEM DATA

Table 18 - IEEE 24 buses system - data for transmission
lines

i j 1/bi j f̄i j n0
i j ci j i j 1/bi j f̄i j n0

i j ci j

(pu) (MW) (103$) (pu) (MW) (103$)

1 2 0.0139 175 1 3000 13 23 0.0865 500 1 120000

1 3 0.2112 175 1 55000 14 16 0.0389 500 1 54000

1 5 0.0845 175 1 22000 15 16 0.0173 500 1 24000

2 4 0.1267 175 1 33000 15 21 0.049 500 2 68000

2 6 0.192 175 1 50000 15 24 0.0519 500 1 72000

3 9 0.119 175 1 31000 16 17 0.0259 500 1 36000

3 24 0.0839 400 1 50000 16 19 0.0231 500 1 32000

4 9 0.1037 175 1 27000 17 18 0.0144 500 1 20000

5 10 0.0883 175 1 23000 17 22 0.1053 500 1 146000

6 10 0.0605 175 1 16000 18 21 0.0259 500 2 36000

7 8 0.0614 175 1 16000 19 20 0.0396 500 2 55000

8 9 0.1651 175 1 43000 20 23 0.0216 500 2 30000

8 10 0.1651 175 1 43000 21 22 0.0678 500 1 94000

9 11 0.0839 400 1 50000 1 8 0.1344 500 0 35000

9 12 0.0839 400 1 50000 2 8 0.1267 500 0 33000

10 11 0.0839 400 1 50000 6 7 0.192 500 0 50000

10 12 0.0839 400 1 50000 13 14 0.0447 500 0 62000

11 13 0.0476 500 1 66000 14 23 0.062 500 0 86000

11 14 0.0418 500 1 58000 16 23 0.0822 500 0 114000

12 13 0.0476 500 1 66000 19 23 0.0606 500 0 84000

12 23 0.0966 500 1 134000
Source: Romero et al. (2002)
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Table 19 - IEEE 24 buses system - data for existing gen-
eration units

Unit π ($ / MWh) node i ḡk MW

G1 1 1 576
G2 1 2 576
G3 1 7 900
G4 1 13 1773
G5 1 15 645
G6 1 16 465
G7 1 18 1200
G8 1 21 1200
G9 1 22 900
G10 1 23 1980
Source: adapted from Romero et al. (2002)

Table 20 - IEEE 24 buses system - data for investment
projects in generation units

Node ε ($/MW) π ($ / MWh) ḡk MW w̄

10 109 1 400 2
15 109 1 400 2
18 109 1 400 2

Source: adapted from Romero et al. (2002)
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Table 21 - IEEE 24 buses system - data for demand levels
in MW

Node di,t=1 di,t=2

1 324 421.2

2 291 378.3

3 540 702

4 222 288.6

5 213 276.9

6 408 530.4

7 375 487.5

8 513 666.9

9 525 682.5

10 585 760.5

11 0 0

12 0 0

13 795 1033.5

14 582 756.6

15 951 1236.3

16 300 390

17 0 0

18 999 1298.7

19 543 705.9

20 384 499.2

21 0 0

22 0 0

23 0 0

24 0 0
Source: adapted from Romero et al. (2002)
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APPENDIX A.3 - PERUVIAN SYSTEM DATA

