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In this paper, we extend the well-known QCD sum rules used in the calculation of the mass of heavy
mesons to estimate the modification of the charged B-meson mass, mB, in the presence of an external
Abelian magnetic field, eB. Two simplifying limits were considered: the weak field limit, in which the
external field satisfies eB ≪ m2 (with m being any of the masses involved); and the strong field limit, in
which the field strength is small in comparison to the bottom quark mass (or the B-meson mass) squared,
but it is large compared to the mass of the light quarks, i.e., m2

u;d ≪ eB ≪ m2
b;B. We found that mB

decreases with the magnetic field in both of these limits.
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I. INTRODUCTION

Strong magnetic fields can be relevant to a number of
physical systems. Some dense stars, such as highly magnet-
ized neutron stars known as magnetars, can display magnetic
fields as large as eB ∼ 1 MeV2 [1].1 Of a more direct interest
to particle physics are the electromagnetic fields produced in
ultrarelativistic heavy ion collisions performed at the Large
Hadron Collider (LHC) or at the Relativistic Heavy Ion
Collider (RHIC). Noncentral collisions in these colliders can
produce short-lived electromagnetic fields where the intensity
of the magnetic field can be as large as eB ∼m2

π ∼
0.02 GeV2 (at RHIC) or eB ∼ 15m2

π ∼ 0.3 GeV2 (at
LHC) [2,3], where mπ is the pion mass.
These field strengths are comparable with the hadronic

mass scale and could have important phenomenological
implications to the physics of hadrons in quantum chromo-
dynamics (QCD). Much effort has been given towards
understanding the effects of strong magnetic fields on the
different phases of the QCD diagram [4], and recently,
lattice QCD simulations with physical quark masses have
determined how the deconfinement and chiral phase
transitions are affected by strong magnetic fields [5].
The mass spectrum of the hadronic states, however, is set

by the nonperturbative regime of QCD, and one has to look
for the appropriate nonperturbative tools to describe it and
include the effects of the magnetic field therein. For instance,

one would expect that magnetic fields with values defined at
the hadronic scale would modify the binding energy of the
various hadronic states, which could then affect their masses.
Various methods have been successful in dealing with the

hadronic spectrumover theyears, suchas, for instance, quark
potentialmodels [6], latticeQCD[7,8], and theQCDspectral
sum rules (QCDSR) [9,10]. Weak external fields in the
QCDSR were introduced in the past in order to analyze the
magnetic moments of hadrons [11,12]. In this work, we
propose a novel way to include an external magnetic field in
the QCDSR formalism for the two-point correlators in order
to study its effect on the masses of pseudoscalarB� mesons.
We start in Sec. II with a short review on the QCDSR in
the vacuum (i.e., in the absence of external fields, eB ¼ 0).
The external field contributions are considered in Sec. III,
and they enter the QCDSR in two ways.
First, the effects of an external magnetic field on the

quark propagators are taken into account using the non-
perturbative Schwinger propagator [13]. This modification
describes how the perturbative sector of QCD changes due
to the magnetic field. The complete calculation using the
proper-time propagator is technically difficult, and we
discuss a series of approximations that allow us to extract
results in some limiting situations. The second modification
introduced in this paper with respect to the usual QCDSR
approach is the dependence of the condensates that para-
metrize the nonperturbative character of QCD with the
magnetic field. The effect of magnetic fields on the chiral
condensate was evaluated by a number of means, including
chiral perturbation theory [14–16], Nambu–Jona-Lasinio
models [17,18], and lattice QCD [19–24]. Using conden-
sates that are functions of the field strength, we take into
account the effects of the magnetic field on the long-
distance, nonperturbative interactions of QCD.
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1The field strength in the CGS system is ðeBÞ2∼59.14×

10−22ðB=1GÞGeV2; i.e, a magnetic field of magnitude 1.69×
1020G corresponds to 1 GeV2.
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The numerical analysis of the QCDSR and the results for
the masses are shown in Sec. IV, where we show that the
magnetic field has the effect of lowering the masses of the
heavy mesons studied, which is in agreement with recent
potential model calculations [25,26].

II. QCD SUM RULES IN THE VACUUM

QCDSR [9,10] are based on the evaluation of the two-
point correlation function in the vacuum

ΠðqÞ ¼ i
Z

d4xeiq·xh0jTfjðxÞj†ð0Þgj0i; (1)

where jðxÞ is an interpolating current carrying the quantum
numbers of the hadron in question. For the B� mesons, we
will use

jðxÞ ¼ q̄aðxÞiγ5QaðxÞ; (2)

where q is the light quark field, Q is the heavy quark field,
and a is a color index. With this current in Eq. (1), the
correlator can be written as

ΠðqÞ ¼ i
ð2πÞ4

Z
d4kTr½SqabðkÞγ5SQbaðkþ qÞγ5�; (3)

where Sq (SQ) is the full propagator (considering all
perturbative and nonperturbative effects and also, in the
next sections, the interaction of the quark with the external
magnetic field) for a light (heavy) quark.
Based on the principle of quark-hadron duality, which

states that correlation functions of colorless currents in
QCD can be described either in terms of quarks and gluons
or in terms of hadronic degrees of freedom, the correlator
[Eq. (1)] will be evaluated here in two different ways. On
the one hand, we start from a perturbative description based
on the quark and gluon degrees of freedom using Wilson’s
operator product expansion (OPE) [27] to evaluate Eq. (1)
in the presence of nonzero vacuum condensates that act as a
source for nonperturbative effects. The resulting expression
for the correlation function is called the OPE side. On the
other hand, on the phenomenological side, we use a
description based on hadronic degrees of freedom by
inserting a complete set of hadronic states in Eq. (1) to
obtain the correlator in terms of a dispersion relation:

ΠphenðkÞ ¼
Z

∞

0

ds
1

s − k2 − iϵ
ρðsÞ; (4)

where ρðsÞ is the spectral density. The following para-
metrization is generally used for the spectral density:

ρphenðsÞ ¼ m4
H

m2
Q
f2Hδðs −m2

HÞ þ θðs − s0ÞρcontðsÞ; (5)

where mH is the mass of the ground state of the hadron, s0
is the continuum threshold, and fH is the coupling of this

state with the current, which for heavy-light mesons is

defined by h0jjjHi ¼ m2
H

mQþmq
fH ≈ m2

H
mQ

fH, and mQ and mq

are the masses of the heavy and light quarks, respectively.
This parametrization separates the contribution of the
lowest-lying pole from that of the excited states, collec-
tively called “the continuum.” The parameter s0 indicates
when the excited states start to contribute significantly to
the spectral density.
Then, the phenomenological side takes the form

ΠphenðkÞ ¼ m4
Hf

2
H

m2
Qðm2

H − k2Þ þ
Z

∞

s0

ds
ρcontðsÞ
s − k2

: (6)

The OPE side can also be written in terms of a dispersion
relation:

ΠOPEðkÞ ¼
Z

∞

smin

ds
ρOPEðsÞ
s − k2

; (7)

where ρOPE ≡ ImΠOPE

π and smin ¼ ðmq þmQÞ2. The principle
of duality allows the identification ρOPE ¼ ρphen, which
implies

Z
∞

s0

ds
ρOPEðsÞ
s − k2

¼
Z

∞

s0

ds
ρcontðsÞ
s − k2

; (8)

allowing us to cancel these terms on both sides of the
equation:

ΠOPEðkÞ ¼ ΠphenðkÞ: (9)

Taking the Borel of Eq. (9), we arrive at the sum rule

m4
H

m2
Q
f2He

−m2
H=M̄

2 ¼
Z

s0

smin

dsρOPEðsÞe−s=M2

; (10)

where M̄ is the Borel mass [9,10]. Taking the derivative of
Eq. (10) with respect to 1=M̄2 and dividing the resulting
expression by Eq. (10), we get an explicit expression for the
hadron mass:

m2
H ¼

R
s0
smin

dsρOPEðsÞse−s=M̄2

R
s0
smin

dsρOPEðsÞe−s=M̄2 : (11)

In previous works [28–30], QCDSR results for heavy-
light states such as the Bmeson have considered the effects
of dimension-4 condensates and radiative corrections. The
inclusion of higher-dimensional condensates improves the
stability of the QCDSR and, consequently, leads to more
precise values for the mass. However, we have verified (see
Sec. IVA) that the B-meson mass obtained with the OPE
calculated up to dimension 3 is compatible with both the
experimental result and previous QCDSR results, suffering
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only from increased dependence on the Borel mass. Since
our aim is to establish a method for the inclusion of the
strong magnetic fields in the QCDSR and get the first
estimate of the change in the mass, the additional con-
tributions are not included. The effect of the magnetic field
on the dimension-4 gluon condensate has been analyzed in
Ref. [15] so that, in principle, one could include it in the
same way done here in the case of the chiral condensate.
However, the breaking of rotational symmetry will intro-
duce new dimension-4 condensates,2 previously forbidden
by Lorentz invariance in the vacuum (eB ¼ 0), and there is
no information on the behavior of these condensates under
strong magnetic fields. Fully introducing g2 corrections
(which include the gluon condensates and radiative cor-
rections) would bring new unknown parameters into these
calculations. With that in mind, in this first study we will
consider the OPE expansion up to operators of dimension
3, which is enough to study the overall change in mass
when the magnetic field is introduced. In the vacuum, this
means that one needs to consider only the identity operator
and the quark condensate hq̄qi in the calculations. We leave
more precise predictions of mass values at specific field
values for future work, when more data on the behavior of
dimension-4 condensates are available.

III. QCD SUM RULES WITH
MAGNETIC FIELDS

In order to determine the contributions from the OPE to
the correlation function in the presence of an external
magnetic field, we will consider, as the “free” quark
propagator, the full nonperturbative propagator computed
by Schwinger [13] that describes the interaction of a spin-
1=2 field with the magnetic field. However, this propagator
does not include the QCD interactions experienced by the
quarks, which are parametrized here using the nonpertur-
bative QCD condensates. The interactions of the magnetic
field with the QCD vacuum are taken into account by
considering the dependence of the condensates with the
external field. On the phenomenological side, we will
take the pole contribution as being given by the full
propagator of a charged pseudoscalar meson in an external
magnetic field.

A. Quark propagator in the presence
of an external magnetic field

The Schwinger proper-time representation [13]
describes the Feynman propagator of a spin-1=2 fermion
with charge e and mass m in an external, constant, and
uniform Abelian magnetic field. Considering the magnetic
field in the z direction and the symmetric gauge, i.e.,

A ¼ ð−By=2; Bx=2; 0Þ, the Schwinger propagator can be
written as3

SabðkÞ¼ δab

Z
∞

0

dsexp

�
is

�
k20−k23−k2⊥

tanðeBsÞ
eBs

−m2

��

× ½ðk0γ0−k3γ3þmÞð1þγ1γ2 tanðeBsÞÞ
−k⊥ ·γ⊥ð1þ tan2ðeBsÞÞ�: (12)

We can also write the propagator as a sum over Landau
levels [18]:

SabðkÞ ¼ iδabe−k
2⊥=jeBj

X∞
n¼0

ð−1Þn DnðeB; kÞ
k2∥ −m2 − 2jeBjnþ iϵ

;

(13)

with

DnðeB; kÞ ¼ ðk0γ0 − k3γ3 þmÞ

×

�
ð1 − γ1γ2signðeBÞÞLn

�
2k2⊥
jeBj

�

−ð1þ iγ1γ2signðeBÞÞLn−1

�
2k2⊥
jeBj

��

þ 4ðk1γ1 þ k2γ2ÞL1
n−1

�
2k2⊥
jeBj

�
; (14)

where La
n are the associated Laguerre polynomials and

Ln ≡ L0
n.
4 The form of the propagator in Eq. (12) is more

convenient when considering weak fields (eB ≪ m2), as it
can be easily expanded in powers of eB=m2. The alter-
native form in Eq. (14) is convenient when one is interested
in a strong field limit (eB ≫ m2), since in this case the
lowest Landau level (LLL), given by n ¼ 0, dominates. We
shall develop later in this section how these approximations
are relevant to the study of the heavy mesons considered in
this paper.

B. Nonperturbative QCD contributions

The Schwinger propagator in Eq. (12) takes into
account in a nonperturbative manner all the effects
coming from the external magnetic field on the quark
propagators, but we have not taken into account the
intrinsic nonperturbative QCD effects (and their

2See Appendix A for an example of the same effect on
dimension-3 condensates.

