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Abstract We will present an analysis of the solar neutrino
data in the context of a 3 + 1 quasi-Dirac neutrino model
in which the lepton mixing matrix is given at tree level
by the tribimaximal matrix. When radiative corrections are
taken into account, new effects in neutrino oscillations, as
νe → νs , could appear. This oscillation is constrained by the
solar neutrino data. In our analysis, we have found an al-
lowed region for our two free parameters ε and m1. The ra-
diative correction, ε, can vary approximately from 5 × 10−9

to 10−6 and the calculated fourth mass eigenstate, m4, varies
in the interval 0.01–0.2 eV, at 2σ level. These results are in
agreement with the ones presented in the literature in 2 + 1
and 2 + 2 quasi-Dirac models.

1 Introduction

The nature of the neutrino, Dirac or Majorana, is still an
open question today. This notwithstanding, these are not the
only options. For example, neutrinos may be Pseudo-Dirac
(PD) [1–3] or Quasi-Dirac (QD) [4]. The former PD neu-
trinos arise when two active Majorana neutrinos are mass
degenerate. In the QD neutrinos case the mass degeneration
occurs with an active and a sterile neutrino.1 This sort of
neutrinos is called sterile because they do not couple to the
Z and neither to the W . They only couple, in the context
of the known physics, to gravity. In both cases the two Ma-
jorana mass degenerate neutrinos are equivalent to a Dirac
one. The QD neutrino also may be generated if the Majorana
mass term of the sterile neutrinos is smaller than the Dirac
mass term. In both cases, PD and QD neutrinos, corrections

1Usually both terms are used as synonymous in literature. However,
we prefer the present notation which allows one to distinguish different
mechanism in model building.
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at the tree level or at the loop level will break the mass de-
generacy. Generally, in models in which one of these op-
tions are implemented they are applied to all neutrinos. For
instance, all the three active neutrinos are Dirac, Majorana,
PD or QD particles.

An interesting QD situation happens when only one of
the active neutrinos together with a sterile one are mass de-
generated at tree level. In this case the three flavor states are,
also at tree level, a linear combination of two massive Ma-
jorana neutrinos and the left component of a Dirac neutrino.
This possibility naturally arises when S3 symmetry is imple-
mented in the neutrino Yukawa interactions [5–7]. In the QD
scheme of Refs. [5–7] the PMNS matrix is, at tree level, the
tribimaximal (TBM) [8] and the scheme is not in agreement
with the recent result of a non-zero θ13 angle [9–11]. Thus,
we can ask ourselves if in the model of Ref. [5] quantum
corrections may induce an appropriate value for that mix-
ing angle. At tree level this is possible if the S3 symmetry is
not implemented in the charged lepton Yukawa interactions
and an appropriate value for θ13 is obtained [12]. However,
quantum corrections imply, in principle, a departure from
the TBM that breaks the mass degeneracy and the PMNS
matrix becomes a 4 × 4 matrix. This implies oscillations of
active neutrinos into the sterile one and, for this reason, it
is mandatory to analyze how the solar neutrino data con-
strain the quantum corrections. The case of a QD with small
Majorana masses for the sterile neutrinos was considered in
Ref. [13]. However, those authors analyzed in detail only
QD 2 + 1 and 2 + 2 schemes. It is not obvious if a QD 3 + 1
scheme,2 as the present one, satisfies the same constraint as
shown in Ref. [13].

We know at present more about the parameters of neu-
trino oscillations and such knowledge is crucial for us to
restructure the Standard Model. For a recent statistical anal-
ysis of all experimental neutrino data available see [14, 15].

2Traditionally in the literature the 3 + 1 scheme refers to three active
neutrinos and one sterile neutrino which is necessarily heavier than the
others. We stress the fact that our “3 + 1” scheme is a quasi-Dirac one.
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Moreover, since the LEP data, we know that there are only
three active neutrinos [16]. Thus, an extra neutrino has to
be sterile in the sense explained above. Once sterile neutri-
nos are added they can be of several types depending on the
mass scale related with them. For a recent review of this sort
of neutrinos see Refs. [17, 18]. They may be or not related
to some anomalies3 in neutrino data [19–23] or with the re-
sults of WMAP-7 [24], which indicates the existence of four
relativistic species (Neff).

The main objective of this paper is the following. We will
apply the available solar neutrino data in a more realistic QD
3 + 1 case, considering the possibility of electronic neutri-
nos (νe) oscillating to sterile neutrinos (νs ). For the statisti-
cal analysis, our model has two parameters: one mass eigen-
state (m1) and the radiative correction (ε). This is an im-
portant difference if we compare our analysis with the one
made by de Gouvêa et al. in Sect. III.A (2+1 case) [13]. De-
spite the differences in the model building, we have obtained
an allowed region for ε that is similar to the corresponding
values found in [13], which is ε ≈ 10−7. We stress the fact
that the mass splitting of the would-be Dirac neutrinos do
not solve the experimental anomalies presented in [19–23],
however, it is consistent with WMAP-7 results [24], since
the calculated fourth mass eigenstate, m4, varies in the in-
terval 0.01–0.2 eV, at 2σ level.

The content of this article is the following: first, in Sect. 2
we review the basic features of our quasi-Dirac model,
showing its basic structure and possible interactions with the
correspondent radiative corrections to the neutrino mass ma-
trix. In Sect. 3 we briefly describe all the solar neutrino ex-
periments and their respective results. Also we include the
method of statistical analysis used. In Sect. 4 we show in
what condition the model is consistent with solar data, show-
ing the allowed regions in the parameter space (m1, ε) for
our quasi-Dirac model and discussing the results. Finally,
some concluding remarks are presented in Sect. 5.