Table 22 - Peruvian system - data for demand levels in
MW

Substation Node dt=1 dt=2 Substation Node dt=1 dt=2

Zarumilla 220kV 1 0 0 Mantaro Nueva 220kV 67 0 0

Zorritos 220kV 2 48 54 Cotaruse 220kV 68 324 324

Talara 220kV 3 30 87 Socabaya 220kV 69 26 26

Piura 220kV 4 218 253 Nueva Socabaya 220kV 70 0 0

Pariñas 220kV 5 0 0 Nueva Socabaya 500kV 71 0 0

Piura Sur 220kV 6 31 75 Ocoña 500kV 72 0 0

La Niña 500kV 7 0 0 San Camilo 500kV 73 408 408

La Niña 220kV 8 54 57 Montalvo 500kV 74 0 0

Chiclayo 220kV 9 141 190 Montalvo 220kV 75 0 0

Carhuaquero 220kV 10 20 25 Moquegua 220kV 76 521 514

Reque 220kV 11 6.04 7.41 Cerro Verde 220kV 77 130 130

Guadalupe 220kV 12 109 114 Tajish 220kV 78 0 0

Trujillo 220kV 13 245 307 Antamina 220kV 79 290 302

Trujillo Nueva 220kV 14 0 0 Vizcarra 220kV 80 0 0

Trujillo Nueva 500kV 15 0 0 Tingo Maria 220kV 81 0 0

Viru 220kV 16 0 0 Paragsha 138kV 82 77 73

Chimbote 220kV 17 0 0 Tingo Maria 138kV 83 7 8

Chimbote 500kV 18 0 0 Piedra Blanca 138kV 84 0 0

Chimbote 138kV 19 168 197 Amarilis 138kV 85 35 39

Huallanca 138kV 20 62 74 San Lorenza 138kV 86 0 0

Kiman Ayllu 138kV 21 26 31.25 Aguaytia 220kV 87 55 68

Kiman Ayllu 220kV 22 0 0 Aucayacu 138kV 88 3 3

Shauindo 220kV 23 75 75 Tocache 138kV 89 8 10

Cajamarca 220kV 24 160 397.4 Juanjui 138kV 90 8 9

Conococha 220kV 25 0 0 Bellavista 138kV 91 12 14

Pachapaqui 220kV 26 16 16 Tarapoto 138kV 92 41 49

Paramonga 220kV 27 54 115 Moyobamba 138kV 93 18 23

Huacho 220kV 28 35 53 Moyobamba 220kV 94 87 120

Nueva Huaral 220kV 29 38 53 Caclic 220kV 95 7.6 7.6

Zapallal 220kV 30 72 89 Socabaya 138kV 96 220 230

Carabayllo 220kV 31 262 440 Los Heroes 220kV 97 67 67

Carabayllo 500kV 32 0 0 Santuario 138kV 98 119 119

Ventanilla 220kV 33 207 229 Callalli 138kV 99 21 21

Chavarria 220kV 34 791 849 Tintaya 138kV 100 12 12