3We use a mostly minus signature for the Minkowski metric,
and the four-vectors vμ ≡ ðv0; v1; v2; v3Þ are separated into
parallel, v∥ ≡ ðv0; 0; 0; v3Þ, and perpendicular pieces,
v⊥ ≡ ð0; v1; v2; 0Þ, with respect to the direction of the magnetic
field. The inner product is written as uμvμ ≡ u · v ¼
u∥ · v∥ − u⊥ · v⊥, where u∥ · v∥ ≡ u0v0 − u3v3 and u⊥ · v⊥≡
u1v1 þ u2v2. Thus, for instance, u2∥ ¼ u20 − u23 and
u2⊥ ¼ u21 þ u22.4For n < 0, one defines Ln ¼ L1

n−1 ¼ 0.
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modification due to the external field). In the QCDSR
method, the nonperturbative aspects of QCD are
accounted for by performing the OPE of the correlator
and considering the vacuum expectation values of the
local operators thus obtained.
Schematically, one can think of an expansion on the

quark propagators themselves5 and write

Sqab;αβ ¼ Sq;pertab;αβ þ h∶qaαðxÞq̄bβð0Þ∶i; (15)

where Sq;pertab;αβ is the perturbative propagator, which in the
presence of a magnetic field corresponds to Eq. (12). As for
the normal ordered term, up to condensates of dimension 3,
we get (see Appendix A for further details)

h∶qaαðxÞq̄bβð0Þ∶i ≈ −
δab
12

h∶q̄q∶iδαβ −
δab
12

h∶q̄σ12q∶iσ12αβ:
(16)

The nonperturbative QCD effects are parametrized
by the condensates hq̄qi and hq̄σ12qi. The inclusion of
the effects from the magnetic field on the condensate
terms is done by taking hq̄qi and hq̄σ12qi as functions of
eB. The value used for the light quark chiral condensate
in the absence of the magnetic field is hq̄qi0 ¼
ð−0.23Þ3 GeV3 [31,32], while hQ̄Qi ∼ 0 for heavy
quarks [9,33]. For the ratio ΣðeBÞ≡ hq̄qiðeBÞ=hq̄qi0,
we use two different parametrizations according to the
intensity of the magnetic field. For magnetic fields such
that eB=m2

π ≪ 1, we use the chiral perturbation theory
result [14,16]

ΣðeBÞ ¼ 1þ ln 2
eB

16π2F2
π
IH

�
m2

π

eB

�
; (17)

where Fπ ∼ 93 MeV is the pion decay constant, mπ ¼
140 MeV is taken to be the pion mass, and

IHðyÞ ¼
1

ln 2

�
lnð2πÞ þ y ln

�
y
2

�
− y − 2 lnΓ

�
1þ y
2

��
:

(18)

For magnetic fields eB > 1 GeV2, we use a linear
extrapolation of the lattice results in Ref. [19] (note,
however, that the contribution from the condensates to
the mass of B mesons is very small, and thus, our final
results for the masses are not sensitive to such an
extrapolation). In the limit of weak fields, the lattice
results are compatible with those found in chiral

perturbation theory [19]. Due to the Dirac matrix
structure of the pseudoscalar current in Eq. (2), the
term proportional to hq̄σ12qi results in a vanishing trace
in Eq. (3), and thus, such a term does not enter into our
calculations. However, for other types of interpolating
currents [such as the vector mesons ϒð1SÞ or B�], the
contribution from the hq̄σ12qi condensate may enter
explicitly in the OPE and must be considered. With this
possibility in mind, we remark that there are already
lattice results for this quantity in the presence of a
magnetic field [34].
The nonperturbative contribution to the correlator that

comes from using the propagator in Eq. (15) in the OPE
two-point function, after the Borel transform, is

Π̂hq̄qiðM̄Þ ¼ −mQhq̄qie−m
2
Q=M̄

2

; (19)

wheremQ is the heavy quark mass and M̄ is the Borel mass.

C. Weak field approximation

In this paper, the weak field limit is defined by the
condition eB ≪ m2

q ≪ m2
Q;B, where mq is the mass of the

light quark, and c is the charge of the light quark in units of
the electron charge. This considerably simplifies the
propagator in Eq. (12). We define x≡ sm2 (where m here
can be either one of the masses) and expand Eq. (12) in
powers of ðceB=m2Þ, up to quadratic order, obtaining
(eB > 0)

SabðkÞ ¼ δab

Z
∞

0

dx
eixα=m

2

m2

×

�
ðkþmÞ þ ðk∥ · γ∥ þmÞγ1γ2

�
ceBx
m2

�

− k⊥ · γ⊥
�
ceBx
m2

�
2
�
; (20)

with

α≡ k2 −m2 −
k2⊥
3

�
ceBx
m2

�
2

: (21)

Evaluating the integrals, we obtain

SðkÞ ¼ SðeBÞ0ðkÞ þ SðeBÞ1ðkÞ þ SðeBÞ2ðkÞ; (22)

with

SðeBÞ0ðkÞ ¼ i
kþm
k2 −m2

(23)

and

5Note that the expansion is performed within the correlator,
and one must be careful with OPE terms that potentially
involve more than one propagator, such as the gluon con-
densate. However, since we are only considering condensates
of dimension 3, such subtleties do not appear in our
calculations.
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SðeBÞ1ðkÞ ¼
�
ceB
m2

��
−ðk∥ · γ∥ þmÞγ1γ2 m2

ðk2 −m2Þ2
�
; (24)

SðeBÞ2ðkÞ ¼
�
ceB
m2

�
2
�
−2ik2⊥ð−kþmÞ m4

ðk2 −m2Þ4

þ 2ik⊥ · γ⊥
m4

ðk2 −m2Þ3
�
: (25)

For the perturbative part of the quark propagators, we use
Eq. (22), which is a good approximation as long as
eB ≪ m2

q ≪ m2
Q. These propagators are then inserted in

the correlation function [Eq. (3)]. The momentum integrals
are evaluated using a Feynman parametrization and a cutoff
regularization—the details can be found in Appendix B. In
the end, we arrive at

