

White light generation in Tm3+/Ho3+/Yb3+ doped PbO-GeO2 glasses excited at 980nm

M. E. Camilo, E. de O. Silva, Thiago A. A. de Assumpção, Luciana R. P. Kassab, and Cid B. de Araújo

Citation: Journal of Applied Physics **114**, 163515 (2013); doi: 10.1063/1.4827863

View online: http://dx.doi.org/10.1063/1.4827863

View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/114/16?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

 $2.05~\mu m$ emission properties and energy transfer mechanism of germanate glass doped with Ho3+, Tm3+, and Er3+

J. Appl. Phys. **109**, 053503 (2011); 10.1063/1.3553877

Frequency upconversion luminescence from Yb + 3 – Tm + 3 codoped PbO – GeO 2 glasses containing silver nanoparticles

J. Appl. Phys. 106, 063522 (2009); 10.1063/1.3211300

White light upconversion emissions from Tm 3 + + Ho 3 + + Yb 3 + codoped tellurite and germanate glasses on excitation with 798 nm radiation

J. Appl. Phys. 104, 113107 (2008); 10.1063/1.3033516

Emission properties of PbO – Bi 2 O 3 – Ga 2 O 3 – GeO 2 glasses doped with Tm 3+ and Ho 3+ J. Appl. Phys. **93**, 9441 (2003); 10.1063/1.1571968

Efficient energy upconversion emission in Tm 3+ /Yb 3+ -codoped TeO 2 -based optical glasses excited at 1.064 um

J. Appl. Phys. 90, 6550 (2001); 10.1063/1.1413489

White light generation in Tm³⁺/Ho³⁺/Yb³⁺ doped PbO-GeO₂ glasses excited at 980 nm

M. E. Camilo, ^{1,2} E. de O. Silva, ¹ Thiago A. A. de Assumpção, ^{1,2} Luciana R. P. Kassab, ¹ and Cid B. de Araújo ^{3,a)}

¹Faculdade de Tecnológia de São Paulo (FATEC-SP), CEETEPS/UNESP, São Paulo, SP, Brazil

(Received 23 August 2013; accepted 15 October 2013; published online 29 October 2013)

We report white light generation (WLG) in $Tm^{3+}/Ho^{3+}/Yb^{3+}$ doped PbO-GeO₂ glass under continuous-wave excitation at 980 nm. Intense blue (\approx 477 nm), green (\approx 545 nm), and red (\approx 658 nm) emissions were simultaneously observed at room temperature. The blue light is mainly due to the Tm^{3+} transition $^{1}G_{4} \rightarrow ^{3}H_{6}$. The green emission is due to the Ho^{3+} transitions ($^{5}S_{2}$, $^{5}F_{4}$) \rightarrow $^{5}I_{8}$ and the red luminescence is due to the Ho^{3+} transition $^{5}F_{5} \rightarrow ^{5}I_{8}$ and transition $^{1}G_{4} \rightarrow ^{3}F_{4}$ associated to the Tm^{3+} ions. Energy transfer processes from Yb^{3+} to Ho^{3+} and Yb^{3+} to Tm^{3+} ions were responsible for the WLG. Adjusting the relative concentration of the rare-earth (RE) ions, we could obtain emission in the white region of the CIE chromaticity diagram. The present results indicate that PbO-GeO₂ glass has large potential to be used for white displays. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4827863]

I. INTRODUCTION

In the last five decades, luminescence processes involving rare-earth (RE) doped materials have been studied by many authors motivated by its possible applications in color displays, solid state lasers, optical data storage, cellular biology, and improvements of solar cells. Particularly, in the case of color displays, it is well known that to obtain light emission in different spectral regions it is necessary to have control of the relative intensities of the primary colors: red, green, and blue (RGB); the spectrum of the emitted light is characterized by coordinates in the CIE (Commission Internationale de l'Eclairage) chromaticity diagram. Of large interest is the study of white light generation (WLG) that corresponds to the chromatic coordinates x = 0.33 and y = 0.33.

One conventional way to obtain the primary colors is using ultraviolet excitation; photons with wavelength in the ultraviolet region are converted into visible light (down-conversion processes). 6–8 However, ultraviolet excitation may cause degradation of some host materials causing a decrease in the luminescence efficiency of the device. 9 An alternative to ultraviolet excitation when using materials doped with RE ions is the exploitation of the frequency upconversion (UC) process.