2 The quasi-Dirac scheme

Recently it was shown that it is possible that all neutrino
flavors are part Dirac and part Majorana [5, 6]. The latter
occurs because two of the four Majorana neutrinos are mass
degenerate and have opposite parity, so they are equivalent
to one Dirac neutrino. As we said before, when these two
neutrinos form a Dirac state and they are active, we call them
pseudo-Dirac neutrinos. When there is one active and one
sterile, they are called quasi-Dirac neutrinos. The other two
have distinct Majorana masses. In our particular model, we

3When we refer to neutrino anomalies we are talking about the need of
more families to explain the results of, for example, LSND and Mini-
BooNE experiments and others that require �m2 > 0.1 eV2.

point out that there are initially three right-handed neutri-
nos. Two of them are integrated and we obtain a model QD
“3 + 1”—three active neutrinos and one sterile.

In this section we are briefly going to describe the con-
struction of our model (Sect. 2.1). In Sect. 2.2, we show the
main interactions that are going to be used to obtain the ra-
diative corrections for the neutrino masses. These radiative
corrections are very important to our analysis: we study their
effects on the break of the degeneracy between the two Ma-
jorana neutrinos that form a Dirac neutrino at tree level. For
more details of the model building that we have used here,
see [5, 12].

2.1 The model

The model we are going to present here is based on a
gauged B − L symmetry with a quasi-Dirac neutrino in
which the right-handed neutrinos carry exotic local B − L

charges [5, 12].
When the S3 symmetry is added to the model, the left-

handed leptons belong to the reducible triplet representation
(3 = (Le,Lμ,Lτ )) since all of them have the same B − L

charge.
However, unlike the usual case when the three right-

handed neutrinos have L = 1, in this model they have dif-
ferent B − L charge, so they can transform under S3 only
as a singlet 1 = nμR with B − L = −4, and a doublet,
2 = (neR,nτR), with B − L = 5. In the neutrino Yukawa
sector, the S3 triplet, (Le,Lμ,Lτ ), can be decomposed into
irreducible representations as 3 = 1 + 2, then we can write
the singlet and doublet as follows:

L2 = 1√
3
(Le + Lμ + Lτ ) ∼ 1,

(L1,L3) =
(

1√
6
(2Le − Lμ − Lτ ),

1√
2
(Lμ − Lτ )

)
∼ 2.

(1)

The scalar sector has two scalar doublets of SU(2) with
weak hypercharge Y = −1 that are denoted by Φ1,2 =
(ϕ0

1,2 ϕ−
1,2)

T . They are singlets of S3 and we will denote

〈ϕ0
1(ϕ0

2)〉 = v1(v2)/
√

2. If nμR is considered light, but neR

and nτR heavy (with masses mne and mnτ , respectively), we
can integrate out the heavy degrees of freedom. After that,
the effective lepton Yukawa interactions are given by a di-
mension five effective Lagrangian plus a Dirac mass term,
as follows:

−Leff
ν = h1L̄2Φ1nμR + h2

2

mne

[(
Lc

1

)
R

Φ∗
2

][
L1LΦ∗

2

]

+ h2
3

mnτ

[(
Lc

3

)
R

Φ∗
2

][
L3LΦ∗

2

] + H.c., (2)

where the mixing angles in the (neR,nτR) sector have been
absorbed in the dimensionless couplings, h2 and h3.
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From the Yukawa interactions in (2), we obtain the mass
matrix in an appropriate basis [5], (νe νμ ντ nc

μ)L. At tree
level the mass matrix is diagonalized by the following 4 × 4
matrix:

U0 =
(

UTBM 03×1

01×3 1

)
, (3)

where UTBM is the tribimaximal matrix and 0 denote the
matrix row or column with entries equal to zero.

Since the model has more interactions than those in the
Standard Model, the neutrino mass matrix, when radiative
corrections are taken into account, is not necessarily diago-
nalized by U0, written in Eq. (3), but for U0 → U , where U

is now another 4 × 4 matrix which, in principle, is not of the
TBM type. In fact the main objective of this paper is verify
if the appropriate value for θ13 could arise only from pertur-
bation of the TBM mixing matrix through radiative correc-
tions and keeping agreement with solar neutrino data. This
can be obtained in two different manners: (1) if (VPMNS),
which is now a 4 × 4 matrix, is such that (VPMNS)13 has
the correct value and (VPMNS)14 ∼ 0; or (2) both (VPMNS)13

and (VPMNS)14 are different from zero but there is a non-
negligible active neutrino into sterile neutrino oscillation.
This would imply the disappearance of ν̄e in agreement
with experimental data from Daya Bay, RENO and Double-
Chooz.

2.2 Quantum corrections

When radiative corrections are taken into account—see
Fig. 1—the neutrino mass matrix can be written as

Mν = M0ν + �Mν, (4)

where M0ν is the mass matrix at tree level [12] and �Mν

arises from 1-loop corrections. In order to calculate the mass

Fig. 1 A 1-loop contribution for the Majorana mass matrix in the fla-
vor basis induced by charged scalars. The • in the left vertex denotes
interactions in Eq. (5)

corrections, �Mν , we have to consider all the Yukawa in-
teractions in the lepton and scalar sectors. From Eq. (2) the
scalar-charged lepton interactions are

−Llνφ
CC = mD√

3v1
(ēL + μ̄L + τ̄L)

(
νc
D

)
R
ϕ+

1

−
[

1√
6

m1

v2
2

[
2
(
ec

)
R

+ (
μc

)
R

+ (
τ c

)
R

]
ν1L

− 1√
2

m3

v2
2

[(
μc

)
R

− (
τ c

)
R

]
ν3L

]

× 1√
2

(
v∗

2 + Reϕ0∗
2 + iImϕ0∗

2

)
ϕ+

2 + H.c. (5)

and we have used νM
(1,3)L = ν(1,3)L, νM

2L = ν2L,
√

2(νc
D)R =

nμR . The notation is as follows: m1 and m3 are the Majorana
masses, while mD is the common mass to the degenerated
Majorana neutrinos, all of them at the tree level.