ΠweakðqÞ ¼ ΠðeBÞ0
pert þ ΠðeBÞ2

1;pert þ ΠðeBÞ2
2;pert þ Πhq̄qi; (26)

where

ΠðeBÞ0
pert ¼ 3

ð2πÞ2
Z

1

0

dx½2Δ − xð1 − xÞq2 −mqmQ� logΔ;
(27)

ΠðeBÞ2
1;pert ¼

3

ð2πÞ2 ðcCÞðeBÞ
2

Z
1

0

dxð1 − xÞx

×

�
1

Δ
−
ðx2 − xÞq2∥ þmqmQ

2Δ2

�
; (28)

ΠðeBÞ2
2;pert ¼

3 · 2
ð2πÞ2 ðc

2 þ C2ÞðeBÞ2
Z

1

0

dx

�
x3

3

�
3

2Δ
þmqmQ þ q2⊥ð3 − 7xþ 4x2Þ

2Δ2

−
ðx2 − xÞq2

2Δ2
þ ð1 − xÞ2q2⊥

mqmQ − ðx2 − xÞq2
Δ3

þ x2
�
1

Δ
þ ðx2 − xÞq2⊥

Δ2

���
; (29)

where C is the charge of the heavy quark in units of the
electric charge and

Δ≡ ðx2 − xÞq2 þ xm2
q þ ð1 − xÞm2

Q: (30)

One can check that all linear terms in eB have a vanishing
Dirac trace.6 We have separated the order-ðeBÞ2 contribution
in two terms for convenience. They come from different
diagrams in Fig. 8 (in Appendix A) and are two distinct
combinations on the fractional quark charges—one that

depends on ðcCÞ (ΠðeBÞ2
1;pert ), and another that depends on

ðc2 þ C2Þ (ΠðeBÞ2
2;pert ).

One may think that the expressions above could be easily
simplified by taking the limit in which mq → 0. However,
this approximation is not strictly allowed in the weak field
limit, since in this case eB ≪ m2

q ≪ m2
Q. However, it is

possible to rewrite the equations in terms of the dimension-
less parameters mq=mQ and eB=m2

Q to show that the terms
proportional to mq only contribute to the real part of the
correlator. Since we are only interested in ρOPEðqÞ, which
comes from the imaginary part of the correlator, we can
safely take mq → 0 in this case. The result is an integral
with a logarithmic term whose branch cut yields the

imaginary part of the correlator plus polynomial terms
without an imaginary part.
When mq → 0, the kinematic constraint in the s ¼ q2

integral is smin ¼ q2min ¼ m2
Q. We can use the relation q2 ¼

q2∥ − q2⊥ to choose two of the three momenta as indepen-
dent variables—it will be useful to choose s ¼ q2 and q2⊥.
In the end, the spectral density of the OPE side is given by

ρweakpert ðs ¼ q2; q2⊥Þ ¼ ρðeBÞ0ðs; q2⊥Þ þ ρðeBÞ
2

1 ðs; q2⊥Þ
þ ρðeBÞ

2

2 ðs; q2⊥Þ; (31)

with

ρðeBÞ0ðs; q2⊥Þ ¼
3

8π2

�ðs −m2
qÞ2

s
þ 2

mQmq

s
ðs −m2

QÞ
�
;

(32)

ρðeBÞ
2

1 ðs; q2⊥Þ ¼ −
3

4π2
ðcCÞðeBÞ2 m

2
Q

s3
ðq2⊥Þ; (33)

and

ρðeBÞ
2

2 ðs; q2⊥Þ ¼ −
ðc2 þ C2ÞðeBÞ2m4

Q

4π2ðm2
Q − sÞ2ðsÞ3

× ½6m4
Q −m2

Qðs − 14q2⊥Þ − 3sð2sþ 7q2⊥Þ�:
(34)

The Borel-transformed correlator in the weak field approxi-
mation is, at the one-loop level,

6The linear contribution in eB comes from Tr½i ð−kþmÞ
k2−m2

ðeBÞ
m2 ×

ð−ðk∥ · γ∥ þmÞγ1γ2 m2

ðk2−m2Þ2Þ�. This is proportional either to the
trace of an odd number of γμ matrices or to the off-diagonal
elements of the metric tensor, so the contribution proportional to
eB vanishes.
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Π̂OPE
weakðM̄; q2⊥Þ ¼

Z
s0

smin

ds½ρweakpert ðs; q2⊥Þe−s=M̄
2 � þ Π̂hq̄qiðM̄Þ;

(35)

where the continuum is already subtracted.

D. Strong field approximation

In the opposite limit, i.e., very strong magnetic fields
such that m2

q ≪ eB ≪ m2
Q, we can use the alternative

representation in Eq. (13) for the light quark propagator
and keep only the lowest Landau level when ceB=m2

q ≫ 1
[18]. In other words, we truncate the Landau sum for the
light quark propagator [Eq. (13)] at n ¼ 0:

Sð0Þab ðkÞ ¼ iδabe−k
2⊥=ðceBÞ

�
k∥ · γ∥ þmq

k2∥ −m2
q

�
ð1 − iγ1γ2Þ; (36)

where Sð0Þab is the quark propagator truncated at the lowest
Landau level. With respect to the heavy quark mass, the
magnetic field is not strong, eB ≪ m2

Q, and we can still use
the Taylor expansion in Eq. (22). With these propagators,
we obtain

ΠstrongðqÞ ¼ Π̄ðeBÞ0
pert þ Π̄ðeBÞ1

1;pert þ Π̄ðeBÞ2
2;pert þ Πhq̄qi; (37)

where

Π̄ðeBÞ0
pert ðqÞ ¼ 3 · 4i

Z
d2k⊥
ð2πÞ2 e

−
k2⊥
ceB

Z
d2k∥
ð2πÞ2

k2∥þ k∥ ·q∥
ððkþqÞ2−m2

QÞk2∥
(38)

and

Π̄ðeBÞ1
1;pertðqÞ ¼ −3 · 4i

CeB
m2

Q
m2

Q

Z
d2k⊥
ð2πÞ2 e

−
k2⊥
ceB

×
Z

d2k∥
ð2πÞ2

k2∥ þ k∥ · q∥
ððkþ qÞ2 −m2

QÞk2∥
; (39)

where we take mq ¼ 0. One can show that the term

proportional to ðeB=m2
QÞ2, Π̄ðeBÞ2

2;pertðqÞ, vanishes after taking
the Dirac trace. The k∥ integral can be done with the
Feynman parametrization. The integral in the Feynman

parameter results in a logarithmic term only for Π̄ðeBÞ0
pert ðqÞ,

from which we extract the imaginary part, and thus the OPE

spectral density. The Π̄ðeBÞ1
1;pertðqÞ integral is real and does not

contribute to the imaginary part. Therefore, the spectral
density of the OPE side in this strong field limit is given by