Reports on WLG using oxyfluoride glass-ceramics as host of $Tm^{3+}/Er^{3+}/Yb^{3+}$ ions 10,11 and tellurite glass as host of $Pr^{3+}/Er^{3+}/Yb^{3+}$ ions 12 were presented. The use of $Tm^{3+}/Ho^{3+}/Yb^{3+}$ ions hosted in tellurite glasses, 13,14 aluminum-germanate glasses, 15 oxyfluoride nanoglass 16 and $SrMoO_4$ nanocrystals 17,18 was also investigated and presented good performance.

In this article, we report the observation of WLG from PbO-GeO₂ glass (labeled as PGO glass) doped with Ho³⁺, Yb³⁺, and Tm³⁺ for excitation at 980 nm. PGO glass is a good candidate for WLG because it has high refractive index (\approx 1.9), large transmission window from the blue region to the near-infrared, cutoff phonons of low energy (\approx 770 cm⁻¹) and it is resistant to moisture and chemically stable. Generally germanate glasses are good hosts for RE ions, however, to our knowledge, only a multicomponent aluminum-germanate glass with cutoff phonon of \approx 880 cm⁻¹ was exploited for WLG. The fabrication of the PGO glass is simpler than the one reported in Ref. 15 and the luminescence efficiency is larger due to the smaller cutoff phonon energy.

Besides, the appropriate choice of the relative Ho³⁺, Yb³⁺, and Tm³⁺ concentrations, it is shown that the excitation light intensity is an important parameter to obtain WLG in PGO glass because the intensities of the three primary colors generated in the UC process depend on the incident laser intensity in different ways. In the present paper, the UC process was characterized and the luminescence was evaluated according to the procedure of the CIE to associate the UC emitted spectrum with the chromaticity diagram.

II. EXPERIMENTAL DETAILS

Glassy samples with composition $60\text{PbO}-40\text{GeO}_2$ (in wt. %) and containing Yb_2O_3 , Tm_2O_3 , and Ho_2O_3 were prepared using the melting-quenching technique. The Yb^{3+} ions concentration was fixed using Yb_2O_3 (3.2 wt. %). Samples with different relative amounts of Tm_2O_3 / Ho_2O_3 : 0.4/1.6; 0.4/2.0; 0.4/1.0; 0.5/0.8; 0.5/0.9; 0.6/0.9 (in wt. %) were prepared and studied. The reagents were melted at $1200\,^{\circ}\text{C}$ in an alumina crucible, for 1 h, and stirred during the melting to obtain a homogeneous material, quenched in preheated brass mold, annealed at $420\,^{\circ}\text{C}$ for 1 h to avoid internal stress and cooled to room temperature. The fabricated

²Departamento de Engenharia de Sistemas Eletrônicos, Escola Politécnica da USP, São Paulo, SP, Brazil

³Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil

a) Author to whom correspondence should be addressed. Electronic mail: cid@df.ufpe.br.

glasses were cut and polished to obtain samples with 2.5 mm thickness and parallel faces. WLG was obtained for the following concentrations of the doped species: Yb_2O_3 (3.2 wt. %), Tm_2O_3 (0.6 wt. %), and Ho_2O_3 (0.9 wt. %) and only the results for these concentrations will be presented. The other concentrations correspond to different colors in the CIE diagram.

The optical absorption and luminescence measurements were performed at room temperature. The absorption spectra were measured using a commercial spectrophotometer and the luminescence experiments were made exciting the samples with a continuous-wave (CW) diode laser operating at 980 nm, in resonance with the Yb³⁺ transition ($^2F_{7/2} \rightarrow ^2F_{5/2}$). The luminescence spectra were analyzed through a spectrometer attached to a photomultiplier and computer.

III. RESULTS AND DISCUSSION

The absorption spectrum of the sample with relative amount of $Tm_2O_3/$ Ho_2O_3 of 0.6/0.9 (in wt. %) is shown in Fig. 1. The 4f-4f absorption transitions from the ground to excited states associated to the Ho^{3+} , Tm^{3+} , and Yb^{3+} ions are indicated in the figure. The bands centered at $\approx\!450,\approx\!680,$ and $\approx\!800\,\mathrm{nm}$ are due to the Tm^{3+} transitions $^3H_6\to^1G_4,^3H_6\to^3F_{2.3},$ and $^3H_6\to^3H_4,$ respectively. The bands related to the Ho^{3+} ions, centered at $\approx\!450,\approx\!480,\approx\!530,\approx\!640,$ and $\approx\!930\,\mathrm{nm},$ are due to transitions $^5I_8\to(^5F_1;~^5G_6),~^5I_8\to(^5F_2;~^5F_3),~^5I_8\to(^5F_4;~^5S_2),~^5I_8\to^5F_5,$ and $^5I_8\to^5I_5,$ respectively. The absorption band centered at $\approx\!980\,\mathrm{nm}$ is associated to the Yb^{3+} ions (transition $^2F_{7/2}\to^2F_{5/2}$).