The Yukawa interactions from which the charged leptons
get mass are mainly the diagonal ones,

Ll
yukawa ≈ G

∑
l

(ν̄l l̄)
†
LΦllR + H.c. (6)

where Φl = (ϕ+
l ϕ0

l )T , and l = e,μ, τ , where G is a di-
mensionless constant. The charged lepton mass matrix is al-
most diagonal [5], hence ml ≈ Gvl , and the neutrino inter-
actions with charged leptons are given by (ml/vl)ν̄lLlRϕ+

l .
We stress the fact that it is the neutrino flavor basis that is
important here. On the other hand, the scalar potential in-
cludes the following interactions:

V (Φ1,Φ2, . . .)

∝ λ1lΦ
†
l Φ1Φ

†
1Φl + λ2lΦ

†
l Φ2Φ

†
2Φl

+ kxΦ
T
1 εΦ

SM
φx + kyΦ

T
2 εΦ

SM
φy + H.c., (7)

where l = e,μ, τ . In Eq. (7), ΦSM denotes a scalar dou-
blet with Y = +1 and without B − L charge, and φx,φy

are scalars carrying also B − L charges [5]. kx and ky are
coupling constants with mass dimension and ε is the anti-
symmetrical tensor.

With the interactions in Eqs. (5), (6), and (7), we obtain
diagrams like the one in Fig. 1. As we mentioned before,
these sort of diagrams provide corrections to the Majorana
masses for the active neutrinos, i.e., (νaL)cνbL. Also correc-
tions to the Dirac mass terms ν̄aLnμR arise from diagrams
similar to the one shown in Fig. 1. The 1-loop corrections to
the neutrino mass matrix (Mν ) in χ ′

i = N ′
iL + (N ′

iL)c basis
where N ′

iL = (νe νμ ντ nc
μ)TL are written in the following:
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Mν = m1

⎛
⎜⎜⎜⎜⎝

2
3 (1 − εe) − 1

3 (1 − 2εe) − 1
3 (1 − 2εe)

mD√
3m1

(1 + ε′
e)

− 1
3 (1 − 2εμ) ( 1

6 + m3
2m1

)(1 + 2εμ) ( 1
6 − m3

2m1
)(1 + εμ) mD√

3m1
(1 + ε′

μ)

− 1
3 (1 − ετ ) ( 1

6 − m3
2m1

)(1 + ετ ) ( 1
6 + m3

2m1
)(1 + ετ )

mD√
3m1

(1 + ε′
τ )

mD√
3m1

(1 + ε′
e)

mD√
3m1

(1 + ε′
μ) mD√

3m1
(1 + ε′

τ ) 0

⎞
⎟⎟⎟⎟⎠ . (8)

From Eq. (6), G = me/ve = mμ/vμ = mτ/vτ , we can
express the radiative corrections as

εl = 1

8
√

2π2

v1

v2
λ1lm

2
l ABl

[
m2

l

[
1 − ln

(
m2

l /m2
ϕ+

2

)]

− m2
ϕ+

2
+ Cl ln

(
Cl/m2

ϕ+
2

)]
,

ε′
l = 1

8π2

v2

v1
λ2lm

2
l ABl

[
m2

l

[
1 − ln

(
m2

l /m2
ϕ+

2

)]

− m2
ϕ+

2
+ Cl ln

(
Cl/m2

ϕ+
2

)]
.

(9)

When all ε’s and ε′’s in Eq. (8) are equal to zero, the mass
matrix is the same as the one represented at tree level.

In Eq. (9), A, Bl , and Cl are given by

A =
√

3kxky〈φx〉〈φy〉
m6

ϕ+
2

,

Bl =
m6

ϕ+
2

2(m2
l

− m2
ϕ+

1
)(m2

l
− m2

ϕ+
2

)(m2
l

− m2
ϕ+

l

)(m2
l

− m2
ϕ0

SM

)
,

Cl = m2
ϕ+

l

+ m2
ϕ+

2
+ m2

ϕ+
1

+ m2
ϕ+

3
− 5m2

l .

(10)

In Eq. (10), mϕ+
i

are the charged scalar masses and ml are
the charged lepton masses.

The general form of the mass matrix in Eq. (8) is very
complicate to treat, so we will do some approximations in
order to simplify our analysis. As we can see in Eqs. (10),
we have six dimensionless free parameters: λ1l and λ2l ,
where l = e,μ, τ . Instead of choose the value of each one
independently, we use two conditions denoted as CASE A
and CASE B, detailed below, and then we have their re-
spective values defined. However, we stress that this nu-
merical choice is not relevant and crucial for our analy-
sis.

1. CASE A: λ1em
2
e = λ1μm2

μ = λ1τm
2
τ ≡ M2

1 and λ2em
2
e =

λ2μm2
μ = λ2τm

2
τ ≡ M2

2 . We will also assume that M1 ≈
M2 ∼ 0.001 GeV. Note that for this case the value for
λ1e ∼ λ2e < 4, and the value for the others is even lower.

In this case we have εe = εμ = ετ = ε and ε′
e = ε′

μ =
ε′
τ ≡ ε′ and

ε ≈
√

3

16π2

v1

v2

kx ky〈φx〉〈φy〉M2
1

m2
ϕSM

M4
,

ε′ ≈ v2
2√

2v2
1

ε.