ρstrongpert ðs ¼ q2; q⊥Þ ¼
3

2π
e−q

2⊥=ðceBÞ
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sþq2⊥−m2
Q

p
0

dk∥k∥e−
k2⊥
ceB

× I0

�
2k∥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2⊥ þ s

p
ceB

�
; (40)

where I0 is the modified Bessel function. Finally, the Borel
transformed correlator in the strong field approximation is,
at the one-loop level,

Π̂OPE
strongðM̄; q⊥Þ ¼

Z
s0

smin

ds½ρstrongpert ðs; q⊥Þe−s=M̄2 � þ Π̂hq̄qiðM̄Þ;
(41)

where the continuum is already subtracted.

E. The phenomenological side

Since we are dealing with a charged (pseudo)scalar
meson, we can use the Schwinger propagator for a spin-0
particle to describe the pole that appears in the phenom-
enological part of the QCDSR:

GðqÞ ¼ −i
Z

∞

0

ds
cosðeBsÞ

× exp

�
−is

�
m2

H − q2∥ þ
tanðeBsÞ
eBs

q2⊥
��

; (42)

here, mH is the mass of the hadronic state (in the present
case, mH ¼ mB).
Although this propagator is fully nonperturbative with

respect to the external magnetic field, its full form is rather
complicated to implement in the evaluation of the corre-
lation function [Eq. (1)]. Since m2

H ≫ eB in both scenarios
explored on the OPE side, in this paper we expand the
charged pseudoscalar propagator in powers of eB=m2

H in
the phenomenological part of the QCDSR. Given that
magnetic fields of the order eB ∼m2

π [2,3,35,36] are the
most relevant for the study of heavy ion collisions at RHIC
and LHC, in Ref. [37] the calculations presented in this
paper will be generalized to consider effects from magnetic
fields of arbitrary strength.
Therefore, we expand the propagator in Eq. (42) in

powers of eB=m2
H, and the final result up to order ðeBÞ2 is

GðqÞ ¼ 1

q2 −m2
H
− ðeBÞ2

�
1

ðq2 −m2
HÞ3

þ 2q2⊥
ðq2 −m2

HÞ4
�
:

(43)

The Borel transform of the pole phenomenological side
is then given by
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Π̂phenðM̄2Þ ¼ m4
H

m2
Q
f2He

−m2
H=M̄

�
1 − ðeBÞ2

�
1

2M̄4
þ q2⊥
3M̄6

��
;

(44)

where the continuum is already subtracted.

IV. NUMERICAL RESULTS

A. Vacuum

Since we are interested in the effect of the magnetic field
on the meson mass, we will normalize our calculations
by its vacuum (eB ¼ 0) value, also determined via the
QCDSR. Thus, we will briefly review the numerical results
for the mass of the charged B meson computed via the
QCDSR in the absence of a magnetic field, which was
already studied in Refs. [28–30].
We fixed hq̄qi ¼ ð−0.23Þ3 GeV and the quark masses

mb ¼ 4.24 GeV andmu;d ≈ 0. These values were chosen to
mantain consistency with other QCDSR calculations
[31,32]. The continuum threshold s0 is a free parameter
fixed using the phenomenological rule ðmH þ 400Þ MeV≲ffiffiffiffiffi
s0

p ≲ ðmH þ 800Þ MeV [31,38], which is an appropriate

way of fixing s0 when the s0-stable region falls outside the
allowedM2 window (explained below). This is the case for
heavy-light mesons, as noted in Ref. [28].
In the QCDSR approach, there is an interplay between

the convergence of the OPE (valid for large −q2 or large
Borel mass M̄2) and the contribution from the continuum of
excited states (which is smaller than the pole contribution
for low −q2 or low M̄2). The OPE convergence is estimated
by requiring that the contribution from the condensates of
dimension 3 to the OPE be less than 33% of the perturba-
tive contribution—this gives a lower limit to the Borel mass
M̄min [see Fig. 1(a)]. An upper limit M̄max is determined
by requiring that the contribution from the pole be larger
than that from the continuum [see Fig. 1(b)]. We obtain
M̄2

min ∼ 4 GeV2 [Fig. 1(a)] and M̄2
max ∼ 8 GeV2 for

ffiffiffiffiffi
s0

p ¼
6.0 GeV. The interval determined by M̄min and M̄max is
called the Borel window, and the procedure explained
above is used to fix it throughout this work.
With the Borel window fixed, we can determine the

hadronic parameters (mass and coupling of the B meson)
by averaging the values in the Borel window [Fig. 2(a) for
the mass and Fig. 2(b) for the coupling]. We obtain
mB ¼ 5.25 GeV and fB ¼ 0.29 GeV, which agree with

(a) (b)

FIG. 2 (color online). Dependence of the mass (a) and coupling constant (b) of the B meson, as functions of the Borel mass, in the
absence of a magnetic field. The points indicate the Borel window.

(a) (b)

FIG. 1 (color online). (a) Convergence of the OPE expansion and (b) pole dominance in the absence of a magnetic field.
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the experimental values [39] and the results in
Refs. [28,29].
The errors in the QCDSR calculations come mainly from

the truncation of the OPE expansion, from the choice of the
continuum threshold (s0), and from the uncertainties in the
values of the quark masses and condensates. These errors
can be estimated by varying those parameters within their
uncertainties. In this work, we will not make an estimate
of QCDSR intrinsic errors, since we are interested in the
ratios between sum-rules calculations with and without the
effects of magnetic fields. The effect of those errors would
be to create a narrow bundle of similar curves where now
we have just one curve. As this would happen both in the
vacuum and in the presence of the magnetic field, the
central values for the ratios would not be affected.