Figure 2 shows the luminescence spectra for excitation at 980 nm obtained with different laser intensities. The emission centered at $\approx\!477\,\mathrm{nm}$ (blue light) corresponds to the Tm^{3+} ions (transition $^{1}\mathrm{G}_{4} \rightarrow ^{3}\mathrm{H}_{6}$). The luminescence centered at $\approx\!650\,\mathrm{nm}$ (red light) may have contributions from Tm^{3+} ions (transition $^{1}\mathrm{G}_{4} \rightarrow ^{3}\mathrm{F}_{4}$) and Ho^{3+} ions (transition $^{5}\mathrm{F}_{5} \rightarrow ^{5}\mathrm{I}_{8}$). The emission at $\approx\!550\,\mathrm{nm}$ (green light) is attributed to the Ho^{3+} (transition $^{5}\mathrm{S}_{2},\,^{5}\mathrm{F}_{4}) \rightarrow ^{5}\mathrm{I}_{8}$). The Ho^{3+} transition $^{5}\mathrm{F}_{3} \rightarrow ^{5}\mathrm{I}_{8}$ is in the blue region, but we attribute most of

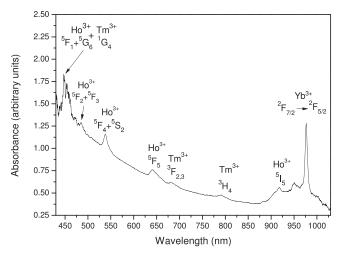


FIG. 1. Absorbance spectra of the ${\rm Tm^{3+}/Ho^{3+}/Yb^{3+}}$ doped PbO-GeO₂ glasses. The labels indicate the excited state reached from the ground state of each rare-earth ion.

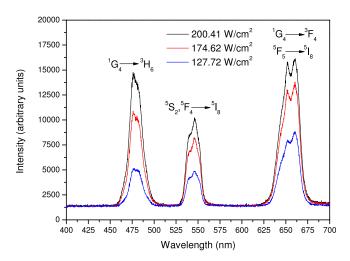


FIG. 2. Luminescence spectrum of the Tm³⁺/Ho³⁺/Yb³⁺ doped PbO-GeO₂ glass for excitation at 980 nm with different laser intensities.

the blue light to Tm^{3+} ions (transition ${}^{1}G_{4} \rightarrow {}^{3}H_{6}$) that is known to have very large oscillator strength.

The UC process that originates the multicolor emission is illustrated in Fig. 3. It is known that the Yb^{3+} transition $^2F_{7/2} \rightarrow ^2F_{5/2}$ has larger cross-section than the Tm^{3+} and Ho^{3+} transitions originating from the ground state. Hence, we consider that when the sample is excited by the 980 nm laser, Yb^{3+} ions absorb efficiently the infrared radiation. Due to the large Yb^{3+} concentration, energy transfer (ET) from the excited Yb^{3+} ions to the Ho^{3+} and Tm^{3+} ions is the dominant process contributing for the UC luminescence. The energy mismatch in the ET events is compensated by emission of phonons. In the case of Ho^{3+} ions, the green emission is due to two conseccutive ET events from excited itterbium

ions:
$$Yb^{3+}$$
 ($^2F_{5/2}$) $\stackrel{\it ET}{\longrightarrow}$ Ho^{3+} (5I_6) $\stackrel{\it ET from Yb^{3+}}{\longrightarrow}$ Ho^{3+} (5F_4)

 $\xrightarrow{light\ emission}$ Ho³⁺ (5I_8). The Ho³⁺ ions may contribute for the emission centered at \approx 658 nm according to following steps

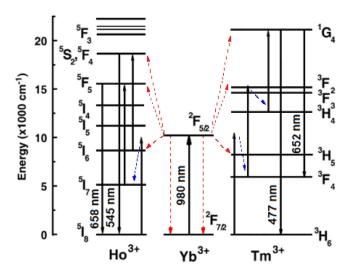


FIG. 3. Simplified energy level diagram of Ho³⁺, Yb³⁺, and Tm³⁺ ions. The radiative transitions and energy transfer from Yb³⁺ to Ho³⁺ and Yb³⁺ to Tm³⁺ are indicated by black solid lines and red dashed lines, respectively. Phonon emissions are represented by dashed blue lines.

