Zein-based nanoformulations with encapsulated methyl salicylate incorporated in 3D printing biopolymer devices targeting potential uses in pest management

Resumo

The management of pests in agriculture has numerous issues, for instance, their impact in the environment. The use of synthetic semiochemicals for the pest control have a limited shelf life and low stability in the field. In this regard, nanocarrier systems may improve the stability overtime and to promote a sustainability release. The objective of this study was to prepare and characterized zein nanoparticles (NP-Zein) containing the semiochemical methyl salicylate (S_Met) and incorporated into sodium alginate (SA) and carboxymethyl cellulose (CMC)-created by 3D printing prototypes targeting as a potential application for pest management. The system was characterized using different physicochemical techniques and the results showed that the nanocarrier system had encapsulation efficiency of 99 % of S_Met. The NP-Zein had an average diameter of 150 nm with a polydispersity index of 0.18 ± 0.04. The incorporation of NP-Zein loaded S_Met in the crosslinked prototypes exhibited a rough surface with excellent NP-Zein adhesion as showed by fluorescence optical microscopy and atomic force microscopy images. The non-crosslinked prototypes had smooth and cracked surfaces, however, it did not affect the adhesion of NP-Zein loaded S_Met. Moreover, NP-Zein loaded S_Met in SA promote a sustained release over time, improving the S_Met stability and loss by volatilization. The results demonstrated that is possible to develop prototypes containing NP-Zein loaded S_Met by 3D printing using biodegradable polymeric materials. The developed prototypes can be a potential alternative for sustainable management aiming future application for pest control.

Descrição

Palavras-chave

Agriculture, Methyl salicylate, Nanotechnology, Printing biopolymer, Sodium alginate, Zein

Como citar

Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 670.