B. Weak magnetic fields

The sum rules for the weak magnetic field case are
obtained by equating Eqs. (35) and (44):

Π̂hq̄qiðM̄Þ þ
Z

s0

smin

dse−s=M̄
2

ρweakpert ðs; q⊥Þ

¼ m4
H

m2
Q
f2He

−m2
H=M̄

2

�
1 − ðeBÞ2

�
1

2M̄4
þ q2⊥
3M̄6

��
; (45)

where Π̂hq̄qiðM̄Þ is given by Eq. (19). In Eq. (45), the
parameters we want to discover (for a given Borel mass M̄)
are the meson massmH and the coupling constant fH. As in
the vacuum case, by differentiating Eq. (45) with respect to
1=M̄2, we can obtain a second equation to solve formH and
fH. However, due to the more complex dependence of the
phenomenological side on M̄, we cannot eliminate fH from
Eq. (45) by the same procedure done in the vacuum. Thus,
we numerically solve Eq. (45) and its derivative with
respect to 1=M̄2 to obtain simultaneously mH and fH.
As a consistency check, we verify that this procedure yields
the same numerical results found for the vacuum in
Sec. IVA.

For this initial study, we fix eB ¼ 2 × 10−6m2
π∼

4 × 10−8 GeV2 and q2⊥ ¼ 1 GeV2—this last choice reflects
a typical hadronic scale. The continuum threshold was
chosen to be the same as that of the vacuum calculation,
s1=20 ¼ ð5.3� 0.6Þ GeV. This approximation is justified,
since the change in the mass due to the effect of the
magnetic field, in the weak field limit, is expected to be
small and thus not expected to greatly modify the threshold
for contributions from the excited states. The convergence
of the OPE is shown in Fig. 3(a), and the pole dominance
can be seen in Fig. 3(b). The result for mB for these fixed
values of eB and q2⊥ is shown in Fig. 4, along with the
respective Borel window. For magnetic fields larger than
∼4 × 10−8 GeV2, the contribution from the term ∼ðeBÞ2 is
larger than the vacuum term, signaling the breakdown of
our weak field expansion for the light quark propagator.
A more systematic study can be done to investigate the

role of the choice of q2⊥ by fixing eB ∼ 2 × 10−6m2
π and

varying q2⊥. The results are shown in Fig. 5(a), where the
computed masses and couplings are normalized by the
vacuum results. One can see that mB is quite sensitive to
the choice of q2⊥. Nevertheless, for any choice of q2⊥, the
effect of the magnetic field is to lowermB. This is consistent
with the “Zeeman” splitting found for the ρ-meson mass in

(a) (b)

FIG. 3 (color online). (a) OPE convergence and (b) pole dominance for eB ¼ 4 × 10−8 GeV2 and q2⊥ ¼ 1 GeV2.

FIG. 4 (color online). Mass of the Bmeson,mB, as a function of
the Borel mass M̄2 for eB ¼ 4 × 10−8 GeV2 (the weak field
limit) and q2⊥ ¼ 1 GeV2. The points indicate the Borel window.
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the presence of magnetic fields [25,40,41]. However, in the
QCDSR approach, we capture only the hadron ground
state, and thus, one should expect to obtain only the lower
meson mass.
With these observations in mind, we fix q2⊥ to

be 1 GeV2 and vary eB. The results are shown in
Fig. 5(b). One can see that mB decreases with increasing
eB, as expected.

C. Strong magnetic fields

In the strong magnetic field limit, the calculation is
entirely analogous to the one realized in the preceding
subsection, except that now we use Eq. (41) for the OPE
side. In this case, we are within the limits m2

q ≪ eB ≪ m2
Q.

By varying eB, we see that to have a valid Borel window,
we have to limit eB to be in the range eB ∼ 50m2

π ∼ 1 GeV2

and eB ∼ 200m2
π ∼ 4 GeV2. In Figs. 6(a) and 6(b), we

show the convergence of the OPE and the dominance of the
pole over the continuum for eB ¼ 75m2

π ∼ 1.5 GeV2

and q2⊥ ¼ 0.5 GeV2.

The continuum threshold, s0, is one of the main sources
of error in the QCDSR approach, and thus, one needs to be
careful with the choice of this parameter in the strong field
limit. Using the standard phenomenological estimate
ðmH þ 400Þ MeV≲ ffiffiffiffiffi

s0
p ≲ ðmH þ 800Þ MeV as a guide,

we chose, for eB ¼ 1.0 GeV2, eB ¼ 2.5 GeV2, and
eB ¼ 4.0 GeV2, three values of s0 which satisfyffiffiffiffiffi
s0

p ∼ ðmH þ 600Þ MeV, using an interpolation of s0 for
intermediate values of eB. To analyze the sensitivity of the
results with s0, we also repeated this analysis for values offfiffiffiffiffi
s0

p
in the range defined by ∼ðmH þ 400Þ MeV and

∼ðmH þ 800Þ MeV, yielding one lower- and two upper-
limit curves of continuum thresholds,

ffiffiffiffiffi
s0

p ðeBÞ, ffiffiffiffiffiffiffiffiffiffiffi
s0;min

p
and

ffiffiffiffiffiffiffiffiffiffiffi
s0;max

p
, respectively.

The results for the mass as a function of eB and q2⊥ with
the three values of s0 are shown in Figs. 7(a) and 7(b). Note
that in the strong field limit, mB displays the same
qualitative behavior as a function of eB as observed in
the weak field case. However, in contrast with the weak
field result [Fig. 5(b)],mB is found to be less sensitive to the
choice of q2⊥.

(a) (b)

FIG. 5. (a) B-meson mass,mB, as a function of the perpendicular momentum for a fixed magnetic field of eB ¼ 2 × 10−6m2
π (the weak

field limit) and (b) dependence of mB on the magnetic field for a fixed perpendicular momentum q2⊥ ¼ 1 GeV2.