(11)

M is a typical mass in the charged scalar sector and m2
ϕ0

SM

is the mass square of the Higgs of the SM. We will use
all the scalar masses equal to 125 GeV. In this condition
we have

ε = 5 × 10−21

GeV4
kxky〈φx〉〈φy〉,

ε′ = 7 × 10−21

GeV4
kxky〈φx〉〈φy〉,

(12)

where kx,y and φx,y are in GeV units. For ε � 1 we need
kxky〈φx〉〈φy〉 ∼ 1020 GeV4 which implies four mass
scale of the order of 100 TeV, or at least two masses in
the scale of the grand unification. We recall that these di-
mensional parameters are not related to the electroweak
scale. Hence, we have put our ignorance about the real
values for the parameters in terms of the scalar sector
that is not constrained by the electroweak scale.

2. CASE B: λ1eme = λ1μmμ = λ1τmτ ≡ M1 and λ2eme =
λ2μmμ = λ2τmτ ≡ M2. With the same assumption of the
CASE A we have

εl = 5 × 10−20

GeV5
kxky〈φx〉〈φy〉ml,

ε′
l = 7 × 10−20

GeV5
kxky〈φx〉〈φy〉ml,

(13)

where kx,y and φx,y are in GeV units. In this case we
have a certain hierarchy in the radiative corrections (εe �
εμ � ετ ). The radiative corrections ετ and ε′

τ can be �1
and

εe = me

mτ

ετ , εμ = mμ

mτ

ετ ,

ε′
e = me

mτ

ε′
τ , ε′

μ = mμ

mτ

ε′
τ ,

(14)

note that for this case the value for λ1e ∼ λ2e < 2, and the
value for the others is even lower.



Eur. Phys. J. C (2013) 73:2596 Page 5 of 12

We are going to use both of these approximations in the
following analysis. Therefore, we have two main free pa-
rameters which were written in Eq. (8): the mass m1 (in
eV units) and the radiative corrections (dimensionless) pa-
rameter, ε for the CASE A; and ετ = ε and ε′

τ = ε′ for the
CASE B. For this case, the other ε’s and ε′’s are calculated
by Eq. (14). We notice that ετ ≈ ε′

τ , then we are going to
express our results, for the CASE B, using ετ = ε.

This notwithstanding, it is necessary to analyze how the
solar neutrino data constraint the values of ε’s since there
are active to sterile neutrino oscillation. This is the issue of
the next section.

3 Solar neutrinos constraints

The detection of neutrinos traveling from the sun has given
us a tremendous evidence of neutrino oscillation. We might
say that it was the first time that physicists were doing
astronomy with neutrinos and several aspects of the solar
behavior have being observed and understood since then.
From Homestake to SNO, nowadays we have a consider-
able amount of significant data, which also gives us the op-
portunity to use this fact to constrain and test the validity
of models. This is exactly what we are going to do: con-
straining the parameters of the quasi-Dirac model presented
in Sect. 2 and checking its validity in confrontation with the
solar neutrino data. This data is taken from the following
experiments: Homestake [25], Gallex/GNO [26], Sage [27],
Kamiokande [28], Super-Kamiokande [29], SNO [30] and
Borexino [31]. In Sect. 3.1 we are going to present a small
review about these experiments and their main numerical
results. In Sect. 3.2 we present how to treat the oscilla-
tion physics of solar neutrinos and the main points of our

statistical analysis. For recent reviews on solar neutrinos
see [32–34].

3.1 Experimental data

For the statistical analysis, Sect. 3.2, we are going to con-
sider the entire set of the solar neutrino data presented in
Table 1. This table presents each solar neutrino experiment
and the measured flux (φexp). Depending on the experiment,
the flux is measured by charged, neutral current reaction and
elastic scattering.

Elastic scattering experiments, νa + e− → νa + e− (a =
e,μ, τ ), include Kamiokande [28], Super-Kamiokande [29],
Borexino [31, 35]. Kamiokande and Super-Kamiokande de-
tected 8B neutrinos with threshold of 7.5 MeV and 5 MeV,
respectively. Borexino, on the other hand, detects neutri-
nos from the 7Be line with an energy of 0.86 MeV. Re-
cently, Borexino has also measured for the first time the
flux of low energy pep neutrinos: φpep = (1.6 ± 0.3) ×
108 cm−2 s−1 [36]. However, we do not use this value in
our analysis.

SNO experiment [30] detects electronic neutrinos in a
charged current reaction, νe +d → p+p+e− (threshold of
5 MeV). Also, there is the detection of other neutrino flavors
by neutral current reaction, νa + d → n + p + νa (threshold
of 2.225 MeV), and elastic cross section. SNO had three
stages and obtained different fluxes [37–39] shown in Ta-
ble 1.

We used also the Homestake experiment [25], νe +
37Cl → 37Ar + e− (threshold of 0.814 MeV), and the 71Ga
experiments: GALLEX/GNO [26] and SAGE [27] (thresh-
old of 0.233 MeV). In Table 1, we referred to all gallium
experimental results [40]. We notice that they are sensitive
to almost the entire neutrino solar spectrum.