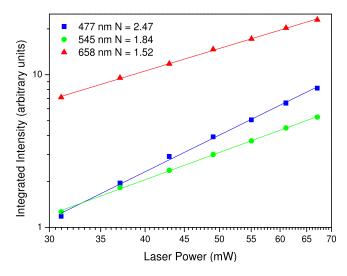


FIG. 4. Dependence of the upconversion intensity with the laser power. The slopes of the straight lines are indicated by N = 1.52, 1.84, and 2.47 corresponding to emissions centered at 658, 545, and 477 nm, respectively.

that include non-radiative decay (NRD) between neighbor levels: Ho^{3+} (5I_6) \xrightarrow{NRD} Ho^{3+} (5I_7) $\xrightarrow{ET from \ Yb^{3+}}$ Ho^{3+} (5F_5) $\xrightarrow{light \ emission}$ Ho^{3+} (5I_8). In the case of Tm^{3+} ions, the luminescence at \approx 477 nm and \approx 652 nm are associated to the transitions $^1G_4 \rightarrow ^3H_6$ and $^1G_4 \rightarrow ^3F_4$, respectively. The 1G_4 state is populated through the following pathway: Yb^{3+} ($^2F_{5/2}$) \xrightarrow{ET} Tm^{3+} (3H_5) \xrightarrow{NRD} Tm^{3+} (3F_4) $\xrightarrow{ET from \ Yb^{3+}}$ Tm^{3+} (3F_2) \xrightarrow{NRD} Tm^{3+} (3H_4) $\xrightarrow{ET from \ Yb^{3+}}$ Tm^{3+} (1G_4). The emission at \approx 658 nm is attributed to the Ho^{3+} ions (transition $^5F_5 \rightarrow ^5I_6$).

The UC luminescence intensity, I_{UC} , as a function of the laser power, P, was measured to identify the number of laser photons that participate in the UC process and to corroborate the proposed UC pathways. The linear behavior shown in the log-log plot of Fig. 4 indicates absence of saturation and the

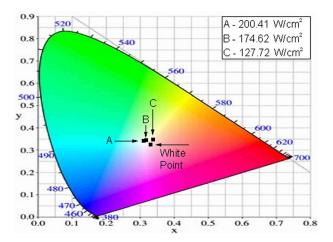


FIG. 5. CIE chromaticity diagram. Points A, B, and C with coordinates (0.31; 0.35), (0.32; 0.35) and (0.34; 0.35) correspond to the light emitted by the sample studied in this work, excited with different laser intensities. The standard white light corresponds to (0.33; 0.33).

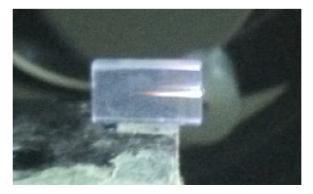


FIG. 6. Photography of the sample under $980\,\mathrm{nm}$ CW laser excitation (Laser intensity: $200.41\,\mathrm{W/cm^2}$).

slopes of the straight lines give the number of laser photons, N, contributing for emission of each UC photon. The slopes determined are 2.47 (blue emission), 1.52 (red emission), and 1.84 (green emission) indicating the participation of three laser photons for the blue generation and two laser photons for the red and green emissions. These results are in agreement with the pathways illustrated by Fig. 3 and indicate that the red emission is essentially due to the Ho³⁺ ions.

In order to evaluate the appropriateness of the samples to WLG the UC emission spectrum was converted to the CIE chromaticity diagram and plotted in Fig. 5. The calculated CIE coordinates (0.31; 0.35), (0.32; 0.35), and (0.35; 0.35) for the sample with Tm_2O_3 (0.6 wt. %) and Ho_2O_3 (0.9 wt. %) excited with different intensities are very close to the ideal white light. The other samples with different relative concentrations of Tm_2O_3 and Ho_2O_3 produced a set of CIE coordinates that correspond to different colors in the visible range.

Figure 6 shows a photo of the sample emitting strong white light for excitation with 200.41 W/cm² using a CW diode laser (980 nm). The use of a proper glass is very important for obtaining large UC emissions since the quantum efficiency of the RE ions depend strongly on the glass matrix. The PGO glass presents cutoff phonon energy smaller than borate, silicate, and phosphate glasses and thus is a better upconverter. Of course the choice of the RE ions (their concentration, RGB oscillator strengths, and excitation wavelength) is another relevant point to achieve efficient WLG. We recall that in our recent paper based on the same glass but doped with Er3+/Yb3+/Tm3+ (Ref. 19), we could not find the good relative concentration of the RE ions to reach the white region of the CIE chromaticity diagram and catch the standard white point. The exchange of Er³⁺ ions by Ho³⁺ ions was crucial in order to obtain larger green and red emissions and then we obtained the appropriate balance between the three primary colors. Incidentally, we notice that this behavior was observed for other glasses 13-15 showing that the choice of Tm³⁺/Ho³⁺/Yb³⁺ is better than $Er^{3+}/Yb^{3+}/Tm^{3+}$.

