Biotic interaction between spionid polychaetes and bouchardiid brachiopods: Paleoecological, taphonomic and evolutionary implications

Carregando...
Imagem de Miniatura

Data

2008-12-01

Autores

Rodrigues, Sabrina C.
Simões, Marcello G.
Kowalewski, Michałl
Petti, Mônica A. V.
Nonato, Edmundo F.
Martinez, Sergio
Del Rio, Claudia Julia

Título da Revista

ISSN da Revista

Título de Volume

Editor

Resumo

Shells of Bouchardia rosea (Brachiopoda, Rhynchonelliformea) are abundant in Late Holocene death assemblages of the Ubatuba Bight, Brazil, SW Atlantic. This genus is also known from multiple localities in the Cenozoic fossil record of South America. A total of 1211 valves of B. rosea, 2086 shells of sympatric bivalve mollusks (14 nearshore localities ranging in depth from 0 to 30 m), 80 shells of Bouchardia zitteli, San Julián Formation, Paleogene, Argentina, and 135 shells of Bouchardia transplatina, Camacho Formation, Neogene, Uruguay were examined for bioerosion traces. All examined bouchardiid shells represent shallow-water, subtropical marine settings. Out of 1211 brachiopod shells of B. rosea, 1201 represent dead individuals. A total of 149 dead specimens displayed polychaete traces (Caulostrepsis). Live polychaetes were found inside Caulostrepsis borings in 10 life-collected brachiopods, indicating a syn-vivo interaction (Caulostrepsis traces in dead shells of B. rosea were always empty). The long and coiled peristomial palps, large chaetae on both sides of the 5th segment, and flanged pygidium found in the polychaetes are characteristic of the polychaete genus Polydora (Spionidae). The fact that 100% of the Caulostrepsis found in living brachiopods were still inhabited by the trace-making spionids, whereas none was found in dead hosts, implies active biotic interaction between the two living organisms rather than colonization of dead brachiopod shells. The absence of blisters, the lack of valve/site stereotypy, and the fact that tubes open only externally are all suggestive of a commensal relationship. These data document a new host group (bouchardiid rhynchonelliform brachiopods) with which spionids can interact (interestingly, spionid-infested sympatric bivalves have not been found in the study area despite extensive sampling). The syn-vivo interaction indicates that substantial bioerosion may occur when the host is alive. Thus, the presence of such bioerosion traces on fossil shells need not imply a prolonged post-mortem exposure of shells on the sea floor. Also, none of the Paleogene and Neogene Bouchardia species included any ichnological evidence for spionid infestation. This indicates that the Spionidae/ Bouchardia association may be geologically young, although the lack of older records may also reflect limited sampling and/or taphonomic biases.

Descrição

Palavras-chave

Bioerosion, Biotic interaction, Bouchardia, Brachiopoda, Brazil, Caulostrepsis, Cenozoic, Spionidae, abundance, bioerosion, biotic factor, brachiopod, evolution, fossil assemblage, fossil record, ichnology, paleoecology, Paleogene, polychaete, seafloor, taphonomy, Argentina, South America, Uruguay, Bivalvia, Bouchardia rosea, Bouchardia zitteli, Mollusca, Polychaeta, Polydora, Pygidium, Rhynchonelliformea, Spionida

Como citar

Acta Palaeontologica Polonica, v. 53, n. 4, p. 657-668, 2008.