Table 1 Resume of solar
neutrino data. Also including
the experimental uncertainties

a 1 SNU = 10−36

captures/atom/sec

Experiment Experimental data

Homestake [25] 2.56 ± 0.16 ± 0.16 SNUa

Gallex/GNO and Sage [40] 68.1 ± 3.75 SNU

Kamiokande [28] φKam = (2.80 ± 0.19 ± 0.33) × 106 cm−2 s−1

SK [29] φSK = (2.35 ± 0.02 ± 0.08) × 106 cm−2 s−1

SNO—D2O [37] φCC = (1.76+0.06
−0.05(stat.)+0.09

−0.09(syst.)) × 106 cm−2 s−1

φES = (2.39+0.24
−0.23(stat.)+0.12

−0.12(syst.)) × 106 cm−2 s−1

φNC = (5.09+0.44
−0.43(stat.)+0.46

−0.43(syst.)) × 106 cm−2 s−1

SNO—NaCl [38] φCC = (1.59+0.08
−0.07(stat.)+0.06

−0.08(syst.)) × 106 cm−2 s−1

φES = (2.21+0.31
−0.26(stat.) ± 0.10(syst.)) × 106 cm−2 s−1

φNC = (5.21 ± 0.27(stat.) ± 0.38(syst.)) × 106 cm−2 s−1

SNO—3He [39] φCC = (1.67+0.05
−0.04(stat.)+0.07

−0.08(syst.)) × 106 cm−2 s−1

φES = (1.77+0.24
−0.21(stat.)+0.09

−0.10(syst.)) × 106 cm−2 s−1

φNC = (5.54+0.33
−0.31(stat.)+0.36

−0.34(syst.)) × 106 cm−2 s−1

Borexino [31] φ = (4.84 ± 0.24) × 109 cm−2 s−1
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3.2 Analysis

Neutrinos are produced for several thermal nuclear reactions
in the center of the sun [41, 42] and we present them in Ta-
ble 2 extracted from [43]. The energy of these neutrinos are
of a few MeV. To be accurate, we must treat the center of the
sun as a region where the chemical composition modifies it-
self with the radius. So each reaction produces a different
flux of neutrinos and this changes, as we pointed out, with
the position from the center of the sun. Neutrino sources
are pp, hep, pep, 13N, 15O, 17F, 8B, and 7Be. Details of the
distribution of the neutrino production as a function of the
radius for each of the solar neutrino sources can be found
in [41, 42] and we used this profile in our work to average
the oscillation probabilities, since detectors only “see” these
averages.

After electronic neutrinos (νe) are produced by several
reactions and in different points of the core of the sun, they
will propagate inside the sun, which has a radius Rsun ≈
6.9×1010 cm. This propagation is described by the effective
Hamiltonian of the system in the flavor state base:

Heff(r) = Mν(Mν)†

2E
+ V (r). (15)

We emphasize that Mν = Mν(ε,m1) is taken from Eq. (8),
V (r) is the potential of the neutrino interaction with the so-
lar environment, E is the νe energy and r is the distance
from the center of the sun. The potential, V (r), can be writ-
ten as the sum of the charged current and neutral current
interaction (V (r) = Vcc(r) + Vnc(r)), which are dependent
on the electronic density (ne(r)) and neutron density (nn(r))
of the environment. Both of these quantities change with the
distance from the solar core and can be written as

V (r) = Vcc(r) + Vnc(r) = √
2GF

(
ne(r) − 1

2
nn(r)

)
. (16)

The profile of ne(r) and nn(r) used in our analysis has been
extracted from [41, 42] and GF is the Fermi coupling con-
stant.

The survival probability (Pee), for each energy and in
each point of neutrino production, is calculated from the am-
plitude Aee , which can be written as

Aee = (1 0 0 0)Uvac × diag
(
exp

(−iΦ ′
1

)
, exp

(−iΦ ′
2

)
,

exp
(−iΦ ′

3

)
, exp

(−iΦ ′
4

))

×

⎛
⎜⎜⎝

1 0 0 0
0

√
1 − Pc 0 −√

Pc

0 0 1 0
0

√
Pc 0

√
1 − Pc

⎞
⎟⎟⎠

× diag
(
exp (−iΦ1), exp (−iΦ2), exp (−iΦ3),

exp (−iΦ4)
) × U

†
mat

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ . (17)

So the survival probability is written as Pee = |Aee|2. In
Eq. (17), Umat ≡ Umat(ε,m1,E) is the matter mixing matrix
which diagonalizes the effective Hamiltonian represented by
Eq. (15). The crossing probability, which will be discussed
later, is represented by Pc. The matrix Uvac ≡ Uvac(ε,m1)

is the vacuum mixing matrix which diagonalizes Eq. (15)
when V (r) is equal to zero (vacuum regime). If we take
ε = 0, no radiative corrections, for any m1 value, Uvac is go-
ing to be the tribimaximal mixing matrix. As the elements of
Uvac, the elements of Umat are modified by the choice of the
parameters ε and m1. When the electronic neutrinos travel
to less dense regions of the sun, Umat → Uvac. The phases
Φi represent the evolution of the mass eigenstates in matter.
We express this as Φi = ∫ Rsun

r0
μ2

i (x)/(2E)dx, where μ2
i (x)

(i = 1,2,3,4) is the mass eigenvalue of Eq. (15) and r0 is
the neutrino point of production. The phase Φ ′

i has a similar
meaning as Φi , but for the vacuum propagation. We discuss
it later in this section.

In Fig. 2, we show the evolution of the mass eigen-
states in the sun for a neutrino with energy E = 5 MeV,
m1 = 0.001 eV, ε = 1.0×10−3. The solid black curve repre-
sents the mass eigenstate μ1; dotted blue, dashed green and

Table 2 Sources of solar
neutrinos: first column
represents the name of the
source which produces the
electronic neutrino inside the
sun; the second column shows
the resume reaction; the third
and fourth columns represent,
respectively, the average
neutrino energy and the
maximum neutrino energy

Source Reaction Average ν energy (MeV) Maximum ν energy (MeV)

pp p + p → d + e+ + νe 0.27 0.42

pep p + e− + p → d + νe 1.44 1.44

hep 3He + p → 4He + e+ + νe 9.63 18.78
7Be e− + 7Be → 7Li + νe 0.86 0.86
8B 8B → 8Be∗ + e+ + νe 6.74 15.00
13N 13N → 13C + e+ + νe 0.71 1.19
15O 15O → 15N + e+ + νe 0.99 1.73
17F 17F → 17O + e+ + νe 0.99 1.74