(a) (b)

FIG. 6 (color online). (a) OPE convergence and (b) pole dominance for eB ¼ 1.5 GeV2 (strong field limit) and
q2⊥ ¼ 0.5 GeV2.
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V. CONCLUSIONS

In this paper, we have introduced a modification of the
QCDSR method in order to estimate the effects of external
magnetic fields on the mass of charged B mesons. The
effect of such fields has been taken into account via two
distinct modifications. First, the quark propagators (on the
OPE side) and the meson propagator (on the phenomeno-
logical side) were modified using the proper-time repre-
sentation introduced by Schwinger [13], which gives the
exact propagators for fermions and scalar particles in the
presence of a constant and uniform magnetic field.
Secondly, the quark condensate, which encodes the non-
perturbative aspect of QCD, has been replaced by its
magnetic-field-dependent value, and the same approach
could be used for higher-dimensional condensates. While
these modifications include all the effects of a constant
magnetic field in the QCDSR method, the full calculation
using the complete proper-time propagators is technically
difficult to implement. In this first study, we decided to
restrict the calculation to some limiting situations in order
to gain qualitative insight and order-of-magnitude estimates
of the possible effects. Two such simplifying limits were
considered: (1) the “weak field” limit, where the external
field satisfies eB ≪ m2 (with m being any of the masses
involved, including both of the quarks and the meson), and
(2) the “strong field” limit, where the field strength is still
small compared to the bottom quark mass or the B-meson
mass squared, but still large enough compared to the light
quarks, i.e., m2

u;d ≪ eB ≪ M2
b;B.

In the “weak field” limit, we can expand all proper-time
propagators in powers of ceB=m2 (with m being the mass
of a given propagator), which greatly simplifies the
calculation. We have kept terms up to ðeB=m2Þ2 and
evaluated the QCDSR with condensates up to dimension
3. Surprisingly enough, we have found sizable effects
already with considerably weak fields (eB ∼ 2 × 10−6m2

π).
The effect of the field is to lower the mesonmass. This result

agrees with the expectation that the magnetic field splits the
meson into two states, and the fact that the QCDSR only
consider the lowest-lying state. The surprising feature found
here is themagnitudeof themass suppression,which is about
10%. We also found a strong dependence of the mass with
respect to the meson momentum perpendicular to the
magnetic field, which might have some phenomenological
implications.Our calculations behave properly in the limit of
eB → 0; q⊥ → 0, falling back to the usual QCDSR results.
In the “strong field” limit, we considered fields of

the order eB ∼ 75m2
π. In this limit, we can still expand

the propagators of the heavy quark and the meson in the
same way we did for the previous case. The light quark
propagator, on the other hand, can be written as a sum over
Landau levels, and for such a strong field, we assumed that
only the lowest Landau level contributed significantly,
which allowed us to truncate the sum to its first term. In
this approximation, we found that the decrease in the
B-meson mass is in the 10% to 20% range depending
on the field strength, the perpendicular momentum, and the
intrinsic QCDSR parameters. This is not a large effect,
especially considering the results found in the weak field
limit. It seems that most of the magnetic field effects take
place at smaller field values, with the mass changing at a
slower pace after that. That might indicate the presence
of a saturation mechanism that stabilizes the meson mass
as a function of the magnetic field, but a more complete
calculation (valid for arbitrary values of the magnetic field)
is needed to verify if that is indeed the case.
The values of magnetic fields relevant to ultrarelativistic

heavy ion collisions, eB ∼ 1–15m2
π , are in between the two

sets of values considered in this paper. Although we do not
expect the effects of the magnetic field to change quali-
tatively the result found here, a more complete calculation
valid for arbitrary values of the magnetic field is needed to
confirm this expectation. Such a calculation is also desir-
able, since it could be used to study other mesons that do

(a)

FIG. 7 (color online). (a) Mass of the Bmeson,mB, as a function of the perpendicular momentum q2⊥ for fixed eB ¼ 1.5 GeV2 (strong
field limit), and (b) as a function of the magnetic field eB for fixed q2⊥ ¼ 0.5 GeV2. The curves correspond to the centralffiffiffiffiffi
s0

p ∼ ðmH þ 600Þ MeV, lower
ffiffiffiffiffi
s0

p ∼ ðmH þ 400Þ MeV, and upper
ffiffiffiffiffi
s0

p ∼ ðmH þ 800Þ MeV interpolated continuum threshold
s0ðeBÞ curves, as described in the main text.
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not have the same separation of scales present in B mesons
(which justified our approximations). We are currently
tackling the more general calculations that include the
explicit sum over Landau levels, and we intend to present
the results in a future publication [37].
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APPENDIX A: THE OPE FOR THE
QUARK PROPAGATOR

In this appendix, we work out the OPE expansion for the
quark propagator in a constant, homogeneous magnetic
field, including the effects of condensates of dimension 3.
The procedure we follow can be extended to include
condensates of higher dimension. However, note that in
general, new condensates appear due to the magnetic field,
and for dimensions higher than 4, one does not yet have
estimates for these new condensates in the presence of a
magnetic field.
We start with the propagator for a quark field q:

Sqab;αβ≡hΩjTfqaαðxÞq̄bβð0ÞgjΩi
¼h0jTfqaαðxÞq̄bβð0Þgj0i þ hΩj∶qaαðxÞq̄bβð0Þ∶jΩi;

(A1)

where jΩi is the true vacuum, j0i is the perturbative
vacuum, T is the time-ordering operator, a; b ¼ 1, 2, 3
are color indices, and α ¼ 1, 2, 3, 4 is a Dirac matrix index.
The first term in the second line is the perturbative
propagator. In our case, instead of the free propagator,
we will use the Schwinger proper-time propagator for a
fermion in a magnetic field, since it includes all the
contributions from the external field (but is free from the
point of view of QCD interactions). The second term, i.e.,
the normal ordered product, will be expanded in terms of
the QCD condensates.
Our approach is analogous to the one used to obtain

thequarkpropagator in theQCDSRmethod innuclearmatter
(see, for example, Ref. [42] for a review). The main idea is
that one can expand thematrix element h∶qaαðxÞq̄bβð0Þ∶i≡
hΩj∶qaαðxÞq̄bβð0Þ∶jΩi in terms of the usual basis for the
Dirac matrices, f1; γμ; γ5; γ5γμ; σμνg, where as usual
σμν ≡ i½γμ; γν�=2. Thus, we see that

h∶qaαðxÞq̄bβð0Þ∶i ¼ δabðaδαβ þ bμνσ
μν
αβÞ; (A2)

where a, bμν are determined below. In the vacuum, only the
first term appears, by parity and time-reversal invariance.
However, the external magnetic field breaks time-reversal
invariance, and thus, the tensor term in Eq. (A2) is
now allowed. Since the only tensor at our disposal is the
external electromagnetic field Fμν, one sees that bμν ∝ Fμν.
The quantities in Eq. (A2) can be obtained by suitable
contractions of both sides with the appropriate Dirac matri-
ces, which gives

h∶qaαðxÞq̄bβð0Þ∶i ¼ −
δab
12

�
h∶q̄ð0ÞqðxÞ∶iδαβ

þ 1

2
h∶q̄ð0ÞσμνqðxÞ∶iσμναβ

�
: (A3)