IV. SUMMARY

We demonstrated the simultaneous generation of the blue, green, and red light by frequency upconversion luminescence in rare-earth doped PbO-GeO $_2$ glass under CW excitation at 980 nm. Intense upconversion luminescence bands at \approx 477 nm, \approx 550 nm, and \approx 660 nm were observed. White light generation was obtained adjusting the concentration of Ho $^{3+}$, Tm $^{3+}$, and Yb $^{3+}$ ions and the laser intensity. The results indicate that PbO-GeO $_2$ glass (doped with Tm $^{3+}$ /Ho $^{3+}$ /Yb $^{3+}$) excited with commercially available diode lasers is a potential candidate for applications in white displays.

ACKNOWLEDGMENTS

We acknowledge financial support from the Brazilian Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq) and the Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE). The work was performed in the framework of the Photonics National Institute (INCT de Fotônica) project.

- ⁵Rare-Earth Doping of Advanced Materials for Photonic Applications, edited by V. Dierolf, Y. Fujiwara, U. Hommerich, P. Ruterama, and J. M. Zavada, MRS Symposium Proceedings Series. Vol. III (Cambridge University Press, Cambridge, 2013).
- ⁶C. Zhu, Y. Yang, X. Liang, S. Yuan, and G. Chen, J. Lumin. **126**, 707 (2007).
- ⁷Z. Cui, G. Jia, D. Deng, Y. Hua, S. Zhao, L. Huang, H. Wang, H. Ma, and S. Xu, J. Lumin. **132**, 153 (2012).
- ⁸C. H. Huang and T. M. Chen, J. Phys. Chem. C 115, 2349 (2011).
- ⁹V. Mahalingam, R. Naccache, F. Vetrone, and J. A. Capobianco, Opt. Express 20, 111 (2012).
- ¹⁰S. F. L. Luis, A. J. Afonso, J. P. Martínez, M. J. Ramos, A. C. Yanes, J. D. Castillo, and V. D. Rodríguez, J. Alloys Compd. 479, 557 (2009).
- ¹¹S. Xu, H. Ma, D. Fang, Z. Zhang, and Z. Jiang, Mater. Lett. **59**, 3066 (2005)
- ¹²Y. Dwivedi, A. Rai, and S. B. Rai, J. Appl. Phys. **104**, 043509 (2008).
- ¹³N. Q. Wang, X. Zhao, C. M. Li, E. Y. B. Pun, and H. Lin, J. Lumin. 130, 1044 (2010).
- ¹⁴L. X. Sun, H. Gong, B. J. Chen, H. Lin, and E. Y. B. Pun, J. Appl. Phys. 105, 106109 (2009).
- ¹⁵H. Gong, D. Yang, X. Zhao, E. Y. B. Pun, and H. Lin, Opt. Mater. 32, 554 (2010).
- ¹⁶L. Xing, R. Wang, W. Xu, Y. Qian, Y. Xu, C. Yang, and X. Liu, J. Lumin. 132, 1568 (2012).
- ¹⁷X. Liu, B. Chen, E. Y. B. Pun, H. Lin, C. Liu, and J. Heo, Mater. Lett. 61, 3751 (2007).
- ¹⁸D. Li, Y. Wang, X. Zhang, G. Shi, G. Liu, and Y. Song, J. Alloys Compd. 550, 509 (2013).
- ¹⁹M. E. Camilo, T. A. A. Assumpção, D. M. da Silva, D. S. da Silva, L. R. P. Kassab, and C. B. de Araújo, J. Appl. Phys. **113**, 153507 (2013)

¹M. Yamane and Y. Asahara, *Glasses for Photonics* (Cambridge University Press, Cambridge, 2000).

²A. J. Kenyon, Prog. Quantum Electron. **26**, 225 (2002).

³F. Vetrone, R. Naccache, A. Zamarron, A. J. de la Fuente, F. Sanz-Rodriguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, ACS Nano 4, 3254 (2010).

⁴H. Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, Adv. Mater. 23, 2675 (2011).