Logo do repositório
 

Integrais racionais lineares do fluxo geodésico em superfícies e 4-webs

Carregando...
Imagem de Miniatura

Orientador

Agafonov, Serguei

Coorientador

Pós-graduação

Matemática - IBILCE

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Estadual Paulista (Unesp)

Tipo

Tese de doutorado

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Resumo (português)

O objetivo desse trabalho é estudar integrais racionais lineares. Mostramos que a dimensão local do espaço das integrais fatorado pela ação natural de grupo de Möbius é máxima e igual a 2 se, e somente se, a curvatura Gaussiana é constante e possui dimensão 0 se, e somente se, a curvatura Gaussiana é não constante. Apresentamos também uma caracterização geométrica de integrais racionais lineares do fluxo geodésico por meio de folheações e webs: o fluxo geodésico em uma superfície bidimensional admite uma integral racional linear se, e somente se, existem quatro folheações geodésicas de forma que a razão cruzada de suas inclinações é constante.

Resumo (inglês)

The objective of this work is to study linear rational integrals. We show that the local dimension of the space of integrals factored by the natural action of Möbius group is maximum and equal to 2 if, and only if, the Gaussian curvature is constant and has dimension 0 if, and only if, the Gaussian curvature is not constant. We also present a geometric characterization of linear rational integrals of the geodesic flow, through foliations and webs: the geodesic flow on a two-dimensional surface admits a linear rational integral if, and only if, there are four geodesic foliations such that the cross ratio of their slopes is constant.

Descrição

Palavras-chave

Integrais racionais lineares em momento, Fluxo geodésico, Folheações geodésicas, Linear rational integrals in momentum, Geodesic flow, Geodesic foliations

Idioma

Português

Citação

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação