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Self-trapping of a dipolar Bose-Einstein condensate in a double well
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We study the Josephson oscillation and self-trapping dynamics of a cigar-shaped dipolar Bose-Einstein
condensate of 52Cr atoms polarized along the symmetry axis of an axially symmetric double-well potential
using the numerical solution of a mean-field model, for dominating repulsive contact interaction (large positive
scattering length a) over an anisotropic dipolar interaction. Josephson-type oscillation emerges for small and
very large numbers of atoms, whereas self-trapping is noted for an intermediate number of atoms. The dipolar
interaction pushes the system away from self-trapping towards Josephson oscillation. We consider a simple
two-mode description for a qualitative understanding of the dynamics.
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I. INTRODUCTION

After the observation of Bose-Einstein condensates (BECs)
of 52Cr [1,2], 164Dy [3], and 168Er [4] atoms with large
magnetic dipolar interaction, there has been renewed activity
in the theoretical and experimental studies of degenerate gases.
The atomic interaction in usual nondipolar atoms is taken as an
isotropic S-wave contact interaction. The dipolar interaction,
on the other hand, is anisotropic, long-range, and nonlocal
acting in all partial waves. Due to the anisotropic nonlocal
nature of dipolar interaction, the stability of a dipolar BEC
depends on the number of atoms, the strength of dipolar
interaction, the scattering length, as well as, reasonably
strongly and distinctly, on the trap geometry [2,5]. Among
the novel features noted in a dipolar BEC, one can mention the
peculiar red-blood-cell-like biconcave shape in density due to
rotonlike excitation [6] near the route to collapse, anisotropic
sound and shock wave propagation [7]; anisotropic D-wave
collapse [8]; anisotropic soliton, vortex soliton [9], and vortex
lattice formation [10]; and anisotropic Landau critical velocity
[11], among others. Distinct stable checkerboard, stripe, and
star configurations in dipolar BECs have been identified in a
two-dimensional (2D) optical lattice as stable Mott insulator
[12] as well as superfluid soliton [13] states.

In a remarkable study, Smerzi et al. [14] predicted the
dynamical trapping of a repulsive cigar-shaped BEC in one of
the wells of a double-well potential using a simple two-mode
description of the wave function for repulsive nonlinearity
beyond a critical value and for an initial population imbalance
between the two wells. This is counterintuitive as a repulsive
BEC is expected to expand and occupy both the wells equally.
The phenomenon of self-trapping, appearing due to the self-
interaction of a BEC, and of Josephson oscillation have been
studied extensively in nondipolar BECs [15,16]. There have
also been studies of Josephson oscillation and self-trapping of
a dipolar BEC in a double well [17] and in a toroidal trap [18].

In this paper we study self-trapping in a cigar-shaped
dipolar BEC in a double well, aligned along the polariza-
tion direction, in the presence of an anisotropic nonlocal
dipolar and a repulsive contact interaction. The BEC is
subject to a strong radial and weak axial trap and we use
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a reduced one-dimensional (1D) model for the description
of its dynamics [19–22]. We consider a large enough value
of scattering length a, so that the net self-interaction in the
dipolar BEC is repulsive. The interplay between the repulsive
contact interaction and the anisotropic long-range dipolar
interaction will make this study more challenging and of
general interest. Although the dipolar interaction is directional,
possibly because of maintaining an axial symmetry for easy
theoretical analysis, in most experiments on dipolar atoms
[1–3], the polarization direction is taken along the axial
symmetry direction. For most theoretical investigations, this
symmetric setup has been used and the role of self-interaction
in dipolar BEC is well understood in this configuration. For
this reason we shall consider the polarization direction along
the axial symmetry direction in this study. Although we shall
not study self-trapping in a fully anisotropic dipolar BEC, we
shall make qualitative remarks about expected results in such
cases.

In the thoroughly studied dipolar BEC of 52Cr atoms, the
strength of the repulsive contact interaction is stronger than
the dipolar interaction so that the net interaction is repulsive
and is suitable for the study of self-trapping. The same is
not obvious in a strongly dipolar 164Dy BEC, where the net
interaction could be attractive to make the system unsuitable
for self-trapping. This is why we consider the interaction
parameters of 52Cr atoms in this study. Moreover, it is possible
to manipulate the scattering length to a smaller value by
the Feshbach resonance technique [23], to make the dipolar
BEC barely repulsive for studying the interplay of contact and
dipolar interactions in self-trapping.

In this study of self-trapping of a cigar-shaped repulsive
dipolar BEC in a double-well potential, the following general
trend is established. The total number of atoms N and the initial
population imbalance S0 ≡ (N10 − N20)/N play decisive roles
in self-trapping, where N10 and N20 are the initial number
of atoms in the two wells: N = (N10 + N20). For an initial
population imbalance S0 larger than a critical value Sc there is
self-trapping for N beyond a critical number Nc consistent
with the prediction of the two-mode description [14]. For
S0 < Sc, there is Josephson oscillation for all N . For S0 > Sc,
there is Josephson oscillation for N < Nc and self-trapping
for Nu > N > Nc, where Nu is an upper limit of N for
self-trapping. The Josephson oscillation is driven by the net
repulsive nonlinear interaction, which increases with N and
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facilitates Josephson oscillation resulting in an increase of the
frequency of oscillation with N .

In Sec. II A we present the time-dependent three-
dimensional (3D) mean-field model for the cigar-shaped
dipolar BEC and in Sec. II B we present an effective 1D
model for the same. In Sec. II C we present the two-mode
description of the dynamics, which proves to be very useful
for a qualitative understanding of the relevant features of
self-trapping and Josephson oscillation in a dipolar BEC
trapped in a double-well potential. The results of numerical
simulation are presented in Sec. III using the effective 1D
model. Some of the results of the 1D model are confirmed
by a numerical simulation of the full 3D model. Finally, in
Sec. IV we present a summary and conclusion of the study.

II. ANALYTICAL CONSIDERATION

A. 3D mean-field model

A dipolar BEC of N atoms, each of mass m satisfies the
mean-field Gross-Pitaevskii (GP) equation [1]
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�(r,t) =

[
−�

2∇2

2m
+ V (r) + 4π�
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]
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+ z2 + 2Ae−κz2

]
, (2)

where R = (r − r′),�(r,t) is the wave function, a is the
atomic scattering length, n(r,t) ≡ |�(r,t)|2 is the BEC density
normalized as

∫
n(r,t)dr = N , where ωρ and ωz are the

angular frequencies of radial and axial traps with aspect ratio
λ ≡ ωz/ωρ , μ0 is the permeability of free space, and μd is the
magnetic dipole moment of each atom. The constants A and
κ are the strength and width of a Gaussian barrier responsible
for the double-well potential. The dipolar interaction between
two atoms at r and r′ in Eq. (1) is taken as

Udd(R) = (1 − 3 cos2 θ )

R3
, (3)

where θ is the angle between the vector R and the polarization
direction z taken along the axial symmetry direction.

To compare the strengths of atomic short-range and dipolar
interactions, the dipolar interaction is often expressed in terms
of the length scale add = mμ0μ

2
d/(12π�

2). Using this length
scale, it is convenient to write the dipolar GP equation (1) in
the following dimensionless form:
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In Eq. (4) energy, length, density n(r), and time t are
expressed in units of oscillator energy �ωz, oscillator length
l0 ≡ √

�/mωz, l−3
0 , and t0 = ω−1

z , respectively.

B. 1D reduction of the 3D mean-field model

For a cigar-shaped BEC with a strong radial and weak axial
confinement, it is convenient to consider simplified equations
in 1D for a description of the axial dynamics [22]. For a
dipolar BEC with a strong radial trap (λ2 � 1), we assume
that in the radial direction the BEC is confined in the ground
state 
(ρ) = exp[−ρ2/(2λ)]/

√
λπ of the transverse trap and

the wave function �(r,t) = 
1D(z,t)
(ρ) can be written as
[19–21,24]

�(r,t) = 1√
πλ

exp

[
−ρ2

2λ

]

1D(z,t). (6)

The interesting relevant axial dynamics is carried by the wave
function 
1D(z,t). The density in configuration space n(r,t) ≡
|�(r,t)|2 is related to that in momentum space ñ(k,t) by the
Fourier transformation
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∫
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∫
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The Fourier transformation and its inverse are defined by

Ã(k) =
∫

dr A(r)eik·r, A(r) =
∫

dk
(2π )3

Ã(k)e−ik·r. (10)

To derive the effective 1D equation for the cigar-shaped
dipolar BEC, we substitute the ansatz (6) in Eq. (4), multiply
by the ground-state wave function 
(ρ), and integrate over ρ

to get the 1D equation [21]
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The 1D potential in momentum and configuration spaces,
V1D(kz) and U 1D

dd (Z), are respectively [21],
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where v = Z2/(2λ), Z = |z − z′| and where erfc is the com-
plementary error function. A similar, but not identical, 1D
reduced potential was derived in [19,24], where the δ-function
term in the 1D potential (18) was not explicitly specified.
However, this term is included in Ref. [25]. Another distinct
formulation of 1D reduction of the dipolar GP equation is
available [26].

C. Two-mode description of dynamics

The main features of the dynamical evolution of the cigar-
shaped dipolar BEC in a double-well trap can be obtained by
considering the following two-mode wave function [14]:

�(r,t) =
2∑

i=1

ψi(t)φi(r), (19)

where the normalizable function φi(r) is strongly localized
in well i = 1,2 with uniform amplitude ψi(t) = √

Nie
iθi (t),

where Ni and θi are the number of atoms in the two wells
and their respective phases. Here we are using the 3D GP
equation (4) in the two-mode description. An equivalent two-
mode description can be formulated using the 1D GP equation
(11). The condition of strong localization of the wave functions
φi(r) implies ∫

φi(r)φj (r)dr = δij , (20)∫
f (r)φ1(r)φ2(r)dr = 0, (21)

for any f (r). This leads to the conservation of the number of
atoms N = (N1 + N2).

Substituting Eq. (19) in Eq. (4) we obtain

i
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2
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+
2∑

i,j=1

[
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∫
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]
Niψjφj (r),

(22)

where according to the strong localization conditions (20) and
(21), we have neglected the overlap integrals of the localized
wave functions φi(r).

Multiplying Eq. (22) by φj (r), integrating over r, and using
the strong localization conditions (20) and (21), we get [27]

iψ̇i(t) = [Ei + Ai1N1 + Ai2N2]ψi(t) − Kψj (t), j �= i,

(23)

Aij = 4πaδij
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∫
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]
dr, (25)
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∫ {

1

2
[∇φi(r)]2 + φ2

i (r)V (r)

}
dr. (26)

In terms of the phase difference δ(t) = θ2(t) − θ1(t) and
population imbalance S(t) = [N1(t) − N2(t)]/N , Eqs. (23)
can be written as [14]

Ṡ(t) = −
√

1 − S(t)2 sin δ(t), (27)

δ̇(t) = �S(t) + S(t)√
1 − S(t)2

cos δ(t) + �E, (28)

where time has been rescaled as 2Kt → t and where

�E = E1 − E2

2K
+ (A11 − A22)N

4K
, (29)

� = (A11 + A22 − A12 − A21)N

4K
. (30)

Equations (27) and (28) describe the oscillatory motion of
the dipolar system and are quite similar to the same for a
nondipolar BEC, although in the present dipolar system there
are contributions from the dipolar energy in the parameters
Aij , viz., Eq. (24). Equations (27) and (28) are to be solved
from the initial condition: S(0) = S0, δ(0) = δ0. Oscillatory
motion through the value S(t) = 0 is possible for small values
of the parameter �. The oscillatory motion through the point
S(t) = 0 is stopped for [14]

� > �c ≡ 2

√
1 − S(0)2 cos δ(0) + 1

S(0)2
. (31)

The pendulumlike free oscillation of the atoms between the
two wells is possible for � < �c.

Equation (31) is fundamental in explaining qualitatively the
onset of self-trapping and also the role of dipolar interaction
on it. The constant �c reduces with the increase of S(0).
Hence self-trapping is more likely for a large S(0) and should
disappear for S(0) → 0. Also, from Eq. (30) we see that
� → 0 as N → 0. Hence, self-trapping can only appear for
the number of atoms N larger than a critical value. To study
the role of dipolar interaction on self-trapping, we note that the
constant Aij of Eq. (24) is two times the interaction energy of
the system. The off-diagonal contribution to dipolar energy
(i �= j ) is expected to be much smaller than the diagonal
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contribution (i = j ) and hence can be neglected for a qualita-
tive understanding of the dynamics. Here we are considering
a cigar-shaped dipolar BEC, where the dipolar interaction
energy given by the double integral in Eq. (24) is negative
(attractive) and will reduce the values of the constants Aii and
consequently the value of the constant � given by Eq. (30).
With this reduction of the value of �, the dipolar interaction
will push the system away from self-trapping as with a smaller
� it will be more difficult to satisfy condition (31): � > �c.

For very large number of atoms � becomes very large and
the condition (31) is always satisfied implying self-trapping.
Nevertheless, for a very large nonlinearity, the two-mode
description breaks down even for a nondipolar BEC and
its prediction becomes unreliable. In this case, the repulsive
nonlinear (contact) interaction increases the chemical potential
above the height of the interwell barrier. Consequently, the
contribution of the double well in Eq. (4) can be neglected in
comparison to that of the nonlinear term and the loss of self-
trapping is expected in the absence of an effective double-well
trap. We shall demonstrate these aspects of dynamics from the
numerical solution of the mean-field model.

III. NUMERICAL RESULT

With the above insight to oscillation dynamics from the
two-mode description, we solve the mean-field model equation
for the same. The results from the two-mode description are
most reliable for small to medium values of contact and
dipolar interaction energies. This is also the domain of validity
of the 1D mean-field model, as was thoroughly established
previously [21] for statics and dynamics of a dipolar BEC.
The full 3D mean-field model calculation of dynamics is
prohibitively time consuming, hence in this study we use
mostly the 1D mean-field model (11) to study the oscillation
dynamics. In certain cases we also solve the 3D GP equation
(4) and compare the results for dynamics with the results
obtained from the 1D model.

We solve the GP equations (4) or (11) numerically by
the split-step Crank-Nicolson method [28,29]. The dipolar
integral is evaluated in the Fourier momentum (k) space using
convolution as [29]∫

dr′Vdd(r − r′)n(r′) =
∫

dk
(2π )3

e−ik·rṼdd(k)̃n(k). (32)

The Fourier transform (FT) Ṽdd(k) of the dipole potential
Vdd(r − r′) is analytically known in 3D [29] and numerically
evaluated in 1D. The FT of density n(r) ≡ |�(r)|2 is evaluated
numerically by means of a standard fast FT (FFT) algorithm.
The dipolar integral in Eq. (4) or (11) is evaluated by the
convolution (32). The inverse FT is taken by the standard FFT
algorithm. We use typically a space step of 0.1 and time step
0.001 in 3D and of 0.025 and 0.0005 in 1D and consider up to
512 space points in 3D and 4096 in 1D for discretization.

Before we present the results of self-trapping for a dipolar
52Cr BEC in a double-well potential, it is pertinent to describe
the phenomenon of self-trapping as previously considered in
Ref. [14] as well as, for a dipolar BEC, in Ref. [17]. The
self-trapping is the surprising dynamical locking of a weakly
repulsive BEC in one of the wells of a double well [14], while
it is expected that such a BEC will occupy both the wells due to

atomic repulsion. We emphasize that the self-trapped state is
not an eigenstate of the time-independent mean-field equation.
It is natural that a weakly attractive BEC can be locked in
one of the wells due to atomic attraction corresponding to an
eigenstate of the time-independent mean-field equation.

The authors of Ref. [17] call the stationary states of a cigar-
shaped attractive dipolar BEC localized in one of the wells
of a double well as self-trapped states. Such states are quite
different from the dynamically trapped nonstationary states
of Ref. [14] in a repulsive cigar-shaped BEC. The authors of
Ref. [17] suggest varying the angle ϕ between the polarization
direction and the axial z axis in a cigar-shaped dipolar BEC
with zero contact interaction. For ϕ = 0, the cigar-shaped
BEC is oriented along the polarization direction, thus resulting
in an attractive system. For ϕ = π/2, the cigar-shaped BEC
is oriented perpendicular to the polarization direction, thus
resulting in a repulsive system. With the increase of the angle
ϕ from 0 to π/2, the system gradually becomes repulsive
from attractive. For small ϕ, spontaneously symmetry-broken
stationary states localized in one of the wells of the double
well appear due to atomic attraction. For large ϕ, the
system is repulsive thus leading to symmetric stationary states
occupying both wells. This passage of symmetric to symmetry-
broken states is termed self-trapping in Ref. [17]. The self-
trapped states of the present paper are dynamically trapped
states in a repulsive BEC in a double well as in Ref. [14]
and not the stationary states of an attractive dipolar BEC bound
in one of the wells as in Ref. [17].

To study dynamical self-trapping in a repulsive cigar-
shaped BEC, the symmetry-broken initial stationary state is
taken as that in the asymmetric double well [30]

V ′(r) = 1
2 (z − z0)2 + Ae−κz2

, (33)

in place of (13). The asymmetric ground (stationary) state in
this asymmetric well is obtained by solving the corresponding
GP equation (11) by imaginary time evolution. The parameter
z0 in Eq. (33) is chosen so that the population imbalance S(0)
has a fixed predetermined value. We will study self-trapping
in the symmetric double well (13) using the GP equation
(11) with identical parameters used in generating the initial
asymmetric stationary state. In actual experiment [15], the
symmetry-broken initial state was prepared in this fashion.

In the present study, as in most experiments on dipolar
atoms [1–3], we consider ϕ = 0 and a > add. The dipolar
length add denotes the strength of dipolar interaction as the
scattering length a (>0) denotes the strength of the repulsive
contact interaction. The condition a > add guarantees that
the cigar-shaped dipolar BEC aligned along the polarization
direction z is always repulsive and there cannot be any
symmetry-broken stationary state. This condition is satisfied
for the dipolar atoms so far used in BEC experiments [1–4].
We consider a 52Cr BEC with dipole moment μd = 6μB ,
with μB the Bohr magneton, so that the dipolar strength
add = 15a0 [1], with a0 the Bohr radius. In our calculation
we take the oscillator length l0 = 1 μm corresponding to the
axial angular frequency ωz ≈ 2π × 194 Hz. To generate a
cigar-shaped dipolar BEC [31] in the double well we take the
parameter λ = 1/9 corresponding to an angular frequency of
the transverse radial trap ωρ = 2π × 1746 Hz. The parameters
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of the double well (5) are taken as A = 16 and κ = 10. The
width and height of the Gaussian barrier in the double well has
to be appropriate for allowing a smooth Josephson oscillation.
A very wide and a very high barrier will substantially hinder
the Josephson oscillation and facilitate self-trapping. On the
other hand, a very narrow and a very low barrier will tend to
reduce the double well to a single well and hence, should hinder
self-trapping and facilitate Josephson oscillation. Otherwise,
these parameters (A and κ) do not have much influence on the
phenomenon of self-trapping and Josephson oscillation of a
repulsive dipolar BEC in a double well. These values of the
parameters A and κ of the double well were used previously
for a satisfactory study of self-trapping in a Fermi superfluid
at unitarity [30].

For 52Cr atoms add = 15a0 and to maintain the net inter-
action in the cigar-shaped dipolar BEC repulsive for ϕ = 0,
we shall consider two values of the scattering length a (>add):
a = 20a0 and 100a0. The scattering length can be manipulated
in laboratory by varying a background magnetic field near
a Feshbach resonance [23]. There are three domains of the
initial population imbalance S(0) in the double well which we
consider in the following:

(a) Small S(0). The numerical calculations show that there
is no self-trapping for a small S(0) (<0.1) in the dipolar BEC.
The two-mode description (31) reveals that a small S(0) leads
to a large �c, which can be attained for a large N for a fixed
a and add, viz., Eq. (30). Nevertheless, for a large N , the
nonlinear interaction energies in the GP equation (4) become
large and the role of the Gaussian barrier in this equation
becomes very small and can be neglected. Consequently, the
double well essentially reduces to a single well allowing for
smooth pendulumlike oscillation. In this limit of small S(0)
and large N the two-mode description breaks down.

(b) Medium S(0). For a slightly larger S(0) (0.15 � S(0) �
0.25), prediction (31) leads to a small to moderate �c, which
can be attained for a medium value of N in a nondipolar BEC
(add = 0) within the validity of the two-mode description.
Consequently, there is self-trapping in a nondipolar BEC as
will be confirmed in the numerical calculation. For these
intermediate values of S(0), the attractive dipolar interaction
tends to cancel the repulsive contact interaction and stops
the constant � of Eq. (30) from attaining the critical value
�c of Eq. (31) except for very large N leading to large
dipolar and contact nonlinear interactions, when the two-mode
description becomes unreliable. Consequently, for 0.15 �
S(0) � 0.25 there is no self-trapping in the dipolar system for
a = 20a0, add = 15a0, whereas self-trapping appears in the
nondipolar system with a = 20a0, add = 0 as reported below.

(c) Large S(0). For larger S(0) (0.3 � S(0) � 1), the critical
value �c of Eq. (31) is small and there is self-trapping in all
cases: dipolar or nondipolar.

An initial state with the desired initial population imbal-
ance S(0) is prepared by solving the 1D GP equation (11)
by imaginary-time propagation with the asymmetric well
(33) in place of the symmetric well (13). With this initial
state we perform the real-time propagation of the 1D GP
equation (11) with the symmetric well (13) maintaining all
other parameters (dipolar and nondipolar interactions and
the number of atoms) unchanged throughout the numerical
simulation. In the laboratory this is achieved by preparing
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FIG. 1. (Color online) Population imbalance S(t) versus time
t/t0 for S(0) = 0.2 and (a) a = 100a0 and (b) a = 20a0, for different
N and add = 0 and 15a0 as obtained from a numerical simulation of
the 1D model (11). (c) Population imbalance S(t) versus time t/t0
for N = 1000, a = 20a0, S(0) = 0.2 and add = 0,15a0 from the 1D
(full line) and 3D (chain of symbols) models.

a BEC in the asymmetric well and then suddenly changing
the trapping potential from asymmetric to symmetric and
observing the subsequent dynamical evolution. The self-
trapping and Josephson oscillation is best illustrated in a
dynamical evolution of the population imbalance S(t). In
Figs. 1(a) and 1(b), we plot S(t) versus t/t0 for S(0) = 0.2
and for a = 100a0 and 20a0, respectively. In both cases
self-trapping is possible in the nondipolar system (add = 0)
resulting in a positive time-averaged population imbalance
〈S(t)〉. However, the dipolar 52Cr BEC (add = 15a0), perma-
nently stays in the Josephson oscillation regime resulting in a
null value of 〈S(t)〉. As Josephson oscillation is driven by the
repulsive nonlinear interaction, an increase of the number of
atoms corresponding to a larger nonlinear interaction leads to a
larger frequency as can be established in Fig. 1(a), comparing
the results of N = 200 and 2000 in the dipolar case for a =
100a0. This is also evident in Fig. 1(b), comparing the results
of N = 100, 1000, and 5000 in the dipolar case for a = 20a0.

Next to see the reliability of the 1D description of the
dynamics, we also solved the 3D equation (4) with potential
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FIG. 2. (Color online) Population imbalance S(t) versus time
t/t0 for a = 100a0, add = 15a0 and for (a) S(0) = 0.4 and (b)
S(0) = 0.8 and for different N using the 1D model (11).

(5) for λ = 1/9 and all other parameters remaining un-
changed from the 1D model simulation, e.g., N = 1000, a =
20a0, S(0) = 0.2, add = 0, and 15a0. The initial state in 3D
was prepared with the following asymmetric well:

V (r) = 1

2

[
ρ2

λ2
+ (z − z0)2

]
+ Ae−κz2

, (34)

in place of the trap (5). In the preparation of the initial state we
use the same parameters as used in Eq. (33) in 1D. The results
for self-trapping and oscillatory dynamics as obtained from
1D and 3D simulations are compared in Fig. 1(c). The good
agreement between the two simulations assures the reliability
of the 1D model calculation.

Now we consider a larger initial population imbalance S(0).
We present results of self-trapping and Josephson oscillation
of a cigar-shaped dipolar 52Cr BEC with add = 15a0 for
a = 100a0 and different N in Figs. 2(a) for S(0) = 0.4 and 2(b)
for S(0) = 0.8. First we consider the results for S(0) = 0.4.
For a very small N (=10) we have Josephson oscillation with
small frequency. This value of N is below the critical value Nc

for self-trapping as given by Eq. (31). For a larger N (=100)
this critical value is achieved (N > Nc) and self-trapping is
encountered with 〈S(t)〉 ≈ 0.36. Finally, for a much larger
N (=5000), above an upper critical limit Nu (N > Nu),
the nonlinear interactions are very large, while the Gaussian
barrier in the trapping potential (13) can be neglected and
the double well essentially reduces to a single well and the
dipolar BEC executes free sinusoidal oscillation. However, for
the number of atoms N slightly larger than the upper limit
Nu (Nu � N ), the oscillation is irregular. A smooth sinusoidal
oscillation appears for a much larger value of N (N 
 Nu).
A similar panorama takes place for S(0) = 0.8 as shown in
Fig. 2(b). As S(0) is larger in this case, the limiting value of
nonlinearity for self-trapping is smaller in this case and we
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FIG. 3. (Color online) Population imbalance S(t) versus time
t/t0 for a = 20a0, add = 15a0 and for (a) S(0) = 0.4 and (b) S(0) =
0.8 and for different N using the 1D model (11).

already have self-trapping for N = 10, whereas for this N

for S(0) = 0.4 we have Josephson oscillation, viz., Fig. 2(a).
For a large enough value of N there should be free sinu-
soidal oscillation of the system, which has not appeared for
N = 10 000.