Eur. Phys. J. C (2013) 73:2596 Page 7 of 12

Fig. 2 Evolution of the mass
eigenstates inside the Sun. For
this plot we use ε = 1.0 × 10−3,
E = 5 MeV, and
m1 = 0.001 eV. Black solid
curve is for μ1; blue dotted one
for μ2; green dashed curve for
μ4 and red dot-dashed is for μ3

dot-dashed red ones represent μ2, μ4 and μ3, respectively.4

We notice that ν2 and ν4 are practically degenerate, which
is the most important characteristic of quasi-Dirac models.
It is also possible to notice that matter can break this de-
generacy for very small radius as we can notice in Fig. 2.
However, for very small ε, we see that ν2 and ν4 are practi-
cally degenerate, generating a �m2

42 that can be sensible to
oscillations: �m2

42L/(2E) ∼ 1, where L is the Sun–Earth
distance, which is about 150 million kilometers.

For instance, in the limit of ε → 0, we recover the origi-
nal and standard 3 × 3 situation without the sterile neutrino
presence, where the terms Ue1 and Ue2 solve properly the
solar neutrino problem: the deficit of νe arriving the Earth.
For ε 
= 0 and small, it is important to notice that ν2 and ν4

will be a coherent mixture—(ν2 + iν4)/
√

2—and this is an
eigenstate of the Hamiltonian in vacuum.

We know that the mass eigenstates can feel MSW reso-
nances during the propagation [44, 45]. When neutrinos go
through the MSW resonance, the conversion probability is
maximal. We remember that conversion probabilities are ob-
tained using the expression written in Eq. (17), but changing
the position of the number “1” of the line vector (1 0 0 0).
For example, Peμ is obtained using the line vector (0 1 0 0).
In principle, we can have resonances among all the mass
eigenstates, however, ν3 is the heaviest and it will not suffer
resonance—its propagation is adiabatic. Also, we can say
that the scale �m2

3i , with i = 1,2,4, can be averaged out.
In other words, this mass squared difference scale is not im-
portant for the solar neutrino oscillation phenomenon. The
moment of the resonance is represented by the matrix that

4The use of the Greek letter μi is generally used to represent the mass
eigenstates in matter; mi , on the other hand, is usually used to represent
the neutrino mass eigenstates in vacuum.

contains Pc in Eq. (17). This Pc is the crossing probabil-
ity, which represents the probability of a mass eigenstate νi

be converted to another mass eigenstate νj . In the standard
neutrino oscillation case, if the propagation is adiabatic, we
must have Pc = 0. In other words, there is no conversion be-
tween two mass eigenstates. In the instantaneous mass basis
(νm

i , for i = 1,2,3,4), where νm is the neutrino state in mat-
ter, the evolution equation is expressed as:

i
dνm

dx
=

[
1

2E
diag

(
μ2

1(x),μ2
2(x),μ2

3(x),μ2
4(x)

)

− iU†
m(x)

dUm(x)

dx

]
, (18)

where μ2
i (x) is the effective mass eigenstate calculated from

the eigenvalues of Eq. (15). If the last term of Eq. (18) is sig-
nificant compared with the first one, non-adiabatic transition
can happen. The adiabaticity parameter, represented by the
letter γ , is evaluated at the resonance point, for simplicity,
and is defined as

γij =
∣∣∣∣

(μ2
j (x)−μ2

i (x))

2E

[U†
m(x)

dUm(x)
dx

]ij

∣∣∣∣. (19)

When γij � 1 (γij � 1), the propagation is non-adiabatic
(adiabatic). Considering ν1 and ν2 (or ν4, since they are
practically degenerate), for any values of ε and m1, and eval-
uating Eq. (19), we conclude that MSW resonance and all
the propagation is adiabatic. Actually, for ε → 0, mixing an-
gles and mass squared differences extracted from our model
are very close to the experimental ones [16], so we know
from experiments that the propagation is adiabatic. As an
example, we can see in Fig. 3, evaluated for E = 5 MeV,
ε = 0.8, and m1 = 0.001 eV, that γ12 (solid black curve) is
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Fig. 3 Parameter of
adiabaticity for the ν1 → ν2
(solid black curve) and ν2 → ν4
(red dashed curve) transitions,
using ε = 0.8, E = 5 MeV, and
m1 = 0.001 eV

very large and much greater than 1. Then we can say that
Fig. 3 has showed, even for large ε, that the value of γ12

is kept large and then the propagation remains adiabatic.
Even for larger values of m1 we obtain the same pattern
and magnitude of γ12. We also can say that Fig. 3 repre-
sents the behavior and magnitude for γ14. However, since we
have a (quasi-)degenerate state between ν2 and ν4, m2 ≈ m4,
we cannot say that this transition is always adiabatic. So,
ν2 ↔ ν4 is very dependent on the values of ε and m1. In
Fig. 3, γ24 (dashed red curve) is also very high for the ε, m1

and E values that we chose. This transition, for this particu-
lar choice, is also adiabatic. The modification in the pattern
of the curve is related with the modification in the values of
the denominator in Eq. (19), but this does not modify the
adiabatic propagation. When ε becomes smaller, the adia-
baticity γ24 tends to break. We need to compute Eq. (19)
and calculate the crossing probability, Pc, for this kind of
transition.

The crossing probability can be written as [46]

Pc = e− π
2 γ |U(vac)24|2 − e− π

2 γ

1 − e− π
2 γ

, (20)

where U(vac)24 is the 24 element of the mixing matrix in vac-
uum and γ = γ24. If γ is large, we have an adiabatic prop-
agation of ν2 and ν4, and they will get out independently
of the sun, as distinct mass eigenstates. Then, in this situa-
tion, Pc = 0. On the other hand, with a very small γ , which
generally happens for very small ε, we have a non-adiabatic
propagation of ν2 and ν4, and they will get out of the sun, as
mentioned before, as a coherent mixture. Then in this situa-
tion, Pc = 0.5.

After the propagation inside the sun, neutrinos will travel
in vacuum, with a phase Φ ′

i , i = 1,2,3,4—see Eq. (17)—
where Φ ′

i = ∫
m2

i /(2E)dx and mi is the neutrino mass

eigenstate in vacuum. The integration is taken along all
the path from sun to Earth. Only �m2

24 is considered,
for certain values of ε and m1, and cannot be averaged
out. Other mass squared differences are averaged out since
�m2L/(2E) � 1. It is important to stress out that we are
ignoring Earth matter effects. An extended analysis involv-
ing four neutrino families with a great variety of �m2

14 and
mixing angles was done in [47].

The general expression of the expected event rate in the
presence of oscillations in experiment j in the four neutrino
framework is given by Rth

j :

Rth
j =

∑
k=1,8

φk

∫
dE λk(E) × [

σe,i(E)〈Pee〉

+ σx,i(E)
(
1 − 〈Pee〉 − 〈Pea〉

)]
, (21)

where E is the neutrino energy, φk and λk are, respectively,
the total neutrino flux and the neutrino energy spectrum nor-
malized to one from the solar nuclear reaction k with nor-
malization given by the model BS05(OP) in [41, 42]—see
Table 2. In Eq. (21), σe,i (σx,i ) is the νe (νx , x = μ,τ ) in-
teraction cross section in the Standard Model with the target
corresponding to experiment j , 〈Pee〉 is the average survival
probability in the production point, 〈Pea〉 and 〈Pes〉 are, re-
spectively, the average conversion probability in the produc-
tion point of νe → νa (a = μ,τ ) and νe → νs .

The χ2 test is calculated by

χ2 =
∑
j

(R
j

th − R
j
exp)

2

σ 2
j

, (22)

where R
j
exp is the experimental rate for j -experiment—see

Table 1. Generally, the rate is defined as R = φ/φSSM, where
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φSSM is the total flux of the solar standard model extracted
from the model BS05(OP) [41, 42]: Rth corresponds to a φth

that represents the oscillated flux, which is related to the pa-
rameters of our model and evaluated using Eq. (21); Rexp

is based on the flux φexp, which is the experimental value
extracted from Table 1. The χ2 is calculated for each set
of ε and m1. Note in Eq. (22) that σ 2

j is the error, which
takes into account the experimental error of a particular ex-
periment and errors associated with the flux expectations in
BS05(OP).

4 Results

From Eq. (17), we plot the probabilities for two sets of pa-
rameters (m1, ε) for the CASE A. In Fig. 4, we used as
input ε = 5.0 × 10−7 and m1 = 0.003 eV. The masses m2

and m3, which appear in Eq. (8), are calculated. To main-
tain hierarchy, for which we choose the normal one for sim-
plicity, the masses m2 and m3 will be written as follows:

m2 =
√

�m2
sun + m2

1 and m3 =
√

�m2
atm + m2

1. The values

of �m2
sun = 7.58×10−5 eV2 and �m2

atm = 2.35×10−3 eV2

are the best-fit values at 1σ taken from [16].
After introduce these values of masses in Eq. (8), we

evaluate the neutrino evolution Hamiltonian in matter,
Eq. (15), calculating the new mass eigenvalues and diago-
nalizing it to obtain the new mixing matrix. It is important to
notice that for each set (ε, m1) we are going to have new ele-
ments of the mixing matrix and new mass eigenstates either
in vacuum and in matter. Then we evaluate the probabilities
using Eq. (17) and average them in the region of production.
In Fig. 4, the survival probability, Pee , is represented by the
solid black curve. Conversion probabilities are represented

in the following way: Pea (a = μ,τ ) is the dotted red curve
and Pes is the dashed blue curve.

In Fig. 5 we have plotted the probabilities for the CASE
A for ε = 1.0 × 10−9 and m1 = 0.003 eV. Notation and rep-
resentation of the curves are the same as in Fig. 4.

We notice, for example, for small ε, such as ε = 1.0 ×
10−9 in Fig. 5, that the quasi-Dirac situation mimics the
standard one, since we do not see a significant conversion
to the sterile neutrino flavor. So, when ε → 0, or simply to
very small values, we approach the traditional solar neu-
trino solution. However, for higher ε, such as we saw in
Fig. 4 (ε = 1 × 10−7), conversion to sterile neutrinos can
be significant for the entire neutrino spectrum. If we get an
even higher ε, we will see an even larger oscillation pattern
of Pes . This also happens for the other channels of oscil-
lations (νe → νμ,τ ). That is because with a larger radiative
correction, ε, we get �m2

ijL/(2E) � 1. The phenomeno-
logical effect of m1 is very similar. For large values of m1,
if we fix ε 
= 0, we are going to have more oscillation if we
compare to the situation with a smaller m1.

One of the main sources of neutrinos, considering SNO
and SK as experiments, is the 8B. For energies above a
few MeV, SNO and SK reveal that Pee ≈ 0.3 and also
Pea ≈ 0.7. This is a very strong constraint. For energies be-
low 1 MeV or so, the constraints come mainly from Borex-
ino, Homestake, and the gallium experiments. Borexino im-
poses Pee ≈ 0.51. Then if we have larger values of Pes , Pee

must be higher to compensate the disappearance of active
neutrinos (νμ or ντ ) that would arrive in Earth detectors.
For even lower neutrino energies, mainly of the pp chain,
gallium experiments impose Pee ≈ 0.5. So any modification
on Pes for the set of parameters ε,m1 has to be compensated
by Pee , especially in the high energy part of the spectrum.

Fig. 4 Survival probabilities
(Pee—solid black curve) and
conversion probabilities
(Pea—dotted red curve, and
Pes—dashed blue curve) for the
CASE A. All the curves
correspond to ε = 5.0 × 10−7

and m1 = 0.003 eV. We do not
show these probability curves
for the CASE B, since their
behavior is very similar and
there are very small differences
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Fig. 5 Survival probabilities
(Pee—solid black curve) and
conversion probabilities
(Pea—dotted red curve, and
Pes—dashed blue curve) for the
CASE A. All the curves
correspond to ε = 1.0 × 10−9

and m1 = 0.003 eV. Similar
results are obtained in CASE B

We do not show the plots for the CASE B, because the
behavior and the pattern of the curves are very similar.

Next, we proceed with a χ2 fit to the data. This will be
used to constrain our model for both CASES A and B. We
can define �χ2 = χ2(ε,m1) − χ2(ε = 0), where χ2(ε = 0)

is valid for any value of m1, since ε = 0 represents the stan-
dard situation and solar neutrino experiments are sensitive
only to the mass squared difference and not to the absolute
value of neutrino masses. For ε 
= 0, we choose m1 to vary
from 0.001 eV to 1 eV. We remember that Katrin will im-
pose a superior limit on neutrino mass of about 0.2 eV [48].

In Fig. 6, we present the allowed region for the CASE A
and CASE B together. Below the curves are the allowed re-
gions. The dashed curves are the 2σ allowed region for the
parameters ε and m1. The solid curves are the 3σ allowed

region. Thinner curves (black ones) represent the CASE A
and thicker curves (red ones) represent the CASE B. In
Fig. 7 we have the same analysis, now for m4 values. We
notice, as shown in both Fig. 6 and Fig. 7, that the value
of the scale of m1 is very similar to m4, since m4 ∼ m2,
and �m2

21 ∼ �m2
41 ≈ 7.5 × 10−5 eV2 for small ε. As the

radiative correction (ε) grows, m1 (m4) has to diminish to
maintain the χ2. They have, in some sense, a compensatory
behavior when considered together. We remember for CASE
B that ε = ετ (ε′ = ε′

τ ), and ε and ε′ are related by Eq. (13).
In Fig. 6 and Fig. 7, we have plotted all the curves to-

gether to make evident the difference between CASE A and
CASE B. We notice that there is a very small difference be-
tween these two approximations, which would be evidence
that it is almost impossible to distinguish between them.

Fig. 6 Allowed regions for the
parameters ε and m1. Thinner
curves (black curves) represent
the CASE A. Thicker curves
(red curves) represent the
CASE B
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Fig. 7 Allowed regions for the
parameters ε and m4. Thinner
curves (black curves) represent
the CASE A. Thicker curves
(red curves) represent the
CASE B

Our results are similar to the ones found by de Gouvêa et
al. [13]. They found in the 2+1 case (two active neutrinos +
one sterile) that ε < 2.0 × 10−7 for 3σ and ε < 1.2 × 10−7

for 2σ . Their model has only the ε parameter, however, our
model possesses two parameters. Despite this fact, as we
can see in Fig. 7, we also have found similar values of ε

when 0.01 eV < m4 < 0.2 eV at 2σ level. The important
characteristic of the model, quasi-degeneracy with the m2

state (�m2
24 much smaller than the other ones), is still main-

tained even for these m4 values of masses. In both cases, the
mixing matrix U after radiative corrections and solar neu-
trino data analysis remains the TBM one for all practical
purposes, represented by Eq. (3).

5 Conclusions

In this paper we have analyzed the model with a quasi-Dirac
neutrino put forward in Refs. [5, 12] using the solar neutrino
data. This is possible because when radiative corrections are
included in the neutrino mass matrix the oscillation channel
νe → νs is open. However, we have got the result that, even
in this case, the quasi-Dirac neutrino remains, for all prac-
tical proposes, a Dirac one, i.e., m2 ≈ m4. Our model has
two parameters, the radiative correction ε and the input mass
m1, which is the small one considering, for simplicity, the
normal hierarchy. We have found allowed regions, shown in
Fig. 7, in which ε can vary approximately from 5 × 10−9

to 10−6 and the m4 mass varying from 0.01 eV (0.01 eV)
to 0.2 eV (0.3 eV) at 2σ (3σ ) level. Using Eq. (12), this
implies 1012 GeV4 � kxky〈φx〉〈φy〉 � 1014 GeV4, which
means that we have four mass scales between ∼1 TeV and
∼3 TeV. The m4 values are compatible with the most conser-
vative limit of the sum of neutrino masses (

∑
mν

< 1.3 eV
(95 %)) of WMAP-7 [24]. In Ref. [13], which describes a

2 + 1 model—two active neutrinos plus one sterile—it was
obtained ε < (1.2,2.0)× 10−7 at two and three sigma level,
respectively. Note that in our case the four masses belong to
the interval with order of magnitude ∼(10−3–10−1) eV.

Summarizing, even with radiative corrections are consid-
ered, the mixing matrix in the lepton sector continues to be
the tribimaximal one. It means that in these conditions the
model cannot explain the disappearance of ν̄e observed by
several experiments and, when interpreted in a three active
neutrino scenario, it implies a non-zero θ13 [9–11]. Hence,
the only way to obtain a realistic PMNS mixing matrix is
by considering a non-diagonal charged lepton mass matrix
as has been put forward in Ref. [12]. This will introduce
contributions with crossed masses: memμ, etc., but none of
them are as important like the term proportional to m2

τ . By
doing this our results will not be significantly modified.
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