Since we are performing a short-distance expansion, we can
Taylor-expand the quark field qaðxÞ for small x. In the fixed-
point gauge for the color gauge potential, xμAμ ¼ 0, we have
xμDμ ¼ xμ∂μ. So, the Taylor expansion takes the form

qaðxÞ ¼ qað0Þ þ xμDμqajx¼0 þ
1

2
xμxνDμDνqajx¼0 þ � � � :

(A4)

Since we are interested only in dimension-3 operators, we
can truncate the Taylor expansion to the zeroth-order term,
since keeping higher-order terms in the expansion corre-
sponds to considering condensates of higher dimensions.
With this expansion,we canwrite the nonperturbative part of
the quark propagator (up to condensates of dimension 3) as

h∶qaαðxÞq̄bβð0Þ∶i ≈ −
δab
12

h∶q̄q∶iδαβ −
δab
24

h∶q̄σμνq∶iσμναβ:
(A5)

In our case, the magnetic field is in the z (3) spatial
direction. In this situation, the only nonzero magnetic
condensates are h∶q̄σ12q∶i and h∶q̄σ21q∶i ¼ −h∶q̄σ12q∶i.
Thus, in this case,

h∶qaαðxÞq̄bβð0Þ∶i ≈ −
δab
12

h∶q̄q∶iδαβ −
δab
12

h∶q̄σ12q∶iσ12αβ:
(A6)

APPENDIX B: CORRELATOR IN
THE WEAK FIELD LIMIT

The diagrams with nonvanishing traces are shown in
Fig. 8. In this notation, the line with the square corresponds
to the term ðeB=m2Þ or ðeB=m2Þ2 of the weak field
propagator expansion in Eq. (22).
The first diagram in Fig. 8 leads to
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Πð1Þ ¼ 3 · 4i
Z

d4k
ð2πÞ4

k2 þ k · q −mqmQ

ðk2 −m2
QÞððkþ qÞ2 −m2

qÞ
¼ 3 · 4i

Z
1

0

dx
Z

d4k
ð2πÞ4

�
k2

ðk2 − ΔÞ2 þ
ð−xq2ð1 − xÞ −mqmQÞ

ðk2 − ΔÞ2
�
; (B1)

with Δ≡ −xð1 − xÞq2 þ xm2
Q þ ð1 − xÞm2

q, where x is a
Feynman parameter. After integrating over the momentum,
we obtain

Πð1Þ ¼
3 · 4
ð4πÞ2

Z
1

0

dx lnΔð2Δ − xq2ð1 − xÞ −mqmQÞ:

(B2)

This is the usual perturbative, eB ¼ 0, contribution to the
correlator.
The second diagram in Fig. 8 corresponds to

Πð2Þ ¼ 3 · 4iðcBÞðCBÞ
Z

d2k⊥
ð2πÞ2

Z
d2k∥
ð2πÞ2

×
k2∥ þ k∥ · q∥ þmqmQ

ððkþ qÞ2 −m2
qÞ2ðk2 −m2

QÞ
; (B3)

with k∥ ¼ ðk0; k3Þ and k⊥ ¼ ðk1; k2Þ. After the Feynman
parametrization, we arrive at

Πð2Þ ¼ 3 · 4iðcBÞðCBÞ6
Z

1

0

dxxð1 − xÞ

×
Z

d2k⊥
ð2πÞ2

Z
d2k∥
ð2πÞ2

×

�
k2∥

ðk2∥ − Δ∥Þ4
þ ð−xq2∥ þ x2q2∥ −mqmQÞ

ðk2∥ − Δ∥Þ4
�
; (B4)

with Δ∥¼k2⊥−xð1−xÞq2∥−xð1−xÞq2⊥−xð−m2
qþm2

QÞþ
m2

Q. Then, we can evaluate the k∥ integral. The same
procedure applies to the k⊥ integral. In the end, we obtain
the following expression:

Πð2Þ ¼ 3 · 4ðcBÞðCBÞ 1

ð4πÞ2
Z

1

0

dxxð1 − xÞ
�
1

Δ⊥
−
ðq2∥ðx2 − xÞ −mqmQÞ

2Δ2⊥

�
; (B5)

with Δ⊥ ¼ ðx2 − xÞq2 þ xm2
q þ ð1 − xÞm2

Q.
The third diagram in Fig. 8 is given by

Πð3Þ ¼ 3 · 4iðcBÞ2
Z

d4k
ð2πÞ4

�
2
ðk21 þ k22ÞðmqmQ − k · ðkþ qÞÞ
ððkþ qÞ2 −m2

qÞðk2 −m2
QÞ4

−2
ðk1 · ðk1 þ q1Þ þ k2 · ðk2 þ q2ÞÞ
ððkþ qÞ2 −m2

qÞðk2 −m2
QÞ3

�
: (B6)

By the same procedure worked out for the second diagram, we obtain

Πð3Þ ¼
3 · 4
ð4πÞ2 ðcBÞ

2

Z
1

0

dxð1 − xÞ3
�
1

Δ⊥
þ q2ðx − x2Þ − q2⊥ðx − 4x2Þ þmqmQ

3Δ2⊥

þ 2x2q2⊥ðq2ðx − x2Þ þmqmQÞ
3Δ3⊥

�
−

3 · 4
ð4πÞ2 ðcBÞ

2

Z
1

0

ð1 − xÞ2
�
1

Δ⊥
þ q2⊥ðx2 − xÞ

Δ2⊥

�
; (B7)

with Δ⊥ ¼ ðx2 − xÞq2 þ xm2
q þ ð1 − xÞm2

Q. In order to obtain the result for the fourth diagram, we can just replace C↔c,
mq↔mQ, and ðqþ kÞ↔k in the previous result for Πð3Þ.

FIG. 8. Perturbative diagrams up to order ðeBÞ2.
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