Similar physics appears for a = 20a0 in a cigar-shaped
dipolar 52Cr BEC as presented in Figs. 3(a) for S(0) = 0.4 and
3(b) for S(0) = 0.8. However, the smaller critical limit N =
Nc for self-trapping for a = 20a0 is much larger compared
to the dynamics presented in Fig. 2 for a = 100a0. The net
repulsive interaction with a smaller scattering length a in this
case is much smaller for a fixed N compared to the net repulsive
interaction in Fig. 2 with a larger a. Consequently, the desired
repulsive nonlinearity for self-trapping is achieved for a larger
N in Fig. 3. Otherwise, the dynamics presented in Fig. 3 is
consistent with the theoretical expectation. With the increase
of N , the dynamics passes from the oscillatory regime to self-
trapping and then back to the oscillatory regime again.
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FIG. 4. (Color online) Time-averaged population imbalanced
〈S(t)〉 versus the total number of atoms N for a = 100a0 and
20a0 for an initial population imbalance S(0) = 0.4 using the 1D
model (11).
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For experimental interest, the phenomenon of self-trapping
and Josephson oscillation is well illustrated through an ex-
position of time-averaged population imbalance 〈S(t)〉 versus
the total number of atoms N for a given set of dipolar and
contact interactions. In Fig. 4 we plot 〈S(t)〉 versus N for
a = 100a0 and a = 20a0, with the parameters S(0) = 0.4
and add = 15a0. For a = 100a0 self-trapping appears for
N > Nc ≈ 16, whereas for a = 20a0 self-trapping appears for
N > Nc ≈ 145. In the first case the net atomic interaction is
more repulsive because of the larger value of scattering length
a. Consequently, the limiting nonlinearity for self-trapping
is achieved for a smaller number of atoms. In the second
case the net atomic interaction is weakly repulsive because
of a smaller value of scattering length and as a ≈ add.

Consequently, the limiting nonlinearity for self-trapping is
achieved for a larger number of atoms. After the onset of
self-trapping with N past the critical number of atoms, 〈S(t)〉
first increases and approximates S(0). With further increase of
N , 〈S(t)〉 eventually becomes zero while there cannot be any
self-trapping. The absence of self-trapping for large N > Nu

takes place when the small Gaussian barrier in the trapping
potential becomes very small compared to the nonlinear
terms and its effect can be neglected in the GP equation.
Consequently, the double well effectively reduces to a single
well, where there cannot be any self-trapping.

In this investigation, we took the angle ϕ between the polar-
ization direction z and the double-well orientation to be zero.
The dipolar interaction in this configuration is attractive. If the
double-well orientation is taken along the x direction with ϕ =
π/2, the dipolar interaction will be repulsive. Consequently,
for dynamics along the double-well orientation direction x,
self-trapping should be possible for the initial population
imbalance S(0) above a critical value and for all values of
the scattering length a (>0). It would be interesting to study
this nontrivial self-trapping in a fully anisotropic environment.

IV. SUMMARY AND CONCLUSION

We studied the dynamical self-trapping and Josephson
oscillation of a repulsive cigar-shaped dipolar 52Cr BEC
trapped in an axially symmetric double-well potential aligned
along the polarization direction. The dipolar BEC was subject
to a strong radial and weak axial confinement and we use an
effective 1D mean-field model appropriate for the description
of its dynamics. Although most of the results presented here
were obtained using the 1D model, some of these were also
confirmed using the full 3D model from which the effective
1D model was obtained. This assures that the results obtained
with the 1D model will not be so peculiar as to have no general
validity. Two values of the scattering length were considered:
a = 100a0 and 20a0 The former corresponds to a rounded-up
value of the experimental [1,2] scattering length and the latter
chosen to keep the dipolar BEC weakly attractive.

The two-mode model originally proposed for a description
of self-trapping of a repulsive cigar-shaped nondipolar BEC in
a double-well potential was extended to include an additional
dipolar interaction. This modified two-mode description could
explain the essential features of Josephson oscillation and
self-trapping of the cigar-shaped dipolar BEC, which are
the following. The phenomenon of Josephson oscillation and
self-trapping is very sensitive to the total number of atoms N

and the initial population imbalance S0. Self-trapping takes
place for S0 larger than a critical value Sc and N between two
limiting values Nu > N > Nc. This study was performed with
realistic values of trapping parameters for a dipolar 52Cr BEC
with realistic values of dipolar and contact interactions so that
the results can be compared with possible future experiments.
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