Cajamarquilla 220kV 35 80 80 Tintaya 220kV 101 97 97

Carapongo 220kV 36 0 0 Ayaviri 138kV 102 6.5 7

Huinco 220kV 37 0 0 Azangaro 138kV 103 105 115

Santa Rosa 220kV 38 539 570 Azangaro 220kV 104 0 0

Callahuanca 220kV 39 0 0 Juliaca 220kV 105 0 0

Callahuanca REP 220kV 40 0 0 Juliaca 138kV 106 52 53

Pachachaca 220kV 41 0 0 Puno 138kV 107 40 50

Chilca CTM 500kV 42 0 0 Puno 220kV 108 0 0

Chilca CTM 220kV 43 0 0 Combapata 138kV 109 16.4 21

Chilca REP 220kV 44 94 132 Quencoro 138kV 110 18 22

Lurin 220kV 45 142 150 Quencoro 220kV 111 0 0

San Juan 220kV 46 837 963 Onocora 220kV 112 0 0

Pomacocha 220kV 47 161 161 Dolorespata 138kV 113 53 69

Planicie 220kV 48 430 556 Cachimayo 138kV 114 22 26

Huanza 220kV 49 0 0 Machupicchu 138kV 115 9.5 12.4

Orcotuna 220kV 50 23 19 Suriray 138kV 116 0 0

Huayucachi 220kV 51 32 41 Suriray 220kV 117 0 0

Mantaro 220kV 52 14.25 16.5 Abancay 220kV 118 0 0

Oroya 220kV 53 15 24.29 Abancay 138kV 119 28 28

Carhuamayo 220kV 54 31 42 Quellaveco 220kV 120 71 71

Paragsha 220kV 55 24 24 Tarapoto 220kV 121 0 0

Huancavelica 220kV 56 73 74 Carapongo 500kV 122 0 0

Independencia 220kV 57 97 97 Planicie 500kV 123 0 0

Chincha 220kV 58 28 33 Cotaruse 500kV 124 0 0

Desierto 220kV 59 23 15 Tocache 220kV 125 0 0

Cantera 220kV 60 33 40 Yanango 220kV 126 0 0

Ica 220kV 61 106 137 Yanango 500kV 127 0 0

Nazca 220kV 62 24 11 Yuncan 220kV 128 5 6

Marcona 220kV 63 227 255 Cajamarca 500kV 129 0 0

Marcona Nueva 220kV 64 0 0 Yuncan 500kV 130 0 0

Marcona Nueva 500kV 65 0 0 Paramonga 500kV 131 0 0

Mantaro Nueva 500kV 66 0 0

Source: adapted from the Peruvian system operator
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Table 23 - Peruvian system - data for transmission lines
Part I

i j 1/bi j f̄i j n0
i j ci j n̄i j i j 1/bi j f̄i j n0

i j ci j n̄i j

(pu) (MW) (103$) (pu) (MW) (103$)

1 2 0.0511 150 1 8.0 0 75 76 0.0035 700 1 0.8 1

2 3 0.1405 150 1 21.2 1 76 69 0.1083 150 2 16.7 1

3 4 0.1405 180 1 16.3 1 69 70 0.0037 346 2 0.6 1

5 4 0.0961 180 1 14.7 1 70 77 0.0060 346 2 0.9 1

3 5 0.0103 180 1 1.6 1 70 71 0.0272 600 1 15.0 1

9 8 0.1132 180 1 17.5 1 71 74 0.0134 700 1 181.6 1

9 8 0.1132 180 1 17.5 1 52 68 0.0817 250 2 46.5 0

8 4 0.1124 180 1 17.4 1 68 69 0.0645 250 2 49.8 0

6 8 0.1030 180 1 16.0 1 52 67 0.0337 600 1 0.5 1

4 6 0.0094 180 1 1.4 1 67 66 0.0272 600 1 15.0 1

8 7 0.0272 600 1 15.0 1 66 65 0.0224 700 1 142.8 1

9 10 0.0840 114 1 13.1 1 65 71 0.0344 700 1 181.6 1

11 9 0.0132 180 1 1.9 1 25 80 0.0538 190 1 8.1 1

11 12 0.0789 180 1 11.3 1 82 55 0.0767 120 1 8.0 1

11 9 0.0132 150 1 1.9 1 82 86 0.1614 75 1 8.3 1

11 12 0.0789 150 1 11.3 1 86 85 0.0806 75 1 4.2 1

12 13 0.1137 180 1 16.3 1 85 84 0.1428 45 1 7.5 1

12 13 0.1137 150 1 16.3 1 84 83 0.0735 45 1 3.8 1

13 24 0.1395 250 1 21.6 1 83 81 0.2910 50 2 1.6 1

13 14 0.0023 345 2 0.6 1 81 78 0.1820 250 1 27.5 1

14 15 0.0224 750 1 15.0 1 78 80 0.0062 250 1 0.9 1

15 18 0.0174 600 1 56.3 1 55 78 0.1248 250 1 19.3 1

16 17 0.0328 150 1 5.2 1 78 80 0.0072 250 1 1.1 1

13 16 0.0998 150 1 15.8 1 80 79 0.0549 228 1 8.2 1

16 17 0.0328 150 1 5.2 1 80 78 0.0085 228 1 1.3 1

13 16 0.0998 150 1 15.8 1 78 79 0.0549 228 1 8.2 1

17 18 0.0224 750 1 15.0 1 81 87 0.0764 190 1 11.6 1

17 19 0.0909 120 1 3.2 1 81 88 0.1203 75 1 11.2 1

17 19 0.0886 120 1 3.2 1 88 89 0.2886 75 1 22.0 1

15 7 0.0385 700 1 124.1 1 89 90 0.3251 75 1 17.2 1

19 20 0.2116 140 3 11.7 1 90 91 0.0655 75 1 11.1 1

20 21 0.0177 120 1 1.0 1 91 92 0.2108 75 1 11.1 1

21 22 0.1204 150 1 9.0 1 92 93 0.2525 75 1 13.3 1

22 23 0.0999 240 2 21.0 1 93 94 0.1200 100 1 7.0 1

23 24 0.0654 240 2 13.7 1 95 94 0.1450 220 1 11.2 1

24 10 0.1040 180 1 15.8 1 95 24 0.1639 220 2 12.7 1

22 25 0.1706 180 2 27.2 1 69 96 0.0629 150 2 9.0 1

17 27 0.2184 180 2 34.8 1 96 98 0.0762 135 2 3.8 1

27 28 0.0575 180 2 8.7 1 98 99 0.2390 110 1 12.4 1

27 26 0.0631 190 1 9.5 1 99 100 0.2422 110 1 12.5 1

26 25 0.0334 190 1 5.1 1 100 102 0.2180 90 1 11.4 1

28 30 0.1104 180 1 16.7 1 102 103 0.1121 90 1 5.8 1

28 29 0.0499 180 1 7.6 1 103 106 0.2061 90 1 10.8 1

29 30 0.0605 180 1 9.2 1 106 107 0.0978 80 1 5.1 1

30 31 0.0063 800 2 1.6 0 107 108 0.1015 120 1 8.0 1

30 33 0.0184 270 1 2.8 0 108 120 0.1009 150 1 15.5 1

30 33 0.0199 270 1 2.8 0 120 76 0.1009 150 1 15.5 1

33 34 0.0109 188 2 1.7 0 76 97 0.1314 228 2 19.6 1

33 34 0.0114 188 2 1.7 0 103 104 0.1015 120 1 8.0 1

34 35 0.0397 340 2 3.3 0 104 105 0.0802 150 1 12.3 1

Source: adapted from the Peruvian system operator
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Table 24 - Peruvian system - data for transmission lines
Part II

i j 1/bi j f̄i j n0
i j ci j n̄i j i j 1/bi j f̄i j n0

i j ci j n̄i j

(pu) (MW) (103$) (pu) (MW) (103$)

34 38 0.0087 150 2 1.3 0 105 106 0.1015 120 1 8.0 1

38 46 0.0268 150 2 4.1 1 105 108 0.0380 150 1 5.8 1

46 47 0.1136 150 2 17.7 0 100 101 0.0560 125 2 8.0 1

46 44 0.0342 350 2 7.7 0 101 69 0.2148 200 2 32.7 1

46 45 0.0117 350 1 2.5 0 100 109 0.2336 90 1 12.1 1

45 44 0.0230 350 1 5.1 0 109 110 0.2643 90 1 13.8 1

46 44 0.0347 350 1 7.7 0 110 115 0.2711 83 1 13.6 1

44 43 0.0269 600 1 3.0 0 110 113 0.0228 71 1 1.1 1

35 36 0.0055 340 2 0.9 0 115 114 0.2067 93 1 10.8 1

36 39 0.0318 340 2 4.9 0 114 113 0.0355 95 1 1.8 1

44 48 0.0397 350 2 7.9 1 114 119 0.2539 90 1 13.2 1

48 36 0.0096 350 2 1.9 1 115 116 0.0132 250 1 1.3 1

36 31 0.0214 350 2 4.3 1 116 117 0.0556 225 1 16.0 1

18 32 0.0174 600 1 153.4 1 119 118 0.1000 100 1 7.0 1

31 32 0.0272 600 2 15.0 1 117 118 0.0840 454 1 13.3 1

37 36 0.0010 342 2 0.2 1 117 111 0.1247 240 1 24.2 1

36 38 0.0633 342 2 9.6 0 111 110 0.0933 150 1 9.0 1

43 42 0.0272 600 1 15.0 1 111 112 0.0945 240 2 18.3 1

42 32 0.0115 600 1 36.7 1 112 101 0.0692 240 2 13.3 1

39 40 0.0006 380 1 0.1 1 117 68 0.1980 454 1 31.3 1

40 41 0.0733 250 2 11.5 0 68 118 0.1140 454 1 18.0 1

41 47 0.0139 250 1 2.1 1 92 121 0.1000 120 0 8.0 1

41 52 0.2022 150 2 30.7 1 121 94 0.0992 150 0 15.2 1

52 47 0.2025 150 2 30.7 1 123 48 0.0200 600 0 15.0 1

44 60 0.0844 150 1 13.1 1 122 36 0.0200 600 0 15.0 1

44 59 0.1081 150 1 17.0 1 42 123 0.0062 750 0 20.4 1

60 57 0.0832 150 1 13.0 1 123 122 0.0015 750 0 4.9 1

59 58 0.0167 150 1 2.5 1 122 32 0.0033 750 0 11.0 1

58 57 0.0442 150 1 7.0 1 32 66 0.0402 750 0 132.2 1

57 56 0.1979 150 2 28.4 1 66 42 0.0422 750 0 138.7 1

56 52 0.0728 150 2 10.4 1 66 123 0.0391 750 0 128.5 1

52 51 0.0791 150 1 12.0 1 121 81 0.3867 150 0 60.4 1

49 31 0.0812 250 1 12.3 1 68 124 0.0133 750 0 15.0 1

49 50 0.1281 150 1 19.6 1 66 124 0.0152 750 0 122.4 1

51 50 0.0393 150 1 6.0 1 65 124 0.0109 750 0 87.7 1

41 53 0.0227 250 1 3.3 1 81 125 0.1539 180 0 24.0 1

47 54 0.1136 180 1 17.4 1 125 121 0.2318 180 0 36.2 1

53 54 0.0777 150 1 12.0 1 125 89 0.1000 120 0 8.0 1

54 55 0.0443 150 1 6.8 1 126 41 0.0960 285 1 14.1 1

54 55 0.0437 150 2 6.8 1 126 127 0.0160 750 0 15.0 1

55 25 0.1437 180 1 22.1 1 127 66 0.0201 750 0 65.3 1

57 61 0.0568 180 2 8.7 1 128 54 0.0527 390 2 1000.0 0

61 62 0.1063 180 1 16.6 1 24 129 0.0160 750 0 15.0 1

62 63 0.0506 180 1 7.9 1 129 15 0.0172 750 0 55.9 1

63 64 0.0146 450 2 4.3 1 127 130 0.0075 750 0 24.5 1

64 65 0.0253 450 1 4.0 1 128 130 0.0160 750 0 15.0 1

65 42 0.0249 700 1 145.3 1 131 27 0.0160 750 0 15.0 1

65 72 0.0202 700 1 110.6 1 131 130 0.0343 750 0 111.4 1

72 73 0.0052 700 1 63.3 1 127 122 0.0251 750 0 81.6 1

73 74 0.0132 700 1 40.8 1 127 32 0.0251 750 0 81.6 1

74 75 0.0280 750 1 20.0 1 127 66 0.0201 750 0 65.3 1

Source: adapted from the Peruvian system operator
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Table 25 - Peruvian system - data for existing generation
units

Unidad π ($ / MWh) nodo i ḡk MW Unidad πk ($ / MWh) nodo i ḡk MW

Pariac 0.0 20 2 Santa Rosa UTI 5 35.6 38 50

Yanapampa 0.0 27 2 Santa Rosa UTI 6 37.8 38 50

Marcara 0.0 20 3 Chimay 0.0 126 70

Caña Brava 0.0 10 5 Marañon 0.0 78 70

Las Pizarras 0.0 10 5 Rapay 0.0 27 70

Macon 0.0 50 5 Pisco 32.3 57 70.7

Manta 0.0 20 6 Aguaytia TG1 29.2 87 80

Shima 0.0 91 6 Aguaytia TG2 29.4 87 80

Curumuy 0.0 4 7 Huanza 0.0 49 80

Gera 0.0 93 7 Quitaracsa 0.0 22 80

El carmen 0.0 83 8 Santa Teresa 0.0 117 80

Esperanza 0.0 83 8 Tulumayo 0.0 50 80

Mushcapata 0.0 83 8 Yaupi 0.0 128 80

Tumbes TG1 203.9 2 9.17 Machupicchu 0.0 115 87

Tumbes TG2 190.0 2 9.17 Machupicchu II 0.0 115 90

8 de agosto 0.0 83 10 Malacas TG4 32.0 3 90

Cola 0.0 13 10 San Gaban II 0.0 103 90

Pias 0.0 20 10 Charcani V 0.0 98 100

Poechos 0.0 4 10 Yuncan 0.0 128 100

Santa Cruz 0.0 20 11 Cañon del Pato 0.0 20 120

Las Cruces 0.0 76 14 El Faro CC 19.3 63 120

Eolica Marcona 0.0 63 15 Matucana 0.0 39 120

Eolica Talara 0.0 5 15 Santa Rosa TG7 31.5 38 121

Gallito Ciego 0.0 12 15 Nueva Esperanza 25.8 2 135

Renovaandes 0.0 41 15 Cheves 0.0 28 140

Malacas TG1 45.0 3 16 Pucara 0.0 112 140

Charcani 0.0 96 18 Ilo 2 44.2 76 141

Rucuy 0.0 55 18 Belo Horizonte 0.0 81 150

Vilcanota 0.0 117 18 Curibamba 0.0 41 150

Cahua 0.0 27 20 Huinco 0.0 37 150

Pelagatos 0.0 20 20 Malacas TGD5 305.0 3 177

Runatullo 0.0 50 20 Las Flores TG1 27.2 43 192

Aipsa 0.0 27 23 Santa Rosa TG8 27.8 38 199

Independencia 24.5 57 23 Quillabamba 30.1 117 200

Tablazo 18.7 4 29 Restitucion 0.0 52 200

Callahuanca 0.0 39 30 Platanal 0.0 44 210

Chancay 2 0.0 55 30 ETEN 305.0 11 223

Yanango 0.0 126 30 Termochilca CC 18.5 42 286

Maple 0.0 4 37.5 Chaglla 0.0 55 360

El Angel 0.0 103 40 RF Ilo 333.6 76 460

Eolica Cupisnique 0.0 12 40 Ventanilla CC 18.9 33 480

RF Pucallpa 323.3 87 40 Cerro del Aguila 0.0 67 500

Olmos 0.0 9 45 Fenix CC 20.6 42 534

Tres hermanas 0.0 63 45 Mantaro 0.0 52 650

Carhuaquero 0.0 10 50 Chilca CC 18.6 43 811

El Tambo 0.0 76 50 Kallpa CC 18.2 44 857

Source: adapted from the Peruvian system operator
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Table 26 - Peruvian system - data for the investment
projects in generation units

Project ε ($/MW) πk ($ / MWh) Node ḡk MW w̄

Santa Rita 550 0.0 16 240 1

Santa Maria 1600 0.0 66 720 1

Molloco 600 0.0 77 280 1

TG Sur 1 400 17.5 74 500 1

TG Sur 2 400 17.5 74 500 1

TG Sur 3 400 17.5 74 500 1

Lluclla 560 0.0 71 240 1

Lluta 560 0.0 71 260 1

San Gaban I 400 0.0 112 180 1

San Gaban III 400 0.0 112 160 1
Source: adapted from the Peruvian system operator


